- Обзор небольшой солнечной батареи, или попытка понять можно ли зарядить аккумуляторы от маленькой солнечной батареи
- Солнечная батарея своими руками: как сделать самодельный прибор
- все про альтернативный источник энергии — solar-energ.ru. Как сделать солнечную батарею из простых подручных средств
- Основные элементы: где достать
- Принцип работы
- Как правильно подобрать фотоэлемент
- Как расположить для улучшения КПД
- Самостоятельная работа
- Собираем каркас для фотоэлементов
- Как соединять пластины
- Как собрать панель
- Своими руками из того, что есть
- Транзисторы, как основа световых элементов
- Используем диоды
- Как использовать фольгу
- Обзор небольшой солнечной батареи, или попытка понять можно ли зарядить аккумуляторы от маленькой солнечной батареи
- две модели, сборка и установка
- Рассчитываем и изготавливаем солнечные батареи своими руками
- Солнечная батарея — что это такое
- Преимущества и недостатки этого вида энергии
- Конструктивные особенности
- Подбор материалов для создания панели
- Изготовление солнечной батареи для дома своими руками
- Схема подключения электроснабжения дома с использованием наших батарей
- Делаем выводы
- Видео о том, как изготовить прибор для сбора солнечной энергии самому
- Солнечная батарея своими руками!!! объединение маленьких батарей в одну большую
Обзор небольшой солнечной батареи, или попытка понять можно ли зарядить аккумуляторы от маленькой солнечной батареи
Всем привет! Решил постепенно начинать писать обзоры на множество нужных и не очень товаров, купленных в китае. Первая на очереди небольшая солнечная батарея, решил на собственном опыте узнать ее возможности в зарядке аккумуляторов пауэрбанка или телефона напрямую, скажем на природе. Постараюсь обойтись без очень модных слов типа DIY, девайс и тому подобных, я за русский язык! Покупал панель в прошлом году а обзор решил написать только сейчас. дошла довольно быстро, упакована стандартно в желтый пакет и завернута в пенополиэтилен, рабочая поверхность дополнительно была заклеена тонким полиэтиленом для защиты от царапин. Сама панель сделана на основе из стеклотектолита, примерно такого, из которого делают печатные платы, поэтому сломать ее будет непросто, я изначально опасался придет ли она в целости, так как считал, что панель цельностеклянная. Размеры панели 97*97 мм, на 1 мм меньше, чем указано у продавца, но это не критично.Итого аккумулятор телефона или пауэрбанка зарядить от такой небольшой панельки можно, но очень долго, но вероятнее всего для небольшой подпитки какого-нибудь простого телефона или плеера с аккумулятором емкостью 700-800 мА*ч в ясный солнечный день ее вполне хватит, что позволит проработать этим устройствам дольше. Солнечная панелька покупалась только ради такого эксперимента, и сейчас висит все там же на окне, подзаряжая пауэрбанк, других применений для нее пока что не нашел, но любители что-то мастерить своими руками могут использовать ее например для маленького робота, или чего-то еще.
И конечно же кот, для хорошего настроения!)
mysku.ru
Солнечная батарея своими руками: как сделать самодельный прибор
Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?
Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.
В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.
Содержание статьи:
Коротко об устройстве и работе
Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.
Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.
При этом световые кванты «отпускают» свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.
Галерея изображений
Фото из
Сборка солнечной батареи из кремниевых пластинок
Формирование плюсовой токоведущей дорожки
Создание минусовых токоведущих линий с задней стороны
Подключение проводника и блокирующего диода
В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.
На поверхности пластины имеются металлические «дорожки», на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.
Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить.
Верхний слой пластин-фотоэлементов покрыт слоем, который не допускает отражение солнечного света от пластин, повышая их КПД (+)
Материалы для создания солнечной пластины
Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:
- силикатные пластины-фотоэлементы;
- листы ДСП, алюминиевые уголки и рейки;
- жёсткий поролон толщиной 1,5-2,5 см;
- прозрачный элемент, выполняющий роль основания для кремниевых пластин;
- шурупы, саморезы;
- силиконовой герметик для наружных работ;
- электрические провода, диоды, клеммы.
Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.
Теперь рассмотрим самые важные материалы более подробно.
Кремниевые пластины или фотоэлементы
Фотоэлементы для батарей бывают трёх видов:
- поликристаллические;
- монокристаллические;
- аморфные.
Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 — 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов — 10 лет.
Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле (+)
Монокристаллические фотоэлементы могут похвастаться более высоким КПД — 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.
Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.
Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность
Гибкие батареи с аморфным кремнием — самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 — 6 %, но пленочные системы крайне удобны в укладке.
Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.
Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.
При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов
Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.
Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.
Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.
Галерея изображений
Фото из
Поликристаллическая фотоэлектрическая пластина
Лицевая и тыльная стороны кремниевой пластины
Монокристаллическая фотоэлектрическая пластина
Обратная сторона монокристаллической пластины
Каркас и прозрачный элемент
Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков. Второй вариант более предпочтителен по целому ряду причин:
- Алюминий — лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
- При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
- Не впитывает влагу из окружающей среды, не гниёт.
При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.
От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.
Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта — оргстекла. Чуть ниже показатель преломления света у поликарбоната.
От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже — обычное стекло.
Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.
По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло — самый оптимальный вариант для изготовления гелиобатареи
Проект системы и выбор места
Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.
Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант — батареи, которые могут менять угол наклона.
Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.
Единственное условие — батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.
Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.
Для европейской части стран СНГ рекомендуемый угол стационарного наклона 50 — 60 º. Если в конструкции предусмотрено устройство для изменения угла наклона, то в зимний период лучше располагать батареи под 70 º к горизонту, в летнее время под углом 30 º
Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.
Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты.
Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.
Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.
Размещая батареи на наклонной крыше дома, не забывайте об угле наклона панели, идеальный вариант, когда у батареи есть устройство для сезонного изменения угла наклона
Монтаж солнечной батареи по шагам
Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.
При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.
Шаг #1. Пайка контактов кремниевых пластин
Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка — очень непростая и кропотливая работа, занимающая много времени. Пайка осуществляется следующим образом:
- Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
- Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
- Проводник аккуратно выкладывается на пластину. На один элемент — два проводника.
- На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
- Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.
В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.
Пайка контактов для бракованных фотоэлементов группы В производится так же и в том же направлении, что и для целых пластин
Шаг #2. Изготовление каркаса для солнечной батареи
Каркас — это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка — 70-90 мм.
На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.
После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.
Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.
Галерея изображений
Фото из
Изготовление корпуса для солнечной батареи
Вентиляционные отверстия в бортиках корпуса
Подложка для крепления кремниевых пластин
Окрашивание деталей корпуса для гидроизоляции
На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).
Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.
Каркас для гелиобатареи готов и можно приступать к самой ответственной части — монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.
Шаг #3. Монтаж кремниевых пластин-фотоэлементов
Монтаж и пайка кремниевых пластин — самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.
Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.
- Производим пайку фотоэлементов по следующей электросхеме: «+» дорожки расположены на лицевой стороне пластины, «-» — на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
- Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
- Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
- Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
- Контакты крайних фотоэлементов выводим на шину, соответственно «+» и «-«. Для шины рекомендуется использовать более широкий проводник из серебра.
- Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
- В дне каркаса сверлим отверстия для вывода проводов наружу.
Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.
Галерея изображений
Фото из
Подготовка кремниевых пластин к пайке
Сушка избавленных от воска элементов батареи
Вычерчивание абриса пластинок на подложке
Процесс пайки фотоэлектрических элементов батареи
Соединение кремниевых пластин в солнечную батарею
Соединение кремниевых пластин с лицевой стороны
Устройство медных токоведущих шин прибора
Проверка работоспособности части батареи
Шаг #4. Тестирование батареи перед герметизацией
Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов — так значительно проще обнаружить, где контакты соединены плохо.
Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.
Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.
Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.
Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.
Обычно самодельная солнечная батарея, сконструированная из фотоэлементов группы В выдаёт показания 5-10 А, что на 10-20% ниже, чем у солнечных панелей промышленного производства.
Галерея изображений
Фото из
Шаг 9: После проверки работоспособности частей батареи, запаянных на подложке, их располагают в корпусе
Шаг 10: Подложки с пластинами внутри корпуса фиксируются на четыре шурупа. Провод, соединяющий части батареи, выводится через вентиляционные отверстия
Шаг 11: К каждой из половин сооружаемой батареи последовательно подключается диод Шоттки. Его минус подключается к плюсу системы
Шаг 12: Для вывода проводов из корпуса высверливается отверстие. Провода скреплены узлом, чтобы не болтались, и зафиксированы герметиком
Шаг 13: После нанесения герметика необходимо сделать технологический перерыв, отпущенный на полимеризацию состава
Шаг 14: К выведенному из солнечной батареи проводу подсоединяется двухконтактный разъем. Принадлежащая ему розетка крепится на аккумуляторе прибора, который будет заряжать батарея
Шаг 15: После сборки обеих частей прибора и вывода силовой линии наружу батарею закрывают заранее подготовленным экраном
Шаг 16: Перед герметизацией стыков гелиоприбора еще раз проводится проверка работоспособности, чтобы вовремя устранить отошедшие контакты, если они будут обнаружены
Установка обеих частей батареи в подготовленный корпус
Крепление основы солнечной батареи внутри корпуса
Установка блокирующего диода Шоттки
Вывод из корпуса наружу проводов прибора
Ожидание затвердевания герметика
Крепление двухконтактного разъема к проводу
Установка светопропускающего экрана на прибор
Контроль работоспособности перед герметизацией
Шаг #5. Герметизация уложенных в корпус фотоэлементов
Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.
Используя силиконовой герметик, отдавайте предпочтения тому, на упаковке которого указано, что он подходит для использования при минусовых температурах
Существует два способа герметизации:
- полная заливка, когда панели заливаются герметиком;
- нанесение герметика на пространство между фотоэлементами и на крайние элементы.
В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.
Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.
Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.
После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.
Выводы и полезное видео по теме
Обзор фотоэлементов, заказанных в китайском интернет-магазине:
Видео-инструкция по изготовлению солнечной батареи:
Сделать солнечную батарею своими руками — не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи — правильно выбрать и установить фотоэлементы. Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.
sovet-ingenera.com
все про альтернативный источник энергии — solar-energ.ru. Как сделать солнечную батарею из простых подручных средств
Иногда сделать своими руками солнечную батарею бывает необходимо. Мы расскажем, как, из чего и для каких целей можно использовать самодельную СБ.
Людей, которые бы желали жить в экологически чистом месте, вдали от шума цивилизации, становится все больше. Развитая промышленность загрязняет воздух и окружающую среду и вызывает распространение многих болезней, ослабляя иммунитет. Но отъезд подальше от города имеет некоторые сложности, в первую очередь это связано с отсутствием электроснабжения некоторых участков. Жить же в наше время без электричества практически невозможно. На Западе данная проблема решается установкой ветрогенератора, но этот способ имеет свои сложности. В первую очередь дело в дороговизне оборудования. К тому же, чтоб обеспечить целый дом, потребуется не один, а как минимум несколько генераторов. Одним из самых эффективных способов обеспечения электроэнергии дома считается использование солнечных батарей. Небольшую солнечную батарею можно построить своими руками, ведь заводские варианты не дешевы.
Узнаем, как сделать солнечную батарею
Основные элементы: где достать
По сути, солнечная батарея представляет собой контейнер, в котором располагают массив элементов, преобразующих энергию Солнца в электричество. Мы не зря употребили слово «массив». Дело в том, что чтобы обеспечить даже самый маленький домик энергией, элементов должно быть достаточно много.
А так как эти элементы имеют весьма хрупкую структуру, контейнер должен обеспечить их механическую защиту. Кроме того, в контейнере все элементы объединяются в один. Принцип работы батареи не сложен. Поэтому сделать ее можно и самостоятельно.
Для этого все-таки надо изучить теоретическую часть, так как солнечные батареи мало кто делает самостоятельно. Отсюда, кстати, и мнение, что сделать их сложно. Но на самом деле это не так. Основные выводы, полученные после изучения материала о создании данного источника электроэнергии, следующие:
- Самое главное – приобрести солнечные элементы, и желательно по доступной цене.
- Можно использовать бывшие в употреблении запчасти, ввиду высокой стоимости новых.
- Купить пластины, которые обладают небольшими повреждениями, можно на аукционах или по рекламе.
Таким образом, на солнечных элементах вполне можно сэкономить. А уж сделать своими руками контейнер не составит трудности.
Солнечные элементы
Принцип работы
Если вы раньше особо не вникали в вопрос, как сделать солнечную батарею, то в первую очередь следует понять принцип ее работы. Если понять принцип, как она работает, то и вопрос, как ее сделать своими руками, не поставит вас в тупик. На самом деле ее конструкция вполне проста.
Как мы писали выше, солнечная батарея (СБ) — это некоторое количество фотоэлектрических преобразователей энергии, сделанных из кремния для генерации постоянного тока. Все элементы соединены и установлены в контейнере.
Преобразователи бывают трёх видов:
- монокристаллические;
- поликристаллические;
- аморфные или тонкопленочные.
Фотоэлектрический эффект представляет собой следующее: свет от Солнца падает на фотоэлементы, после чего выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Свободные электроны начинают перемещаться между электродами, тем самым вырабатывая постоянный ток. Постоянный ток, в свою очередь, преобразовывается в переменный, которым и будет оснащаться здание.
схема преобразования солнечной энергии в элементах
Как правильно подобрать фотоэлемент
Так как фотоэлементы бывают аморфные, поликристаллические и монокристаллические, можно выбрать один из этих трех вариантов. Желательно это сделать до начала проектной работы. Рассмотрим основные характеристики каждого из видов.
- Монокристаллические имеют КПД 12-14%, но являются самыми чувствительными к лучам света. Если в вашей местности солнечных дней не так много, лучше этот вариант не рассматривать. Небольшая облачность способна существенно снизить КПД. Срок эксплуатации составляет 30 лет.
- Аморфные в своем составе имеют гибкий кремень. Их КПД составляет около 10%. Их производительность электричества не снижается даже в плохих погодных условиях. Однако они очень дороги, да и достать их бывает непросто.
- Поликристаллические имеют КПД до 9%. Они весьма доступны, их производительность не зависит от облачности, но срок эксплуатации меньше на треть – до 20 лет.
В специализированных магазинах можно найти любой из этих вариантов. Если же вы хотите немного сэкономить, выбирайте второй сорт. Эти элементы будут иметь небольшие дефекты, но на работе прибора это не скажется. Иногда цена на б. у. части ниже в 2-3 раза, что позволяет сэкономить должным образом, делая работу самостоятельно.
Как расположить для улучшения КПД
Так как КПД зависит в первую очередь от света, при выборе места под ваше устройство необходимо пользоваться следующим принципом: установку стоит проводить как можно выше. Именно поэтому устройства располагают чаще всего на крыше здания. Однако иногда бывает так, что дом при строительстве не рассчитан на больший вес, а данный способ получения электричества требует более крепких перекрытий. Тогда следует выбирать место на земле, которое в течение дня постоянно освещено.
Как расположить солнечную батарею
Что же касается угла падения лучей, то установку лучше ставить так, чтоб они падали перпендикулярно. В современных заводских установках владелец может корректировать угол наклона платформы. Сделать же это в самодельных вариантах не просто.
Угол наклона определяется как географическим месторасположением участка, так и уровнем солнцестояния на местности.
