- Трекеры – системы ориентации солнечных батарей
- виды солнечных батарей ☀️ Sunsayenergy
- Типы и разновидности солнечных батарей
- Сравнение всех видов солнечных батарей их отличия
- Типы солнечных панелей | Atmosfera™. Альтернативные источники энергии. Солнце. Ветер. Вода. Земля.
- Виды солнечных батарей: сравнение и их отличия
- Солнечные батареи – Новые Системы и Альтернативы
- Что такое солнечная панель? Как работает солнечная панель?
- Solar 101 | EnergySage
- Основы солнечных фотоэлектрических элементов | Министерство энергетики
- Как работают солнечные панели? Объяснение науки о Солнце.
- Как работают солнечные панели? | Фотоэлектрические элементы
- Фотовольтаика | SEIA
- Солнечная панель – Energy Education
Трекеры – системы ориентации солнечных батарей
Подробнее о солнечных модулях.
Наиболее распространенный и популярный вид солнечных батарей солнечные батареи из монокристаллического кремния.
Их получают литьем кристаллов кремния высокой чистоты, при котором расплав отвердевает при контакте с затравкой кристалла. В процессе охлаждения кремний постепенно застывает в форме цилиндрической отливки монокристалла диаметром 13 — 20 см, длина которого достигает 200 см. Получаемый таким образом слиток нарезается листочками толщиной 250 — 300 мкм. Такие элементы имеют более высокую эффективность по сравнению с элементами, вырабатываемыми другими способами, КПД достигает 19 %, благодаря особой ориентации атомов монокристалла, которая способствует росту подвижности электронов. Кремний пронизывает сетка из металлических электродов. Традиционно монокристаллические модули вставлены в алюминиевую рамку и закрыты противоударным стеклом. Цвет монокристаллических фото-элементов — темно-синий или черный.
Солнечные батареи надежны, долговечны (срок службы до 50 лет) и просты в установке, так как не содержат движущихся частей. Солнечные батареи можно использовать, где плохо работает обычное энергоснабжение и большое количество солнечных дней. Примеры применения солнечных батарей: на крышах домов для получения электричества, на уличных и садовых фонарях для освещения, подзарядка аккумуляторов, обеспечение электричеством оборудования на судах, раций, насосов, сигнализации и т.д.
Солнечные панели из монокристаллических фотоэлектрических элементов более эффективны, но и более дороги в пересчете на ватт мощности. Их КПД, как правило, в диапазоне 14-18%.
Обычно монокристаллические элементы имеют форму многоугольников, которыми трудно заполнить всю площадь панели без остатка. В результате удельная мощность солнечной батареи несколько ниже, чем удельная мощность отдельного ее элемента.
Солнечные батареи из мультикристаллического кремния
Изготовление мультикристаллического кремния намного легче, чем монокристаллического. Мультикристаллический кремний как материал состоит из случайно собранных разных монокристаллических решеток кремния (срок службы 25 лет, КПД до 15%). Именно поэтому, мультикристаллические панели обычно предлагают дешевле.
Солнечные батареи из поликристаллического кремния
Альтернативой монокристаллического кремния является поликристаллический кремний. У него более низкая себестоимость. Кристаллы в нем ещё агрегатные, но имеют различную форму и ориентацию. Этот материал, по сравнению с темными монокристаллами, отличается ярко синим цветом. Совершенствование процесса производства элементов данного типа позволяет сегодня получать компоненты, характеристики которых лишь немного уступают по электрическим показателям монокристаллу.
- — освещать и снабжать электричеством жилые дома и дачи, школы, больницы, офисы, хозяйства, тепличные комплексы и др;
- — освещать парки, сады, дворы, шоссе и улицы;
- — обеспечивать электропитанием телекоммуникационное, медицинское оборудование;
- — снабжать энергией нефте- и газопроводы;
- — обеспечивать энергоснабжение подачи и опреснения воды;
- — производить зарядку мобильных телефонов и ноутбуков
Рис.3
Тонкоплёночные батареи
Тонкопленочные технологии позволяют делать более дешевую по себестоимости производства панель. Это обстоятельство делает пленочные панели более привлекательными для строительства крупных «ферм» по выработке электричества из солнечного света, когда «солнечный фермер» ограничен не столько площадью земли, сколько стоимостью установки батареи. Возможна установка не только на крышу, но также на боковые поверхности здания.
Тонкопленочные панели не требуют прямых солнечных лучей, работают при рассеянном излучении, благодаря чему суммарная вырабатываемая за год мощность больше на 10-15%, чем вырабатывают традиционные кристаллические солнечные панели. Тонкая пленка является намного более рентабельным способом производства энергии и может переиграть монокристаллы в областях с туманным, пасмурным климатом или в тех отраслях промышленности, которым свойственна запыленность воздуха или высокое содержание в нем иных макрочастиц.
Тонкоплёночные панели в 95 % случаев используются для «он-грид» систем, генерирующих электроэнергию непосредственно в сеть. Для этих панелей необходимо использовать высоковольтные контроллеры и инверторы, не стыкующиеся с маломощными бытовыми системами.
Солнечные батареи из аморфного кремния
Солнечные батареи из аморфного кремния обладают одним из самых низки КПД. Обычно его значения в пределах 6-8%. Однако среди всех кремниевых технологий фотоэлектрических преобразователей они вырабатывают самую дешевую электроэнергию.
Рис. 4
Солнечные батареи на основе теллуида кадмия
Солнечные панели из теллурида кадмия (CdTe) создаются на основе пленочной технологии. Полупроводниковый слой наносят тонким слоем в несколько сотен микрометров. Эффективность элементов из теллурида кадмия невелика, КПД около 11%. Однако, в сравнении с кремниевыми панелями, ватт мощности этих батарей обходится на несколько десятков процентов дешевле.
Рис.5.
Солнечные батареи на основе CIGS
Солнечные панели на основе CIGS. CIGS — это полупроводник, состоящий из меди, индия, галлия и селена. Этот тип солнечных батарей тоже выполнен по пленочной технологии, но в сравнении с панелями из теллурида кадмия обладает более высокой эффективностью, его КПД доходит до 15%.