Самостоятельная работа
как сделать солнечную батарею
Сразу хочется сказать – не особо надейтесь, что сможете сами построить устройство, которое полностью покроет все расходы дома, и обеспечит здание электричеством в 220 Вольт. Размеры такой установки были бы огромны, ведь одна пластина генерирует электрический ток с напряжением всего 0,5 В. Оптимально для самоделки – номинальное напряжение в 18 вольт. На этот показатель мы и будем ориентироваться, рассчитывая необходимое количество фотоэлементов для батареи.
Важно: Корпус устройства представляет простой неглубокий ящик. Бортики лучше сделать как можно меньше, чтобы они не создавали тень. Материалом для него может быть фанера и рейки.
Бортики для лучшего крепления садим на клей и привинчиваем саморезами. Чтобы блоки было проще спаять, ящик делим на две части с помощью планки, зафиксированной по центру ящика.
Собираем каркас для фотоэлементов
каркас для фотоэлементов солнечной батареи из профиля
Защитная рамка или каркас – важнейшая часть устройства. Для ее создания в домашних условиях можно использовать алюминиевые уголки 30х30 мм или деревянные бруски.
Если вы решили использовать металлический профиль, фаска снимается напильником под углом 45 градусов. После того, как все части каркаса выпилены, они соединяются с помощью уголков. Защитное стекло приклеивается на готовый каркас с помощью силикона.
Важно: Функцию подложек могут выполнять два вырезанных куска ДВП. На них и будут крепиться солнечные элементы. Вместо ДВП можно использовать любой тонкий материал, обладающий жесткостью и не проводящий электрический ток.
Как соединять пластины
Чтобы правильно соединить пластины, надо знать некоторые принципы:
- Для увеличения напряжения в домашних условиях, при спаивании пластин нужно знать, что для увеличения напряжения соединять их надо последовательно, а для увеличения силы тока — параллельно.
- Промежуток между кремниевыми пластинами должен составлять 5 мм с каждой стороны. Это необходимо, так как при нагреве пластины могут расширяться.
- Каждый преобразователь имеют две дорожки: с одной стороны у них будет «плюс», с другой — «минус». Соединением все детали последовательно в единую цепь.
- Проводники с последних компонентов цепи надо вывести на общую шину.
Важно: чтобы избежать саморазряда устройства в ночное время или облачную погоду, можно сделать монтаж диода Шоттки 31DQ03 или другого аналога на контакт от «средней» точки.
Когда все работы по спайке закончены, с помощью мультиметра можно проверить выходное напряжение. Оно должно составлять 18–19В для обеспечения небольшого дома электроэнергией.
Как собрать панель
Устройство солнечной батареи
Итак, корпус у нас готов, и пора заняться панелью. В полученный ящик надо уложить спаянные преобразователи. В центре каждого фотоэлемента наносим силикон, и закрываем сверху подложкой из ДВП для их фиксации. Закрываем конструкцию крышкой, и для надежности все стыки герметизируем силиконом или герметиком. Полученная панель устанавливается на специальный держатель или каркас.
Важно: Чтобы защитить батарею от агрессивного воздействия среды и климата, применяют оргстекло, закрывающее лицевую сторону. Если батарея крупная, можно использовать два куска, но если позволяет ее размер – то можно вырезать один, тогда соединение будет без стыка.
Обычное стекло лучше не брать – оно слишком хрупкое, и в процессе эксплуатации может лопнуть.
Своими руками из того, что есть
Если цена на солнечные панели вас не устраивает, вы вполне можете создать свою установки из практически подручных материалов. Ниже мы рассмотрим, как сделать солнечную батарею своими руками из различных материалов – например, из транзисторов, диодов и фольги.
солнечная батарея своими руками из подручных средств
Транзисторы, как основа световых элементов
Транзисторы подходят под нашу цель, так как внутри у них располагается довольно большой кремневый полупроводниковый элемент, который и будет использоваться для производства электричества. Лучше всего остановить свой выбор на транзисторах типа КТ или П.
Важно: При сборке источника тока хорошим вариантом будет разработать монтажную плату из фольгированного стеклотекстолита. Плату, после распайки, нужно поместить в корпус подходящих размеров, а сверху закрыть пластиной из оргстекла. В результате мы можем получить источник тока из нескольких десятков транзисторов, который генерирует напряжение в несколько вольт при выходном токе в несколько миллиампер.
Начинаем работу. В первую очередь срезаем металлическую крышку с необходимого количества радиодеталей. Это сделать проще, если зажать транзистор в тисках и произвести срез аккуратно ножовкой по металлу. Внутри вы увидите пластину. Это и есть главная часть нашего будущего устройства. Он будет служить нам фотоэлементом.
Деталь будет иметь три контакта: база, эмиттер и коллектор. Во время сборки выбирайте коллекторный переход в связи с наибольшей разностью потенциалов.
Своими руками сборку лучше делать на ровной поверхности из любого диэлектрического материала.
Важно: Все транзисторы спаиваем в отдельные последовательные цепочки, которые, в свою очередь, необходимо соединять параллельно. Расчет источника тока делаем, основываясь на характеристиках радиодеталей. В среднем, один транзистор выдает напряжение 0,35 В при силе тока при КЗ в 0,25 мкА.
Те транзисторы, которые вы собираетесь использовать при создании солнечных батарей, перед работой следует проверить. Для этих целей берем простой мультиметр. Необходимо переключить прибор в режим измерения тока, включить его между базой и коллектором или эмиттером транзистора. Снимаем показатель – обычно прибор демонстрирует небольшой ток — доли миллиампера, реже чуть больше 1 мА. Далее переключаем прибор в режим измерения напряжения (предел 1-3 В), и получаем значение выходного напряжения (оно составит порядка нескольких десятых долей вольта). Транзисторы желательно группировать с близкими значениями выходных напряжений.
Используем диоды
Вторым популярным материалом для самодельного источника энергии считается диод. Диоды Д223Б могут стать действительно альтернативным источником электрического тока. Они имеют наибольший вольтаж, и заключены в стеклянном корпусе. Один диод может сгенерировать 350 мВ на солнце, исходя из этого, можно определить и напряжение на выходе готового изделия.
Произведя расчёты, подбираем нужное количество диодов. Их необходимо сложить в емкость и залить ацетоном. Можно использовать и другой растворитель. Это необходимо, чтобы снять краску со стекла.
Берем пластину из не металлического материала, и делаем на ней разметку, куда будут впаяны компоненты источника питания. Через несколько часов краска, как раз пока делается разметка, станет мягкой, и ее можно легко соскрести.
Солнечная панель на диодах
Далее необходимо определить плюсовой контакт – для этого используем мультиметр. Определяем контакт под лампочкой или на солнце. Впаиваем диоды параллельно, так как в данном случае кристалл лучше всего будет генерировать энергию от солнца. В результате на выходе будет максимальное напряжение.
Важно: для самостоятельной сборки можно выбрать диоды Д223Б. Они лучше всего подходят, так как имеют стеклянный и небольшой корпус, и их можно установить достаточно плотно. К тому же, напряжение в них одно из самых больших(целых 350 мВ под солнцем).
Как использовать фольгу
Фольгу также можно использовать для создания источника питания, однако энергии она будет давать немного. Подходит обычная фольга, размером 45 квадратных см. Ее необходимо промыть в мыльной воде, чтобы удалить любой жир. Вот пошаговая инструкция:
- Используя шкурку, удаляем любой вид коррозии.
- На электрическую плитку с мощностью от 1,1кВт кладем лист фольги, и нагреваем до тех пор, пока на ней не появятся оранжево-красные пятна. Если нагревать далее, пятна станут черные, что будет говорить об образовании оксида меди.