Рис.6
Потенциальные покупатели солнечных батарей часто задают себе вопрос, сможет ли тот или иной тип фотоэлектрических преобразователей обеспечить необходимую мощность всей системы.
Одинаковую мощность всей установки можно получить при помощи любых типов солнечных батарей, однако более эффективные фотоэлектрические преобразователи займут меньше места, для их размещения понадобится меньшая площадь. Например, если для получения одного киловатта электроэнергии потребуется около 8 кв.м. поверхности солнечной батареи на основе монокристаллического кремния, то панели из аморфного кремния займут уже около 20 кв.м.
Приведенный пример, конечно же, не является абсолютным. На выработку электроэнергии фотоэлектрическими преобразователями влияет не только общая площадь солнечных панелей. Электрические параметры любой солнечной батареи определяются в так называемых стандартных условиях тестирования, а именно при интенсивности солнечного излучения 1000 Вт/кв.м. и рабочей температуре панели 25° C.
В странах Центральной и Восточной Европы интенсивности солнечного излучения редко достигает номинального значения, поэтому даже в солнечные дни фотоэлектрические панели работают с недогрузкой. Может показаться, что и температура 25° C тоже встречается не так уж и часто. Однако речь о температуре солнечной панели, а не о температуре воздуха.В рамках общей тенденции снижения отдаваемой мощности с ростом рабочей температуры, каждый тип солнечных батарей ведет себя по-разному. Так у кремниевых элементов номинальная мощность падает с каждым градусом превышения номинальной температуры на 0,43-0,47%.В то же время элементы из теллурида кадмия теряют всего 0,25%.
виды солнечных батарей ☀️ Sunsayenergy
Многие люди начинают задумываться об экологии и своем вкладе в загрязнение окружающей среды. Поэтому сейчас становится популярна альтернативная энергетика, в частности,
Какие бывают виды солнечных панелей и их характеристики
Разновидностей много, однако, все модули состоят из фотоэлектрических преобразователей, которые превращают энергию Солнца в электрическую. Всего существует 3 фотоэлемента, по которым модули классифицируют на следующие виды: монокристаллические, поликристаллические и пленочные. Поэтому перед тем, как купить электростанцию в Украине, определите, какой тип солнечных батарей подходит именно вам.
Монокристаллические
Итак, монокристаллические панели. Монокристаллические солнечные панели производят из чистого из кремния. Монокристаллы кремния являются фотоэлектрическим преобразователем монокристаллических панелей. Данный вид обладает самым высоким уровнем производительности (до 23%). Они отлично подходят для установки СЭС при дефиците пространства, поскольку их монтаж позволяет сэкономить площадь.
Правда стоят монокристаллические солнечные батареи дороже чем поликристаллические из-за более сложной технологии производства. Также они требуют установки дополнительного оборудования, которое будет автоматически поворачивать их перпендикулярно солнечным лучам. Преимущества монокристаллических кремневых батарей: высокий КПД, компактность и долговечность. Поэтому, если вы хотите генерировать энергию на продажу или обеспечить резервное электроснабжение вашего дома, то этот вариант будет оптимальным.
Поликристаллические
Поликристаллическая солнечная панель производится также из кремния, но имеет неоднородную структуру из-за добавления при охлаждении затравочным кристаллом. Фотоэлектрический преобразователь поликристаллических панелей — поликристаллы кремния. Производительность батарей этого типа ниже, чем у монокристаллического (15-18%). Однако и стоимость у них ниже. Поэтому, поликристаллические панели станут финансово оптимальным решением для автономного электроснабжения. Только подобрать соответствующий инвертор для частного дома не забудьте.
ПленочныеПленочные батареи представляют собой гибкие солнечные панели. Этот вид, представляет собой напыление полупроводника на тонкопленочной подложке. Они гибкие по своей структуре, что позволяет разместить их на любой поверхности. Но производительность у них очень низкая. Так что полноценно конкурировать с кремниевыми модулями, пленочные солнечные панели пока не могут.
Итог
Мы разобрались, какие виды солнечных элементов существуют. Осталось выбрать, какие подойдут именно вам. Перед тем, как купить домашнюю СЭС, постарайтесь четко определить, для каких целей будет служить ваша частная электростанция (СЭС): для заработка, автономного либо резервного питания. Эта информация поможет выяснить необходимое количество генерируемой энергии и исходя из характеристик несущих конструкций, подобрать оптимальный тип батарей.
Типы и разновидности солнечных батарей
Что такое солнечная батарея?
Для получения тепловой и электрической энергии из солнечного излучения используют специальное оборудование, известное как солнечные панели. Иногда их также называют солнечными батареями. По принципу работы они подразделяются на:
- фотоэлементы
- тепловые коллекторы
В первом типе, фотоэлементах, световые и инфракрасные лучи сразу превращаются в электричество. Это возможно благодаря полупроводниковым свойствам чистого кремния и некоторых химических соединений. Когда на ячейку солнечной панели попадает свет, возникает разность потенциалов, благодаря p-n перехода создает ток. Небольшой, с одной не более 0,6 В независимо от ее размера. Соединенные последовательно отдельные ячейки дают возможность повысить выходное напряжение. Поэтому они и называются солнечными батареями – то есть рядом одинаковых элементов.
Солнечные коллекторы имеют жидкий теплоноситель, который поглощает инфракрасное излучение, нагревается, расширяется и циркулирует в замкнутой системе. Им могут служить:
- вода
- минеральные масла
- соляные растворы
Теплоноситель или нагревает воду для отопления и бытовых или промышленных нужд, или крутит лопасти турбин, которые вырабатывают электричество.
Разновидности солнечных панелей
Промышленность производит три основных типа солнечных панелей:
- монокристаллические
- поликристаллические
- тонкопленочные
В первых двух используют чистый кремний с напылением легирующих материалов на внешней и токопроводящей основой на тыльной сторонах. Тонкопленочные солнечные батареи могут быть из аморфного кремния или других полупроводниковых материалов, а также с дополнительным напылением и струмоприймальнимы элементами. Все виды требуют прозрачного внешнего слоя из стекла или полимеров для защиты от влаги и механических повреждений.
Солнечные батареи используют в быту, для промышленного производства электричества и как элементы питания космических аппаратов. Поэтому к ним предъявляются разные требования:
- Эффективность (КПД)
- срок службы
- вес
- стоимость
Целесообразный для установления тип солнечных панелей в каждом случае выбирают по соотношению этих показателей. Также учитывают:
- Температурный коэффициент – зависимость потери мощности от колебаний температур окружающей среды;
- Гарантию выработки – со временем мощность снижается, но есть срок, когда эти изменения не превышают 10-15%;
- Размер – какую площадь солнечных панелей нужно иметь для производства 1 кВт электроэнергии.
Монокристаллические – самые дорогие, с наибольшим весом, но при этом у них высокий КПД (до 25%), наименьшая площадь для производства 1 кВт (до 8 м²), самый длинный срок службы (20 – 25 лет) с низким потерями мощности от температуры и времени .
Тонкопленочные дешевые и легкие, с немного большей монокристаллы рабочей площади, но гарантийный срок в них не превышает 3 лет и они очень зависимы от погодных условий.
Поликристаллические солнечные панели нуждаются в несколько раз превышающих монокристаллы и пленки площадей для производства 1 кВт, но по другим показателям они не намного уступают монокристаллическим солнечным батареям, и в десятки раз лучше пленочные.
Фотоэлементы для тонкопленочных солнечных батарей производят с использованием:
- аморфного кремния
- диселенида индия и меди
- теллурида кадмия
Для создания p-n переходов полупроводниковые материалы легирующие фосфором, галлием или серой. Как анод используют напыление молибдена, оксиды цинка, олова или галлия. Катодом (токоприемником) служат металлические пластины.
Получить электричество от солнечных батарей коллекторного типа сложнее, но их КПД в земных условиях может достигать 25-35%. Если для отопления и водоснабжения достаточно подогреть теплоноситель до 100 ° С, то для турбин нужна перегретый пар с температурой 350-500 ° С и давлением 15 МПа. Для этого строят «солнечные башни» и размешивают вокруг них зеркала концентрируют отражено солнечные лучи на небольшой площади приемника. Или используют новейшую разработку: параболические концентраторы с двигателем Стирлинга. Они относительно небольшие по размеру и могут двигаться, подставляя отбивные поверхности в наилучшее положение относительно солнца в течение дня.
Использование разных типов солнечных батарей в быту и промышленности
Учитывая все факторы и требования, для обеспечения электричеством отдельных домохозяйств используют монокристаллические или тонкопленочные солнечные батареи. В промышленных солнечных электростанциях целесообразным является установление поликристаллических солнечных панелей. В космосе также пользуются поликристаллическими солнечными панелями, но при этом чистота кремния в них доходит до 99,999%. Их производят по сложной технологии многослойного нанесения, что позволяет превращать в электричество солнечное излучение различной частоты. Это доказывает КПД до невероятных 40%, которые пока невозможно получить в земных условиях.
Производить электричество из света, используя плоские солнечные панели на крупных электростанциях и в домохозяйствах выгодно даже в умеренных широтах. Это доказано опытом Дании и Германии. А в жарких регионах планеты больший потенциал имеют солнечные коллекторы. Они уже работают в Калифорнии(США), Мексике, Испании, Марокко, Египте и других южных странах т.к там наибольшее количество солнечных дней и наибольшие среднегодовые температуры. Кроме того, большинство стран дают возможность продавать излишки энергии по специальным “зеленым тарифам”.
В последнее время появился очень интересный и перспективный гибрид солнечных батарей – Smartflower. Он похож на огромный цветок подсолнечника. Размер лепестков до 10 метров, сервомотор возвращает их по солнцу и регулирует угол наклона. А во время сильного ветра, ночью или в дождь агрегат автоматически составляет рабочие поверхности и опускает их в безопасное положение. Заявленная мощность 3,2 кВт / час, за год можно получить от 3200 до 6400 кВт в зависимости от климата. «Солнечный цветок» уже пользуется массовым спросом в Европе и США.
Сравнение всех видов солнечных батарей их отличия
В Европе активно развивают альтернативную энергетику, понимая ее безопасность и перспективность такого источника электроэнергии, как солнечные батареи. Желая организовать отопление жилых зданий ил промышленных за счет энергии земного светила, постройки оснащают именно ими. Эти устройства год от года становятся более совершенными, увеличивается их КПД, они становятся готовыми к работе в темное время и в малосолнечных областях.
Чтобы не ошибиться с выбором солнечных батарей, нужно знать достоинства каждого вида и отличия, потом что для конкретных климатических зон применяются разные виды таких устройств.
Принцип функционирования
Большая часть этих экологических солнечных устройств в действительности не что иное, как фотоэлектрический преобразователь, у которого на границе p-n перехода возникает эффект электрогенерации.
Основой себестоимости солнечных батарей является стоимость кремниевые пластины. Но, для того, чтобы они служили круглые сутки источником электрической энергии, одних пластин кремниевых недостаточно – придется приобрести оборудование дополнительное и, прежде всего, достаточно дорогие аккумуляторные батареи.
Устройство
Составляют панель солнечную два кремниевых элемента, отличающиеся по своим свойствам. В одном из них возникает под воздействием света недостаток частиц с отрицательным зарядом –электронов, в другом они присутствуют в избытке.
На каждой из пластин имеются медные полоски, проводящие ток, которые соединяют с преобразователями напряжения.
У солнечной батареи, предназначенной для промышленного применения, есть много фотоэлектрических ячеек, прошедших стадию ламинирования. Они между собой скреплены и закреплены на подложке гибкой или жесткой.
КПД
Эффективность солнечных батарей определяется во многом стадией очистки кремния, который используется в производстве, и ориентацией кристаллов в нем. Эти характеристики и стремятся улучшать разработчики. Ежегодно значение КПД удается увеличивать (в разных видах на неодинаковую величину), благодаря миллиардным инвестициям, вкладываемым в исследования фотогальванических элементов. Тем не менее, эффективность остается недостаточной для массового применения солнечных батарей.