- Продолжаем нагревать еще минут 30, чтобы оксидная пленка стала нужной толщины. Выключаем горелку и даем листу остыть. Медленно остывая, оксид начинает отходить. Под проточной водой удаляем остатки оксида, не сгибая и не повреждая лист и тонкий слой окиси.
- Вновь вырезаем такой же кусок фольги – по размеру первого.
- Берем пластиковую бутылку, обрезаем горлышко и засовываем туда оба куска, закрепляя их зажимами. Они должны быть расположены так, чтобы не соединяться. К тому куску, который мы нагревали, проводим минусовую клемму, а ко второму – плюсовую.
В бутылку заливаем солевой раствор так, чтобы до кромки электродов оставалась примерно 2,5 см.
Схема солнечной батареи из фольги
Аккумулятор для дачи готов.
Конечно, такого самодельного прибора не хватит для обеспечения дома, но зато ее можно использовать для подзарядки мелких электроприборов или в виде питания радиоприемника.
Автор: Киселевская Юлия.
solar-energ.ru
Обзор небольшой солнечной батареи, или попытка понять можно ли зарядить аккумуляторы от маленькой солнечной батареи
Всем привет! Решил постепенно начинать писать обзоры на множество нужных и не очень товаров, купленных в китае. Первая на очереди небольшая солнечная батарея, решил на собственном опыте узнать ее возможности в зарядке аккумуляторов пауэрбанка или телефона напрямую, скажем на природе. Постараюсь обойтись без очень модных слов типа DIY, девайс и тому подобных, я за русский язык! Покупал панель в прошлом году а обзор решил написать только сейчас. дошла довольно быстро, упакована стандартно в желтый пакет и завернута в пенополиэтилен, рабочая поверхность дополнительно была заклеена тонким полиэтиленом для защиты от царапин. Сама панель сделана на основе из стеклотектолита, примерно такого, из которого делают печатные платы, поэтому сломать ее будет непросто, я изначально опасался придет ли она в целости, так как считал, что панель цельностеклянная. Размеры панели 97*97 мм, на 1 мм меньше, чем указано у продавца, но это не критично. Обещана мощность 1 Вт, при напряжении 5.5 в, и токе 0.18 а, но это максимальные параметры, полученные где-то в пустыне, когда солнце в зените, в нашей полосе такого никогда не получится. Всю зиму солнечная панель была приклеена на окно и подключена к пауэрбанку на 3.6 А*ч, Зимой солнце с другой стороны моего дома и аккумуляторы зарядились за пару месяцев с 3.30 В до 3.38 В, крайне незначительно, зато сейчас солнце попадает почти напрямую, и эти же аккумуляторы получилось зарядить с 3.30 до 4.20 Вольт примерно за две недели, при том что постоянная облачность была в это время. Летом будет получше. Измерения на контактах самой солнечной панели показали под нагрузкой 4.12 Вольта, что неплохо, учитывая, что весьма пасмурно, ток же сейчас составляет несколько миллиампер, измерить точнее не могу из-за значительного падения напряжения на моем авометре.
mysku.me
две модели, сборка и установка
Солнечная энергетика — это просто здорово, но вот в чем проблема: даже одна батарея стоит немалых денег, а для хорошего эффекта нужна не одна, и даже не две. Потому и приходит идея — собрать все самому. Если есть у вас небольшой навык пайки — это сделать просто. Вся сборка заключается в том, чтобы последовательно соединить элементы в дорожки, а дорожки закрепить на корпусе. Сразу скажем о цене. Набор для одной панели (36 штук) стоит в районе 70-80$. А полностью со всеми материалами солнечные батареи своими руками обойдутся вам примерно в 120-150$. Намного меньше, чем заводские. Но нужно сказать, что и по мощности они будут тоже меньше. В среднем каждый фотопреобразователь выдает 0,5 В, если последовательно соединить 36 штук, это будет порядка 18 В.
Немного теории: типы фотоэлементов для солнечных батарей
Самая большая проблема — приобрести фотоэлектрические преобразователи. Это те самые кремниевые пластины, которые преобразуют солнечный свет в электричество. Вот тут нужно немного разбираться в типах фотоэлементов. Их выпускают двух типов: поликристаллические и монокристаллические. Монокристаллические более дорогие, но имеют более высокий КПД — 20-25%, поликристаллические — дешевле, но и производительность у них меньше — 17-20%. Как их отличить внешне? Поликристаллические имеют ярко-синий цвет. Монокристаллические немного темнее и у них не квадратная, а многогранная форма — квадрат со срезанными краями.
С фотоэлектрическими преобразователями для солнечных батарей все не очень сложно: монокристаллические и поликристаллические
О форме выпуска. Есть фотоэлементы для солнечных батарей с уже припаянными проводниками, а есть наборы, где проводники прилагаются и все нужно паять самостоятельно. Что покупать решает каждый сам, но нужно сказать, что без навыка хотя-бы одну пластину вы повредите, а скорее, не одну. А если и паять умеете не очень… то лучше немного дороже заплатить, но получить уже почти готовые к использованию детали.
Сделать фотоэлементы для солнечных батарей своими руками нереально. Для этого нужно уметь выращивать кристаллы кремния, а потом его еще обрабатывать. Потому нужно знать, где купить. Об этом дальше.
Почитать о вида солнечных батарей можно тут.
Где и как купить фотоэлементы
Теперь о качестве. На всех китайских площадках типа Ebay или Alibaba продается отбраковка. Те детали, которые не прошли тесты на заводе. Потому идеальной батареи вы не получите. Но цена у них не самая большая, так что можно смириться. Во всяком случае, на первых порах. Соберите пару тестовых солнечных батарей своими руками, набейте руку, а потом можно брать с завода.
Один из вариантов ячеек с припаянными проводниками
Некоторые продают фотоэлементы запаянными в воск. Это предотвращает их порчу при перевозке, но избавиться от воска и не повредить пластины довольно сложно. Нужно все вместе их окунуть в горячую, но не кипящую воду. Подождать пока воск растает, потом аккуратно разъединять. Потом поочередно купать каждую пластину в горячем мыльном растворе, потом окуная в чистую горячую воду. Таких «омовений» моет понадобиться несколько, воду и мыльный раствор придется менять, и не один раз. После того как воск удалите, чистые пластины разложите на махровом полотенце для просушки. Очень хлопотное это дело. Так что лучше покупайте без воска. Так намного проще.
Теперь о покупках на китайских площадках. Конкретно о Ebay и Alibaba. Они проверены, тысячи людей ежедневно там что-то покупают. Система ничем не отличается. После регистрации, как обычно, в строке поиска набираете название элемента. Потом выбираете понравившееся по какой-то причине предложение. Обязательно выбирайте из тех вариантов, где есть бесплатная доставка (на английском free shipping). Если такой пометки нет, то доставку придется оплачивать отдельно. А она часто больше стоимости товара и уж точно больше той разницы, что вы выгадаете на цене.
С кремниевыми ячейками нужно обращаться очень осторожно: они очень хрупкие
Ориентироваться нужно не только на цену, но и на рейтинг продавца и на отзывы. Внимательно читайте и состав товара, его параметры и отзывы. Можно с продавцом общаться, только сообщения писать нужно на английском.
По поводу оплаты. Она на этих площадках переводится продавцу только после того, как вы отпишитесь в получении товара. А пока идет доставка, ваши деньги лежат на счете торговой площадки. Оплачивать можно с карты. Если боитесь светить данные карты, воспользуйтесь промежуточными сервисами. Они есть разные, но суть одна — ваша карта не засветится. Есть на этих площадках и возврат товара, но это долгая песня, так что лучше брать у проверенных продавцов (с хорошим рейтингом и отзывами).
Да. Посылка идет в зависимости от региона. И дело не столько в том, как долго она будет идти из Китая, как в том, как скоро ее доставит почта. В лучшем случае — недели три, но может и полтора месяца.