Сложности
Основной проблемой является очистка кремния, точнее стоимость этого процесса, а также ориентирование кристаллов в пределах панели в одном направлении.
Могут использоваться для изготовления преобразователей полупроводниковых помимо кремния иные элементы — индий, например. Их применение не сказывается на принципе функционирования — он не меняется.
Типы
Классификация промышленных панелей солнечных происходит по типу рабочего слоя и конструктивным особенностям. Различают панели жесткие и гибкие.
Последние занимают все более широкую нишу благодаря универсальной установке: он и легко устанавливаются на любые поверхности, в том числе на вертикальны – фасады зданий. При этом они совершенно не портят архитектуру, а напротив привносят в не некую изюминку.
Как правило, действительные параметры солнечных батарей несколько ниже заявленных производителем, поэтому, прежде чем выбирать, желательно увидеть воочию уже действующий проект.
По типу фотоэлектрического слоя их подразделяют на:
- кремниевые. К ним относятся поли — , монокристаллические и аморфные;
- теллурий-кадмиевые. Их собирают на основе индия, меди и галлия;
- полимерные;
- органические;
- с использованием арсенида галлия;
- комбинированные и многослойные.
Не все перечисленные виды интересны потребителю, а лишь кристаллические, несмотря на то, что их КПД ниже некоторых других (правда, более дорогих, отчего и менее распространенных).
Процесс изготовления кремниевых конструкций
Для получения солнечных панелей применяют кремний, получаемый при перемалывании кристаллов кварца, огромными запасами которого славится Урал и в Сибирь. Именно из-за безграничных запасов это направление считается очень перспективным. Сегодня за кристаллическими и аморфными панелями почти 80% рынка.
Кремниевые монокристаллические панели
Описание
Их легко узнать при визуальном осмотре. В углах элементов хорошо различимы квадратики белого цвета.
Для самих же пластин характерна поверхность однородного синего цвета. Кремний в этом случае требует высокой очистки. Понятно, что технологический процесс по очистке его отличается дороговизной. Затратным является и процесс, результатом которого является ориентирование кристаллов в одном направлении.
Важно: Характеристики рабочего слоя наибольший КПД обеспечивают лишь в случае, когда лучи падают на панели пол прямым углом.
КПД у них достаточно высокий, но и цена тоже самая большая, в сравнении с другими видами пластин.
Солнечным панелям монокристаллическим большой площади необходимы поворотные устройства. В таком виде они считаются идеальным решением для пустынь. Там их производительность наилучшая.
Работать монокристаллические панели не смогут без дополнительного оборудования, способного поворачивать конструкцию вслед за движущимся солнцем, стараясь, чтобы на лучи падали на пластину максимально близко к прямому углу.
Из выращенного в условиях производства кристалла, имеющего вид цилиндра, вырезаются слои. Вот почему у готовых блоков углы скруглены.
Преимущества
- Высокий КПД – от 17 до 25 процентов;
- Небольшая площадь для установки;
- Период эксплуатации достигает 25 и более лет.
Недостатки
Их немного:
- достаточно высокая цена;
- небыстрая окупаемость;
- поверхности панелей слишком чувствительны к различным загрязнениям. Поскольку свет хуже рассеивается на покрытой пылью панели, то и эффективность ее резко падает;
- необходимость в прямых лучах требует их размещения только на открытых местах и высоко от земли.
Чем область ближе расположена к экватору, тем большее там количество в году солнечных дней. И это вид панелей, использующих энергию солнца, наиболее предпочтительный.
Поликристаллические
Описание
Все кремниевые устройства слишком реагируют на перегрев. Температура, рекомендуемая для измерения электрогенерации, составляет 25 градусов. Даже при ее увеличении всего на градус производительность уменьшается на 0,5%.
Поликристаллические конструкции также легко определить визуально, поскольку окрас их неравномерный, что связано с разной ориентированностью кристаллов, обеспечивающей высокое КПД в рассеянном свете. Хотя значение его меньше, чем в панелях однонаправленных, в непогоду наибольшей эффективностью отличаются именно они.
Чистота кремния намного ниже, чем у рассмотренных выше, также допускается присутствие примесей и инородных включений. Это снижает себестоимость. Для этого вида панелей металл просто разливается в формы. Затем, используя специальные приемы, формируют кристаллы, направленность которых контролировать не нужно.
Остывший кремний режут на слои, обрабатывая их по специальному алгоритму.
Эти батареи не нуждаются в непрерывном ориентировании на солнце, следовательно, для их установки пригодны крыши зданий.
Достоинства аморфного кремния в полной мере раскрываются в тени и с наступлением облачных дней и практически незаметны в солнечную погоду.
Не нужны им и поворотные механизмы, поскольку крепятся они стационарно.
Стоит такая разновидность панелей меньше, чем ориентированные. Эффективность их падает на 20% после 20-летнего использования.
Недостатки
Они, понятно, есть:
- Более низкий КПД;
- Необходимо большая площадь для монтажа.
В последние годы, благодаря новым исследованиям и появляющимся технологиям, КПД неуклонно растет и у некоторых панелей достигает 20%.
Панели из аморфного кремния
Описание
Механизм их изготовления совершенно иной, чем у кристаллических фотоэлементов. Для них используется гидрид вместо чистого кремния. Его нагревают до парообразного состояния. Когда пары достигают подложки, они осаждаются на ней. Затраты на изготовления снижаются, а кристаллы не образуются (в понимании классическом).
Полученные фотоэлементы в основе имеют полимерную подложку гибкую либо жесткий стеклянный лист.
Разработано уже 3 поколения таких панелей, анализ характеристик которых дает право говорить о растущем КПД. Первые образцы отличались эффективностью, едва достигавшей 5%, у второго поколения это значение достигало 9, а у последних разработок это уже 12%. Их уже можно встретить в продаже, но цена на них пока остается высокой.
Благодаря особой структуре, подобные солнечные панели максимально поглощают энергию в слабом рассеянном свете, поэтому успешно применяются они в районах севера, где мало солнца и имеются огромные свободные площади.
Важно: на эффективности работы таких батарей не сказывается повышение температуры, хотя в сравнении с панелями на основе арсенида галлия, она ниже.