Как собрать
Сборка солнечной батареи своими руками состоит из трех этапов:
- Изготовление каркаса.
- Пайка солнечных элементов.
- Укладка в каркас и герметизация.
Каркас изготовить можно из алюминиевых уголков или из деревянных реек. Но форма каркаса, материалы, последовательность изготовления зависят от способа установки.
Способ первый: установка на окне
Батарею вешают на окне, на раму изнутри помещения или снаружи, но тоже на окне. Тогда нужно делать каркас из алюминиевого уголка, а к нему приклеивать стекло или поликарбонат. В этом случае между фотоэлементами остаются хоть небольшие зазоры, через которые немного света проникает в помещение. Размеры рамы выбираете исходя из размеров ваших фотоэлементов и того, как вы собираетесь их располагать. Также некоторую роль могут сыграть габариты окна. Учтите, что плоскость должна быть ровная — фотоэлектрические преобразователи очень хрупкие, и при малейшем перекосе будут трескаться.
В квартире есть только одно место для установки солнечной батареи — на окне
Развернув готовую раму с приклеенным стеклом лицом вниз, на поверхность стекла нанести слой герметика. На герметик, снова-таки лицевой стороной вниз, разложить собранные из фотоэлементов линейки.
Из толстого упругого поролона (толщина не менее 4 см) и куска полиэтиленовой пленки (200 мк) сделать мат: поролон обтянуть пленкой и хорошо скрепить. Лучше полиэтилен спаять, но можно и скотчем воспользоваться, только все стыки должны находиться на одной стороне. Вторая должна быть ровной и гладкой. По размерам мат должен хорошо ложиться в раму (без загибов и усилий).
Основная хитрость — заливка герметиком
Уложили мат на фотоэлементы, утопленные в герметике. На него доску, которая по размерам чуть меньше рамы, а на доску солидный груз. Это нехитрое устройство поможет выгнать пузыри воздуха, которые оказались под фотоэлементами. Воздух снижает производительность, причем очень сильно. Потому чем меньше пузырьков будет, тем лучше. Всю конструкцию оставляете на 12 часов.
Теперь время снять груз и отлепить мат. Делаете это медленно и не спеша. Важно не повредить пайку и проводники. Потому тяните плавно, без рывков. После того, как мат сняли, панель нужно оставить на некоторое время — досохнуть. Когда герметик перестанет липнуть, можно навешивать панель и пользоваться.
Вместо длительной процедуры с герметиком можно взять специальную пленку для герметизации. Она называется EVA. Просто сверху на собранную и уложенную на стекло батарею расстилаете пленку и греете ее строительным феном до полной герметизации. Времени уходит в разы меньше.
Способ второй: установка на стене, крыше и т.д.
В этом случае все иначе. Задняя стенка должна быть плотной и не проводящей ток. Возможно — деревянной, фанерной и т.п. Потому имеет смысл и раму сделать из деревянных брусков. Только высота корпуса должна быть небольшой, чтобы тень от бортиков не мешала.
Собираете каркас под размеры вашей батареи (зависит от размеров солнечных преобразователей, которые вы приобрели)
На фото корпус состоит из двух половинок, но это совсем необязательно. Просто легче собирать и укладывать короткие линейки, но соединений в этом случае будет больше. Да. Несколько нюансов: нужно в корпусе предусмотреть несколько отверстий. В нижней части нужны несколько штук для выхода конденсата, а также два отверстия для вывода проводников от батареи.
Затем корпус батареи покрасить белой краской — кремниевые пластины имеют довольно широкий диапазон рабочих температур, но он не безграничен: от -40oCдо +50oC. А летом в закрытой коробке +50oC набегает легко. Потому и нужен белый цвет, чтобы не перегревались фотопреобразователи. Перегрев, как и переохлаждение, ведет к снижению эффективности. Это, кстати, может стать объяснением непонятного явления: полдень, солнце жарит, а батарея стала давать меньше электричества. А она просто перегрелась. Для южных регионов, наверное, нужно уложить фольгу. Это будет эффективнее. Причем производительность, скорее всего, возрастет: будет улавливаться еще и отраженное фольгой излучение.
Собираем и укладываем дорожки
После того как краса высохла, можно укладывать собранные дорожки. Но в этот раз лицом вверх. Как их крепить? На каплю термостойкого герметика посредине каждой пластины. Почему не нанести по всей поверхности? Из-за температурного расширения пластина будет менять размеры. Если приклеить ее только посередине, с ней ничего не случиться. Если будет хотя-бы две точки — она рано или поздно лопнет. Потому аккуратно посередине наносите каплю, мягко прижимаете пластину. Не давите — раздавить очень легко.
В некоторых случаях пластины сначала крепились на основу — лист ДВП, выкрашенный в тот же белый цвет. А потом уже на основе закреплялись к корпусу шурупами.
После того, как все линейки уложены, последовательно их соединяете. Чтобы проводники не болтались, их можно зафиксировать несколькими каплями герметика. Вывести провода от элементов можно через днище или через бортик — как удобнее. Протяните их через отверстие, а потом залейте дырку все тем же герметиком. Теперь нужно дать всем соединениям высохнуть. Если накрыть крышкой раньше, на стекле и фотоэлементах образуется налет, который сильно снижает эффективность батареи. Потому ждем как минимум сутки (или столько, сколько указано на упаковке герметика).
Финальный аккорд: установка прозрачной крышки
Теперь дело за малым — накрыть все стеклом или прозрачным пластиком. Как крепить — дело ваше. Но на первых порах не герметизируйте. По крайней мере, до испытания. Может где-то обнаружится проблема.
И еще один нюанс. Если планируете в систему подключать аккумуляторы, понадобится поставить диод, который будет предотвращать разряд аккумулятора через батарею в ночное время или в плохую погоду. Лучше всего поставить диод «Шоттки». Его подсоединяю к батарее последовательно. Установить его лучше внутри конструкции — при высоких температурах у него уменьшается падение напряжения, т.е. в рабочем состоянии он будет меньше «садить» напряжение.
Как паять элементы для солнечной батареи
Немного об обращении с кремниевыми пластинами. Они очень-очень хрупкие, легко трескаются и ломаются. Потому обращаться нужно с ними с крайней осторожностью, хранить в жесткой таре подальше от детворы.
Работать нужно на ровной твердой поверхности. Если стол покрыт клеенкой, положите лист чего-то твердого. Пластина не должна прогибаться, а всей поверхностью жестко опираться на основу. Причем основание должно быть гладким. Как показывает опыт, идеальный вариант — кусок ламината. Он, жесткий, ровный, гладкий. Паяют на тыльной стороне, не на лицевой.
Все что понадобится для сборки солнечной панели своими руками
Для пайки использовать можно флюс или канифоль, любой из составов в маркере для пайки. Тут у каждого свои пристрастия. Но желательно, чтобы состав не оставлял следов на матрице.
Укладываете кремниевую пластину лицом вверх (лицо — синяя сторона). На ней есть две или три дорожки. Их промазываете флюсом или маркером, спиртовым (не водно-спиртовым) раствором канифоли. В комплекте с фотопреобразователями идет обычно тонкая контактная лента. Иногда она нарезана на куски, иногда идет в катушке. Если лента намотана на катушку, отрезать нужно кусок, равный двойной ширине солнечного элемента, плюс 1 см.
На обработанную флюсом полосу припаиваете отрезанный кусок. Лента получается намного длиннее пластинки, весь остаток остается с одной стороны. Старайтесь вести паяльник не отрывая. Насколько это возможно. Для более качественной пайки на кончике жала у вас должна быть капля припоя или олова. Тогда пайка будет качественной. Непропаянных мест быть не должно, хорошо все прогревайте. Но не давите! Особенно по краям. Это очень хрупкие изделия. Поочередно припаиваете ленты на все дорожки. Фотопреобразователи получаются «хвостатые».