Преимущества
- гибкая основа, упрощающая монтаж и расширяющая область использования;
- в рассеянном свет высокий КПД;
- стабильность при высокой температуре;
- устойчивость к повреждениям механического характера;
- независимость от загрязнений.
При правильной эксплуатации они служат не менее 20 лет, за которые падение мощности составляет 15-20.
Недостатки
Единственным минусом считается потребность в большой площади.
Помимо кремниевых, производятся панели, в основе которых лежат редкие, значит, дорогостоящие металлы. КПД подобных конструкций превышает 30%, а цена в разы выше стоимости кремниевых. И, несмотря на это, свою нишу на рынке они успели занять.
Панели из редких металлов
Описание
КПД у них высокий. По этому показателю они впереди кремниевых. В основе устройств, способных к работе в условиях экстремальных, лежит теллурид кадмия. Применяются они для облицовки строений в экваториальных странах, где в дневное время поверхности нагреваться порой выше 80 градусов.
Также растет популярность селенид –индий – медно – галлиевых панелей и селенид- индий – медных.
Но, не забывая о токсичности кадмия, и о том, что галлий с индием достаточно редко встречающиеся металлы, невозможно даже предположить, что они будут использоваться для массового производства.
Их эффективность измеряется 35%, даже иногда 40%. Ранее применялись они в космической области, а сегодня – в тепловых электрических солнечных станциях (благодаря стабильности в диапазоне 130-150 градусов).
На панели маленькой площади концентрируются лучи сотен зеркал. Она генерирует ток и передает одновременно водяному теплообменнику тепло. Он нагревает воду до парообразного состояния. Пар приводит во вращение турбину, генерирующую энергию электрическую. То есть, с наибольшей эффективностью энергия солнца сразу двумя способами превращается в электрическую.
Органические аналоги и полимерные
Это самые новые разработки, появившиеся в последнее время – органические панели, которые отличаются абсолютной безопасностью для экологии и недорогим производственным процессом. Успехов в этом направлении удалось достичь больших.
Среди европейских компаний, успехом наибольшим похвастаться может фирма Heliatek, оснастившая своими пленочными конструкциями, у которых толщина всего миллиметр, ряд зданий. Их КПД находится в пределах 14-15%, цена же ниже в разы, чем у аналогов кристаллических.
Какой же панели отдать предпочтение?
Для загородных коттеджей не трудно выбрать батарею, если он находится на широте 45-60. И выбирать здесь нужно из кремниевых моно- и поликристаллических видов.
При недостаточности места рекомендуется выбрать первые, при отсутствии ограничений площади – вторые.
Производителя, мощность, способную решить все проблемы, оборудование дополнительное рекомендуется выбирать с менеджерами, занимающимися продажей и монтажом данного оборудования.
Видео: ABC-Solar — Виды солнечных панелей
Видео: Поликристаллическая солнечная панель против монокристаллической.
Типы солнечных панелей | Atmosfera™. Альтернативные источники энергии. Солнце. Ветер. Вода. Земля.
Скорее всего, вы заметили, что порядок знакомства с технологиями производства фотоэлементов был выбран не случайно – мы начали элементами с наибольшим КПД и закончил элементами с наименьшим КПД. КПД для фотоэлементов — это эффективность преобразования солнечной энергии в электрическую, это значит, что чем меньше КПД тем больше площади фотоэлементов нам необходимо для обеспечения той же мощности по сравнению с элементами у которых КПД имеет более высокое значение.
Теперь неплохо бы опровергнуть распространенное заблуждение о том, что поликристаллические фотомодули более эффективно преобразовывают солнечное излучение по сравнению с монокристаллическими. А тонкопленочные по сравнению с кристаллическими. На самом деле преобразование энергии прямого солнечного излучения монокристаллических элементов происходит с наибольшей эффективностью, у поликристаллических модулей это преобразование происходит с меньшей эффективностью в связи с разной ориентацией кристаллов в элементе. Рассеянное излучение кристаллические фотоэлементы преобразовывают с одинаковой эффективностью. Поэтому доля выработки от рассеянного излучения в поликристаллических панелях выше чем в монокристаллических, а, значит и влияние ориентации на выработку ниже. У тонкопленочных элементов в связи с большей степенью беспорядочности ориентации светочувствительных элементов выработка с рассеянной части излучения составляет основную долю выработки. Поэтому и принято говорить, что на выработку тонкопленочных модулей не влияет ориентация. Но энергию солнечного излучения, не зависимо от его формы, эффективнее всего преобразовывают монокристаллические модули потому что у них КПД выше.
Фотопанели из кристаллических фотоэлементов чаще всего используются в строительстве солнечных электростанций. Обычно, срок службы фотомодулей из кристаллических элементов составляет 25 лет. Через 25 лет мощность фотоэлементов составит 80% от текущей мощности. Обычно кристаллические фотопанели производятся с непрозрачной подложкой из PVB-пластика или тефлона, покрытием из стекла или прозрачного EVA-пластика, или стекла и алюминиевой рамой.
CIS – фотомодули имеют наибольший КПД как для тонкопленочных модулей. Но эти модули подвержены коррозии от токов утечки в связи с применением электролиза в их производстве, поэтому, когда мы устанавливаем станцию на CIS фотомодулях нам необходимо обеспечить полную потенциальную развязку с AC сетью с помощью установки трансформаторного инвертора или специального разделительного трансформатора и установить по дифференциальному автомату на каждую из линий, подключенных к инвертору. CdTe – фотомодули не подвержены коррозии. Но кадмий является токсичным элементом, вызывающим острые и хронические отравления. Поэтому использованные или испорченные CdTe – фотопанели подлежат обязательной утилизации, что удорожает эксплуатацию станции. Фотопанели из аморфного кремния не подвержены коррозии и не токсичны, но имеют очень низкий КПД и их активные элементы выгорают на солнце. Обычно в течении 6 – 12 месяцев после установки происходит снижение мощности, потом эти модули выходят на установившуюся мощность. Срок службы таких модулей составляет около 10 лет. Срок службы CIS и CdTe модулей такой же, как и у кристаллических.