Лицевая сторона — синяя. На ней есть несколько дорожек (две или три) к которым нужно припаять проводники. Серая — это тыльная сторона. К ней потом припаивают проводники от идущей выше пластинки
Теперь, собственно, о том, как собрать солнечную батарею своими руками. Приступаем к сборке линейки. С обратной стороны пластинки тоже есть дорожки. Теперь «хвост» от верхней пластины припаиваем к нижней. Технология такая же: дорожку промазываем флюсом, потом пропаиваем. Так последовательно соединяем нужное количество фотоэлектрических преобразователей.
В некоторых вариантах на задней стороне не дорожки, а площадки. Тогда пайки меньше, но претензий по качеству может быть больше. В этом случае промазываем флюсом только площадки. И паяем тоже только на них. Вот, собственно, все. Собранные дорожки можно переносить на основание или корпус. Но есть еще множество хитростей.
Паять нужно на твердой ровной поверхности
Так, например, между фотоэлементами нужно выдерживать определенное расстояние (4-5 мм), что без фиксаторов не так и легко. Малейший перекос, и есть возможность порвать проводник, или сломать пластинку. Потому для задания определенного шага на кусок ламината приклеивают строительные крестики (используются при укладке плитки), или делают разметку.
Все проблемы, которые возникают при изготовлении солнечных батарей своими руками, связаны с пайкой. Потому перед герметизацией, а лучше еще и перед переносом линейки на корпус, проверить сборку амперметром. Если все нормально, можно продолжать работу.
Об использовании солнечной энергии для отопления дома можно прочесть тут.
Итоги
Теперь вы знаете, как сделать солнечную батарею в домашних условиях. Дело не самое сложное, но требует кропотливой работы.
teplowood.ru
Рассчитываем и изготавливаем солнечные батареи своими руками
Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.
Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.
Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:
- Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
- Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
- Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.
Солнечная батарея — что это такое
Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.
Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.
Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.
Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.
В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.
Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.
При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между фазным и линейным напряжением. Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно здесь.
Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см2, на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.
Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.
Преимущества и недостатки этого вида энергии
Основные недостатки солнечных батарей:
- Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
- Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
- Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
- В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
- Большая площадь, требующаяся для конструкции достаточной мощности.
- Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
- Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.
Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.
Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.
Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.
Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:
- Отсутствие механических преобразований энергии и движущихся частей.
- Минимальные расходы на эксплуатацию.
- Долговечность 30~50 лет.
- Тишина при работе, отсутствие вредных выбросов. Экологичность.
- Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
- Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
- Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.
Конструктивные особенности
В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м2. КПД классического кремниевого фотоэлемента не превышает 13%.
Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.
Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.
Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.
То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.
Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.
Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.
При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.
Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.
Подбор материалов для создания панели
В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.
Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.
Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м2:
- Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
- Ток: КЗ — 1,5 А, рабочий — 1,2 А.
- Рабочая мощность — 0,62 Вт.
- Габариты — 52х77 мм.
- Цена 29 р.
Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.
Изготовление солнечной батареи для дома своими руками
Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.
Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.
Рассчитываем комплектующие
Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.
Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.
Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.
Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.
Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.
Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.
Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.
Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.
Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:
- Длина — 15 x 52 = 780 мм.
- Ширина — 77 x 6 = 462 мм.
Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.
Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.
Также нам потребуются:
- Паяльник электрический 40 Вт.
- Припой, канифоль.
- Монтажный провод.
- Силиконовый герметик.
- Двусторонний скотч.
Этапы изготовления
Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.
Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, какой выбрать УЗО для квартиры и дома.При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать тут.
Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:
- Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
- Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
- Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
- Склеиваем окончательно пластины с задней стороны скотчем.
- Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
- Вставляем в раму заднюю стенку и герметизируем её.
При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.
Схема подключения электроснабжения дома с использованием наших батарей
Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.
Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.
Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м2 = 20 м2.
Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.
Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.
Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.
Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.
Делаем выводы
При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.
Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.
В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.
Видео о том, как изготовить прибор для сбора солнечной энергии самому
elektrik24.net
Солнечная батарея своими руками!!! объединение маленьких батарей в одну большую
Рассказать в:Как построить солнечную батарею. Подробная инструкцияПредставляю вашему вниманию детальное пошаговое руководство по самостоятельной сборке самодельной солнечной батареи. Данная статья – вольный перевод статьи Майкла Дэвиса о постройке недорогой солнечной батареи.Пару лет назад я купил удаленный участок в Аризоне. Я астроном, и мне нужно было удаленное от крупных городов место для астрономических наблюдений. Я нашел такое место. Проблема в том, что из-за удаленности на участке нет никакого электроснабжения. Ну, на самом деле для меня это не проблема. Нет электричества – нет ночной засветки неба. Тем не менее, хорошо бы иметь хоть какое-то электроснабжение, т.к. жизнь в ХХI веке сильно от него зависит.Я построил ветрогенератор для электрообеспечения этого участка. Он работает хорошо, когда ветер дует. К сожалению, мне нужно больше энергии. И эта энергия должна быть более стабильна. А то такое ощущение, что у меня на участке ветер дует всегда, но только не тогда когда мне нужна энергия. В Аризоне более 300 солнечных дней в году, поэтому солнечная батарея кажется очевидным дополнением к ветрогенератору. К сожалению, солнечные батареи недешевы, поэтому я решил сделать все сам. Использовал самые обычные инструменты и недорогие и распространенные материалы, чтобы сделать батарею конкурирующую с коммерческими образцами по мощности, но не оставляющую им никакого шанса по цене.