Тонкопленочные фотомодули чаще всего применяются в фасадных системах и дизайнерских решениях. Скорее всего, в будущем тонкопленочные модули заменят кристаллические потому что их производство дешевле и менее энергоемко. Ведь никто не заинтересован в фотопанелях на производство которых тратится больше энергии чем они способны выработать за срок службы.
Виды солнечных батарей: сравнение и их отличия
Сейчас доступен такой вид альтернативной энергии, как солнечная. При помощи размещения специальных солнечных батарей можно получать электричество, которое полностью сможет покрыть все ваши энергозатраты. Но здесь одной батареи будет недостаточно, понадобится целая система. Количество панелей зависит от их мощности, типа и потребляемого количества энергии. Перед тем как обзавестись собственной солнечной электростанцией, ознакомьтесь с видами солнечных батарей и выберите для себя оптимальный.
Содержание статьи
Что такое солнечная батарея
Главная задача солнечной батареи – это преобразовать солнечный свет в электроэнергию. То есть за счет установки нескольких конструкций можно обеспечить дом током, не прибегая к использованию общей электросети. Солнечные панели являются экологически чистым способом преобразования света в ток, при этом они выдают самый высокий показатель эффективности в отличие от других альтернативных источников энергии.
Солнечные батареи – это специальные модули с фотоэлементами, которые могут захватывать солнечную радиацию и при помощи полупроводниковых устройств на выходе давать электроэнергию с напряжением 220В.
Панель представлена в виде прямоугольника. Размер панели схож с шифером. Это самый распространенный тип. На ней размещено 36 элементов, которые покрыты фотопленкой или стеклом. При помощи соединения и специальных туннелей свободные электроны, которые образуются под действием солнечного света, передвигаются и накапливаются в виде постоянного тока в аккумуляторе. Когда там собирается необходимое количество тока, он при помощи инвертора перерабатывается на переменный с нужным напряжением 220В. Но, чтобы обеспечить дом электроэнергией полностью или частично, понадобится несколько таких солнечных панелей. Важным элементом системы являются крепления для солнечных панелей.
Виды кремниевых батарей
Наиболее популярными являются кремниевые батареи. Они отличаются долговечностью и качественной работой. Их различают два вида: монокристаллические и поликристаллические.
Монокристаллические
Такой вид батарей относится к самым дорогостоящим, потому что они изготавливаются из высококачественных материалов при соблюдении сложного технологического процесса. Главным материалом служит слой из специально выращенных кристаллов кремния. Готовые панели представляют собой бруски с кремниевой решеткой темно-синего цвета с закругленными краями. В процессе производства модуль разрезают на более тонкие пластины.
В результате использования качественного сырья и сложного процесса производства кремниевые монокристаллические панели достигают наивысших показателей производительности (КПД до 25%), а также отличаются длительным сроком эксплуатации с минимальным процентом деградации (около 5% за 25 лет). Высокий показатель эффективности достигается за счет использования всей поверхности модуля, даже захватывая рассеянный солнечный свет.
Несмотря на дороговизну монокристаллических конструкций, они быстрее себя окупают. Кроме того, из-за высокой мощности и производительности их можно использовать в меньшем количестве, тем самым экономя на площади. Однако нужно постоянно за ними ухаживать, так как малейшее загрязнение или затемнение приводит к существенному снижению выработки.
Поликристаллические
В производстве поликристаллических модулей участвует несколько кристаллов. По своим качествам они уступают монокристаллическим. Во-первых, это связано с использованием низкокачественного кремния, а во-вторых, с более простым процессом производства. В их основу заложен материал, который получен при переработке непригодных монокристаллических батарей и залит в формы, поэтому батареи имеют неоднородный цвет синего оттенка.
В результате использования более дешевого сырья цена на поликристаллическую батарею ниже на 15-20%, но это сказывается и на общей эффективности. КПД поликристаллических модулей при соблюдении правил эксплуатации не превышает 18%.
Солнечные панели из поликристаллов довольно тонкие, но ввиду меньшей производительности их потребуется больше, чтобы обеспечить себя необходимым количеством энергии. Но, несмотря на существенные минусы, поликристаллические солнечные батареи пользуются большой популярностью. Это связано с тем, что они менее прихотливы к захватыванию солнечного света и работают с большей отдачей в пасмурную погоду. Кроме того, с каждым годом инженеры работают над повышением величины КПД поликристаллических модулей, что в скором времени приблизит их к показателю 20-22%.
Виды пленочных батарей
Теперь рассмотрим виды солнечных батарей пленочного типа. Пленочная панель достаточно недавно появилась в сфере получения альтернативной солнечной энергии. На сегодняшний день они не пользуются большой популярностью, в том числе и из-за высокой стоимости, но имеют свои преимущества. Они бывают нескольких типов. Рассмотрим каждый из них: на основе теллурида кадмия и на основе Cigs.
На основе теллурида кадмия
Первый тип пленочной солнечной панели произведен на основе теллурида кадмия. Данное решение оправдано высоким уровнем поглощения кадмием солнечного света. Еще несколько десятков лет назад кадмий активно применялся в космосе, но никак не для домашнего использования, потому что он обладает высокой степенью ядовитости. Но при пользовании солнечными панелями он не составляет угрозы для человеческого здоровья. Все испарения, полученные при его активации солнечной радиацией, уходят в атмосферу.
Эффективность работы солнечных батарей на основе кадмия предельно мала, всего 10%. Поэтому ввиду их высокой стоимости, использования вредных материалов и низкой выработки они не пользуются широким спросом.
На основе CIGS
Вторым представителем пленочных солнечных батарей выступают панели на основе использования CIGS. Это полупроводник, который состоит из таких элементов как галлий, медь, индий и селен. Они имеют схожую структуру с кадмиевыми панелями, гибкие и отличаются широким способом применения. Солнечная панель на основе полупроводника CIGS используется в космических спутниках, при производстве жидкокристаллических мониторов или в качестве портативных туристических приспособлений для получения энергии.
Пленочная панель на основе галлия – это новое направление в сфере источников питания. В отличие от кадмиевых батарей эффективность их работы достаточно высока, от 15 до 20%, поэтому они составляют прямую конкуренцию монокристаллическим батареям. Если научно-исследовательским центрам удастся снизить себестоимость производства таких панелей, то они смогут стать лидерами на рынке данной продукции.
Амфорные батареи
Еще одним типом солнечных батарей являются амфорные модули. Такая солнечная батарея производится из амфорного кремния и отличается от стандартных кремниевых батарей способом изготовления. Здесь используется не чистое сырье, а его гибрид, а если быть точнее, то горячие пары, которые осаждают подложку. Принцип напоминает больше производство пленочных батарей. Результатом подобной работы становятся готовые солнечные панели, однако при этом не нужно выращивать кристаллы, что резко сокращает и время, и затраты на производство. Основным материалом выступает силан.
Сегодня на рынке солнечных панелей амфорные модули представлены тремя поколениями. Основная разница между панелями заключается в эффективности их работы. Если первый вариант солнечной панели был выпущен с заявленными характеристиками КПД максимум 5%, второе поколение достигло 9%, то на сегодняшний день их показатель уже равняется 12%. Они не такие распространенные, так как остаются в цене предельно дорогими, но при этом уступают в производительности кремниевым солнечным панелям.
Особым достижением работы амфорной солнечной батареи считается ее возможность работать с заявленным процентом КПД даже при сильно высокой температуре и нагревании поверхности, что другим батареям не свойственно.
Особые характеристики амфорных батарей:
- Возможность применять гибкую панель на любых участках, строениях или архитектурных объектах.
- Стабильная работа при критически высоких показателях температуры.
- Долгий срок службы – до 25 лет.
- Невысокий процент КПД.
- Лучшая производительность наравне с другими панелями при рассеянном солнечном свете.
Если обратиться к практике, то батарея из амфорного кремния активно используется в качестве тонких пленочных модулей. Это связано с особенностью производственного процесса, где в результате получается панель на гибкой, а не на твердой подложке. Как бы ни казалось странным, амфорные батареи стоят дороже, особенно за счет своей эластичной структуры. Наибольший спрос на них в северных районах, так как благодаря физико-химическому составу модулей им свойственно поглощать солнечную энергию даже при слабом рассеянном свете.
После описания всех видов солнечных панелей остается только сделать вывод, какие модули лучше всего выполняют функцию выработки электроэнергии. Дать однозначный ответ нельзя, потому что необходимо отталкиваться от финансовых возможностей и от желаемой мощности солнечной батареи. Первое место специалисты отдают монокристаллическим панелям ввиду их высокой эффективности и долгого срока службы, однако данный показатель не всегда является значимым. Здесь важно оценить все технические характеристики работы панелей в комплексе, а также сопоставить их стоимость.
Солнечные батареи – Новые Системы и Альтернативы
Солнечные батареи – это доступные коммуникации, необходимые для жизни, в обход высоких тарифов на электроэнергию и дорогостоящего содержания дизельной или бензиновой электростанции. Такие установки бесшумно и безопасно трансформируют энергию солнечных лучей в переменный ток с напряжением 220 Вольт.
Стоимость солнечных батарей достаточно высокая, а уровень эффективности не всегда соответствует ожиданиям. Но при правильном подходе к приобретению и установке такая электростанция станет хорошим денежным вложением и рентабельным способом обеспечения отопления, освещения и водонагрева на даче или в частном доме.
Выбор и установка солнечной батареи в полной мере зависит от особенностей климата, интенсивности, условий и цели ее применения. Иногда хватает небольшой мощности, но порой нужна массивная электростанция. Определенный вид солнечных батарей и ее элементов выбирают, исходя из индивидуальных потребностей.
Элементы комплекса солнечной батареи
Солнечная батарея – сборная установка. Она состоит из нескольких элементов. Каждый из них выполняет определенную функцию и является незаменимым. Но купить солнечную батарею можно только, выбирая элементы по отдельности с учетом требований к их мощности и сроку службы.
В состав солнечной батареи входят следующие основные элементы: солнечные панели, солнечный контроллер, аккумулятор, инвертор.
Все элементы последовательно соединяются друг с другом, образуя единую систему, к которой в зависимости от цели установки добавляются дополнительные компоненты. Например, если солнечная батарея приобретается для отопления дома, цепочку элементов дополняет резервуар для прогревания воды, поступающей в радиаторы.
Солнечные фотоэлектрические панели иначе называют модулями. Они состоят из нескольких фотоэлементов и отвечают, непосредственно, за преобразование солнечной энергии в ток. Аккумулятор накапливает энергию в виде постоянного тока. Солнечный контроллер обеспечивает заряд аккумулятора. Инвертор преобразует постоянный ток в переменный, который обеспечивает работу бытовых приборов.
Принцип работы солнечной батареи
Солнечная установка преобразует радиацию солнечных лучей в электроэнергию. Модули, изготовленные на основе специального вещества с положительно и отрицательно заряженными частицами, составляют полупроводник. Под воздействием солнца образуется постоянный ток.
Одна часть преобразованной энергии поступает в аккумулятор, другая часть отапливает дом и обеспечивает горячее водоснабжение.
Виды солнечных панелей и их особенности
В настоящее время на рынке продвинутых систем предлагают купить кремниевые или пленочные солнечные батареи. Их главное отличие – сырье, которое применяют для изготовления фотоэлементов, составляющих модули. Естественно, что физические свойства исходного вещества существенно сказываются на параметрах и эффективности солнечной батареи.
Кремниевые и пленочные солнечные панели делятся на несколько разновидностей. Предлагаем рассмотреть основные модификации, существующие на современном рынке высоких технологий.
Кремниевые солнечные батареи
Изготавливают на базе кремния. Кремниевые батареи имеют наиболее высокий КПД. Добыча кремния достаточно распространена в России, что положительно сказывается на стоимости таких модулей. Вот основные разновидности панелей, изготовленных на основе кремния.
Монокристаллические солнечные панели
Производят из монокристаллического кремния. Такое вещество выращивают методом Чохральского, то есть, путем постепенного вытягивания из расплава. Кремний подлежит обработке, а затем режется на тонкие пластины, которые затем используются для вставки в солнечную панель.