Итак, что же такое солнечная батарея (СБ)? По существу, это контейнер, содержащий массив солнечных элементов. Солнечные элементы, это те штуки, которые на самом деле делают всю работу по преобразованию солнечной энергии в электричество. К сожалению, для получения мощности, достаточной для практического применения, солнечных элементов надо достаточно много. Также, солнечные элементы ОЧЕНЬ хрупкие. Поэтому их и объединяют в СБ. Батарея содержит достаточное количество элементов для получения высокой мощности и защищает элементы от повреждения. Звучит не слишком сложно. Я уверен, что смогу сделать это сам.Я начал свой проект, как обычно, с поиска в сети информации по самодельным СБ и был шокирован как же ее мало. Тот факт, что мало кто сделал свои собственные солнечные батареи, заставлял меня думать, что это должно быть очень сложно. Задумка была отложена в долгий ящик, но я никогда не переставал думать о ней.Спустя какое-то время, я пришел к следующим умозаключениям:главное препятствие в постройке СБ это приобретение солнечных элементов за разумную ценуновые солнечные элементы очень дороги и их сложно найти в нормальном количестве за любые деньгидефектные и поврежденные солнечные элементы есть в наличии на eBay и других местах гораздо дешевлесолнечные элементы «второго сорта» возможно, могут быть использованы для изготовления солнечной батареиКогда до меня дошло, что я могу использовать дефектные элементы, чтобы сделать свою СБ, я взялся за работу. Начал с покупки элементов на eBay.Купил несколько блоков монокристаллических солнечных элементов размером 3х6 дюйма. Чтобы сделать СБ, необходимо соединить последовательно 36 таких элементов. Каждый элемент генерирует порядка 0,5В. 36 элементов, соединенных последовательно дадут нам около 18В, которые будут достаточны для зарядки батарей на 12В. (Да, такое высокое напряжение действительно необходимо для эффективной зарядки 12В аккумуляторов). Солнечные элементы этого типа тонкие как бумага, хрупкие и ломкие как стекло. Их очень легко повредить. Продавец этих элементов окунул наборы из 18 шт. в воск для стабилизации и доставки без повреждений. Воск – это головная боль при его удалении. Если у вас есть возможность, ищите элементы, не покрытые воском. Но помните, что они могут получить больше повреждений при транспортировке. Заметьте, что мои элементы уже имеют припаянные проводники. Ищите элементы с уже припаянными проводниками. Даже с такими элементами вам нужно быть готовым много поработать паяльником. Если же вы купите элементы без проводников, приготовьтесь работать паяльником раза в 2-3 больше. Короче, лучше переплатить за уже припаянные провода.Также я купил пару наборов элементов без заливки воском у другого продавца. Эти элементы пришли упакованные в пластиковую коробку. Они болтались в коробке и немного обкололись по бокам и углам. Незначительные сколы не имеют особого значения. Они не смогут снизить мощность элемента настолько, чтобы об этом надо было беспокоиться. Купленных мной элементов должно хватить на сборку двух СБ. Я знаю, что возможно сломаю парочку при сборке, поэтому купил чуть больше.Солнечные элементы продаются самого широкого спектра форм и размеров. Вы можете использовать более крупные или мелкие, чем мои 3х6 дюймов. Просто помните:Элементы одного типа производят одинаковое напряжение независимо от их размера. Поэтому для получения заданного напряжения всегда потребуется одинаковое количество элементов.Большие по размеру элементы могут генерировать бОльший ток, а меньшие по размеру, соответственно – меньший ток.Общая мощность вашей батареи определяется как ее напряжение умноженное на генерируемый ток.Использование больших по размеру элементов позволит получить большую мощность при том же напряжении, но батарея получится крупнее и тяжелее. Использование меньших элементов позволит уменьшить и облегчить батарею, но не сможет обеспечить такую же мощность. Также стоит отметить, что использование в одной батарее элементов разных размеров – плохая идея. Причина в том, что максимальный ток, генерируемый вашей батареей, будет ограничен током самого маленького элемента, а более крупные элементы не будут работать в полную силу.Солнечные элементы, на которых я остановил выбор, имеют размер 3х6 дюйма и способны генерировать ток примерно 3 ампера. Я планирую соединить последовательно 36 таких элементов, чтобы получить напряжение чуть больше 18 вольт. В результате должна получиться батарея, способная выдавать мощность порядка 60 ватт на ярком солнце. Звучит не сильно впечатляюще, но все же это лучше чем ничего. При чем, это 60Вт каждый день, когда светит солнце. Эта энергия будет идти на зарядку аккумулятора, который будет использоваться для питания светильников и небольшой аппаратуры всего несколько часов после наступления темноты. Просто когда я иду спать, мои энергетические потребности сводятся к нулю. Короче, 60 Вт это вполне достаточно, особенно учитывая, что у меня есть ветрогенератор, который тоже производит энергию, когда дует ветер.После того как вы купите свои солнечные элементы спрячьте их в безопасное место, где они не разобьются, не попадут детям для игр и не будут съедены вашей собакой до тех пор, пока вы не будете готовы установить их в вашу СБ. Элементы очень хрупкие. Грубое обращение превратит ваши дорогие солнечные элементы в маленькие синенькие блестящие и ни для чего непригодные осколочки.Итак, солнечная батарея это просто неглубокий ящик. Я начал с постройки такого ящика. Я сделал его неглубоким, чтобы борта не затеняли солнечные элементы, когда солнце светит под углом. Сделан он из фанеры толщиной 3/8 дюйма с бортиками из реек толщиной 3/4 дюйма. Бортики приклеены и привинчены на место. Батарея будет содержать 36 элементов размером 3х6 дюймов. Я решил разделить их на две группы по 18 шт. просто для того, чтобы их было проще паять в будущем. Отсюда и центральная планка посередине ящика.Вот небольшой набросок, показывающий размеры моей СБ. Все размеры в дюймах (простите меня, поклонники метрической системы). Бортики толщиной 3/4 дюйма идут вокруг всего листа фанеры. Такой же бортик идет по центру и делит батарею на две части. В общем, я решил сделать так. Но в принципе, размеры и общий дизайн не критичны. Можете свободно все варьировать в своем эскизе. Размеры же тут я приводу для тех людей, которые постоянно ноют, чтобы я включил их в свои эскизы. Я всегда поощряю народ экспериментировать и изобретать что-то свое, нежели слепо следовать инструкциям, написанным мной (или кем-то еще). Возможно, у вас получится лучше.Вид одной из половин моей будущей батареи. В этой половине будет размещена первая группа из 18 элементов. Обратите внимание на небольшие отверстия в бортиках. Это будет нижняя часть батареи (на фото верх находится внизу). Это вентиляционные отверстия, предназначенные для выравнивания давления воздуха внутри и снаружи СБ и служащие для удаления влаги. Эти отверстия должны быть только внизу батареи, иначе дождь и роса попадут внутрь. Такие же вентиляционные отверстия должны быть сделаны в центральной разделительной планке.Далее я вырезал два подходящих по размеру куска ДВП. Они будут служить подложками, на которых будут собираться солнечные элементы. Они должны свободно помещаться между бортиками. Не обязательно использовать именно перфорированные листы ДВП, просто у меня оказались такие под рукой. Пойдет любой тонкий, жесткий и не проводящий ток материал.Чтобы защитить батарею от погодных неприятностей, лицевую сторону закрываем оргстеклом. Эти два куска оргстекла были вырезаны, чтобы закрывать всю батарею полностью. У меня не было одного достаточно большого куска. Стекло тоже можно использовать, но стекло бьется. Град, камни и летящий мусор могут разбить стекло, а от оргстекла просто отскочат. Как видите, начинает вырисовываться картинка, как солнечная батарея будет выглядеть в итоге.Упс! На фото два листа оргстекла соединенные на центральной перегородке. Я сверлил отверстия вокруг кромки, чтобы посадить оргстекло на шурупы. Будьте осторожны, сверля отверстия возле кромки оргстекла. Будете сильно давить – сломается, что у меня и произошло. В итоге, я просто приклеил отломавшийся кусок и просверлил недалеко новое отверстие.После этого, я окрасил все деревянные части солнечной батареи несколькими слоями краски, чтобы защитить их от влаги и воздействия окружающей среды. Ящик я покрасил внутри и снаружи. При выборе типа краски и ее цвета был использован научный подход. Я взболтал всю краску из остатков, имеющихся у меня в гараже, и выбрал ту банку, в которой краски хватит, чтобы сделать всю работу.Подложки тоже были окрашены в несколько слоев с обеих сторон. Убедитесь, что вы хорошо все прокрасили, иначе дерево может покоробиться от влаги. А это может повредить солнечные элементы, которые будут приклеены к подложкам.Теперь, когда у меня есть основа для СБ, самое время подготовить солнечные элементы.Как я говорил раньше, удаление воска с солнечных элементов – это настоящая головная боль. После нескольких проб и ошибок я все-таки нашел неплохой способ. Но я по-прежнему рекомендую покупать элементы у того, кто не заливает их воском.Первый шаг, это «купание» в горячей воде, чтобы растопить воск и отделить элементы друг от друга. Не дайте воде закипеть, иначе пузырьки пара будут сильно бить элементы один о другой. Кипящая вода также может быть слишком горячей, в элементах могут быть нарушены электрические контакты. Я также рекомендую погружать элементы в холодную воду, а потом медленно их нагревать, чтобы исключить неравномерный нагрев. Пластиковые щипцы и лопатка помогут отделить элементы, когда воск растает. Постарайтесь сильно не тянуть за металлические проводники – могут порваться. Я обнаружил это, когда пробовал разделить свои элементы. Хорошо, что я купил их с запасом.Тут показана финальная версия «установки» которую я использовал. Моя подруга спросила, что это я готовлю. Вообразите ее удивление, когда я ответил: «Солнечные элементы». Первая «горячая ванна» для растапливания воска находится на заднем плане справа. На переднем плане слева – горячая мыльная вода, а справа – чистая горячая вода. Температуры во всех кастрюлях ниже температуры кипения воды. Сначала в дальней кастрюле растапливаем воск, переносим элементы по одному в мыльную воду, чтобы удалить остатки воска, после чего промываем в чистой воде. Выкладываем элементы для просушки на полотенце. Вы можете менять мыльную воду и воду для промывки почаще. Только не сливайте использованную воду в канализацию, т.к. воск затвердеет и засорит сток. Этот процесс удалил практически весь воск с солнечных элементов. Только на некоторых остались тонкие пленки, но это не помешает пайке и работе элементов. Промывка растворителем, возможно, удалит остатки воска, но это может быть опасно и зловонно.Несколько разделенных и очищенных солнечных элементов сушатся на полотенце. После разделения и удаления защитного воска из-за своей хрупкости они стали удивительно сложными в обращении и хранении. Я рекомендую оставить их в воске до тех пор, пока вы не будете готовы установить их в вашу СБ. Это позволит вам не разбить их до того, как вы сможете их использовать. Поэтому постройте сначала основу для батареи. У меня же пришло уже время установить их.Я начал с отрисовки сетки на каждой основе, для упрощения процесса установки каждого элемента. Потом я выложил элементы по этой сетке обратной стороной вверх, так их можно спаять вместе. Все 18 элементов для каждой половины батареи должны быть соединены последовательно, после чего обе половины также должны быть соединены последовательно для получения требуемого напряжения.Спаивать элементы между собой поначалу сложно, но я быстро приловчился. Начинайте только с двух элементов. Разместите соединительные проводники одного из них так, чтобы они пересекали точки пайки на обратной стороне другого. Также нужно убедиться, что расстояние между элементами соответствует разметке.Я использовал маломощный паяльник и прутковый припой с сердцевиной из канифоли. Также перед пайкой я смазывал флюсом точки пайки на элементах при помощи специального карандаша. Не давите на паяльник! Элементы тонкие и хрупкие, нажмете сильно – сломаете. Я был неаккуратен пару раз – пришлось выбросить несколько элементов.Повторять пайку пришлось до тех пор, пока не получилась цепочка из 6-ти элементов. Соединительные шины от сломанных элементов я припаял к обратной стороне последнего элемента цепочки. Таких цепочек я сделал три, повторив процедуру еще дважды. Всего 18 элементов для первой половины батареи.Три цепочки элементов должны быть соединены последовательно. Поэтому среднюю цепочку поворачиваем на 180 градусов по отношению к двум другим. Ориентация цепочек получилась правильной (элементы все еще лежат обратной стороной вверх на подложке). Следующий шаг – приклеивание элементов на место.Приклеивание элементов потребует некоторой сноровки. Наносим небольшую каплю силиконового герметика в центре каждого из шести элементов одной цепочки. После этого переворачиваем цепочку лицевой стороной вверх и размещаем элементы по разметке, которую нанесли раньше. Легонько прижмите элементы, надавливая по центру, чтобы приклеить их к основе. Сложности возникают в основном при переворачивании гибкой цепочки элементов. Вторая пара рук тут не повредит.Не наносите слишком много клея и не приклеивайте элементы нигде кроме центра. Элементы и подложка, на которой они смонтированы, будут расширяться, сжиматься, гнуться и деформироваться при изменении температуры и влажности. Если вы приклеите элемент по всей площади, он со временем сломается. Приклеивание только в центре дает элементам возможность свободно деформироваться отдельно от основы. Элементы и основа могут деформироваться по-разному и элементы не сломаются.Вот полностью собранная половина батареи. Я использовал медную оплетку от кабеля для соединения первой и второй цепочки элементов.Можно использовать специальные шины или даже обычные провода. Просто у меня под рукой была медная оплетка от кабеля. Такое же соединение делаем с обратной стороны между второй и третьей цепочкой элементов. Каплей герметика я прикрепил провод к основанию, чтобы он не «гулял» и не гнулся.Тест первой половины солнечной батареи на солнце. При слабом солнце в дымке эта половина генерирует 9,31В. Ура! Работает! Теперь мне нужно сделать еще одну такую же половину батареи.После того как обе основы с элементами будут готовы, я смогу установить их на место в подготовленную коробку и соединить.Каждая из половин помещается на свое место. Я использовал 4 небольших шурупа для крепления основы с элементами внутри батареи.Провод для соединения половин батареи я пропустил через одно из вентиляционных отверстий в центральном бортике. Тут тоже пара капель герметика поможет закрепить провод на одном месте и предотвратить его болтание внутри батареи.Каждая солнечная батарея в системе должна быть снабжена блокирующим диодом, соединенным последовательно с батареей. Диод нужен для предотвращения разряда аккумуляторов через батарею ночью и в пасмурную погоду. Я использовал диод Шоттки на 3,3А. Диоды Шоттки имеют гораздо более низкое падение напряжения, чем обычные диоды. Соответственно, будут меньше потери мощности на диоде. Я купил набор из 25 диодов марки 31DQ03 на eBay всего за пару баксов. У меня останется еще много диодов для моих будущих СБ.Сначала я планировал присоединить диод снаружи батареи. Но после того как посмотрел технические характеристики диодов, решил поместить их внутри батареи. У этих диодов падение напряжения уменьшается с ростом температуры. Внутри моей батареи будет высокая температура, диод будет работать более эффективно. Используем еще немного силиконового герметика чтобы закрепить диод.Я просверлил отверстие в днище батареи ближе к верху, чтобы вывести провода наружу. Провода завязаны на узел, чтобы предотвратить их вытягивание из батареи, и закреплены все тем же герметиком.Важно дать герметику высохнуть до того, как мы будем крепить оргстекло на место. Советую, опираясь на предыдущий опыт. Испарения из силикона могут образовать пленку на внутренней поверхности оргстекла и элементов, если вы не дадите силикону высохнуть на открытом воздухе.И еще немного герметика для герметизации выходного отверстия.На выходной провод я прикрутил двухконтактный разъем. Розетка этого разъема будет присоединена к контроллеру заряда аккумуляторов, который я использую для своего ветрогенератора. Таким образом, солнечная батарея сможет работать с ним параллельно.Вот как выглядит законченная СБ с прикрученным экраном из оргстекла. Оргстекло пока еще не герметизировано. Я сначала не производил герметизацию стыков. Провел сначала небольшое тестирование. По результатам тестов мне потребовался доступ к внутренностям батареи, там обнаружилась проблема. У меня на одном из элементов отошел контакт. Может быть, это произошло из-за перепада температур или из-за неаккуратного обращения с батареей. Кто знает? Я разобрал батарею и заменил этот поврежденный элемент. С тех пор проблем не было. В будущем, возможно, я герметизирую стыки под оргстеклом при помощи герметика или закрою их алюминиевой рамкой.Вот результаты тестирования напряжения законченной батареи на ярком зимнем солнце. Вольтметр показывает 18,88В без нагрузки. Это в точности как я и рассчитывал.А вот тест по току в тех же условиях (яркое зимнее солнце). Амперметр показывает 3,05А – ток короткого замыкания. Это как раз недалеко от расчетного тока элементов. Солнечная батарея прекрасно работает! Солнечная батарея в работе. Я перемещаю ее пару раз в день для сохранения ориентации на солнце, но это не такая уж и большая сложность. Возможно, когда-нибудь я построю автоматическую систему слежения за солнцем.Итак, сколько же все это стоило? Я сохранил все чеки от всех своих покупок для этого проекта. Ну и конечно многое уже было у меня в мастерской. Всякие куски дерева, провода и прочие полезные вещи (кто-то скажет, мусор) валяются также у меня вокруг мастерской. Короче, много чего уже было под рукой. Поэтому ваши подсчеты могут отличаться.
Раздел: [Теоретические материалы]
Сохрани статью в:
Оставь свой комментарий или вопрос:
www.cavr.ru