Монокристаллические солнечные батареи бывают различной мощности. Они же имеют наибольшую производительность. КПД такой батареи в худшем случае равняется 17%, в лучшем – 22%. То есть, монокристаллические панели преобразуют максимум 22% от падающего солнечного света.
Монокристаллические панели самые мощные из всех, что существуют сегодня на рынке. Хорошая производительность достигается чистотой кремния и однонаправленным расположением кристаллов.
Из всех кремниевых монокристаллические панели являются самыми дорогостоящими, поскольку подвергаются сложной обработке и последующему квадратированию. Для фотогенерации пластины пронизывают сеткой из электродов, которая способна передавать ток с напряжением 12 Вольт и выше.
Поликристаллические солнечные панели
Такие панели еще называют мультикремниевыми. Они изготавливаются на базе кремния, но метод получения и обработки таких пластин кардинально другой. Разница состоит в самом процессе изготовления основного вещества.
Поликристаллический кремний получают путем направленной кристаллизации. При этом крупные зерна каждого кристалла вытесняют мелкие. В ходе процесса полученные кристаллы могут смотреть в разные стороны из-за образования зернистых границ.
Структура поликристаллического кремния несколько негативно влияет на эффективность работы панелей. В разных условиях эксплуатации КПД может составлять от 12% до 18%.
Однако из-за разрозненной направленности кристаллов такие пластины лучше ловят солнечный свет, принимая его с разных сторон. То есть, если с южной стороны небо закрыто облаками или дымкой, кристаллы, обращенные в противоположную сторону, воспринимают свет с севера.
Преимущество поликристаллических панелей перед монокристаллическими – более выгодная цена при приблизительно одинаковых мощностях.
Солнечные панели из аморфного кремния
Такие панели называют тонкопленочными, поскольку они наносятся на подложку тонким слоем. Изготавливаются из производных от кремния, что снижает эффективность. Поэтому КПД таких пластин нельзя назвать высоким – не более 6%. Зато цена довольно приятная в сравнении с пластинами из кремния.
Если бы не заниженное качество базового вещества, такие панели в 20 раз превосходили бы поликристаллические и монокристаллические в плане эффективности. Преимущества солнечных панелей из аморфного кремния – гибкость, небольшая толщина и превосходная степень оптического поглощения.
Существуют также гибридные солнечные панели, но их производство не столь распространено.
Пленочные солнечные батареи
Изготавливаются из аморфных веществ. Их преимущества – небольшой вес и невысокая цена. Прежде чем купить пленочную солнечную батарею, обратите внимание на ее разновидности.
Полимерные
Изготавливаются из различных полимерных веществ, основными из которых являются полифенилен, углеродные фуллерены и фталоциан меди.
Полимерные солнечные панели наделены средней мощностью 50-100 Вт. Соответственно, и КПД у них небольшой – около 6%.
Полимерные солнечные батареи были разработаны не так давно. Это самое молодое изобретение в области электроинженерии. На рынке такие батареи пользуются спросом ввиду невысокой цены, доступности и эластичных свойств.
Панели на основе теллурий-кадмия
Главное преимущество таких панелей – невысокая цена при приемлемом КПД, равном 11%. Многие, изучив информацию по теллурий-кадмию, считают такие пластины небезопасными для человеческого здоровья. В действительности вещество, применяемое в тех количествах, в каких его используют для создания солнечных панелей, не приносит никакого вреда.
Панели на основе селенида меди-индия
Изготавливаются из трех веществ – селенид, медь и индий. Последнее вещество нередко заменяется галлием, что не совсем благоприятно сказывается на эффективности работы изделий. Поэтому, прежде чем купить солнечные панели из селенида меди-индия, проконсультируйтесь у продавца.
В целом, КПД панелей из меди-индия достаточно высокий – от 15% до 20%. Цена примерно равняется стоимости панелей из кремния.
Нюансы установки солнечной батареи
Для установки солнечной батареи важно соблюсти несколько условий:
Перекрытия должны выдерживать большую тяжесть, поскольку батарея имеет приличный вес.
В доме должен быть обеспечен постоянный доступ на крышу, так как зимой с солнечных панелей нужно периодически убирать снег.
Южная сторона крыши, на которой чаще всего устанавливают элементы батареи, должна иметь наклон не менее 45 градусов.
Солнце – неиссякаемый источник энергии. Солнечные батареи – практически единственная альтернатива для дач, расположенных в местах, где электричество включают на короткий промежуток времени, или данная коммуникация отсутствует вообще. Такое часто встречается в отдаленных от городов населенных пунктах и садовых товариществах.
Комплекс солнечной батареи желательно закладывать в проект дома и выполнять установку на этапе строительства. Так расчеты требуемой мощности будут выполнены более грамотно, и тем же можно продлить срок службы солнечной батареи.
Перед тем, как вы соберетесь купить солнечную батарею в Краснодаре, обратитесь к специалистам нашей компании, которые смогут правильно выполнить расчеты и оказать квалифицированную помощь в установке.
Что такое солнечная панель? Как работает солнечная панель?
Солнечная энергия начинается с солнца. Солнечные панели (также известные как «фотоэлектрические панели») используются для преобразования солнечного света, состоящего из частиц энергии, называемых «фотонами», в электричество, которое можно использовать для питания электрических нагрузок.
Солнечные панели могут использоваться для самых разных целей, включая удаленные системы электроснабжения для кабин, телекоммуникационное оборудование, дистанционное зондирование и, конечно, для производства электроэнергии в жилых и коммерческих солнечных электрических системах.
На этой странице мы обсудим историю, технологию и преимущества солнечных панелей. Мы узнаем, как работают солнечные панели, как они производятся, как они производят электричество и где вы можете купить солнечные панели.
Краткая история солнечных панелей
История развития солнечной энергетики насчитывает более 100 лет. Раньше солнечная энергия использовалась в основном для производства пара, который затем можно было использовать для привода механизмов. Но только после открытия Эдмондом Беккерелем «фотоэлектрического эффекта», который позволил преобразовать солнечную энергию в солнечную электрическую энергию.Затем открытие Беккереля привело к изобретению Чарльзом Фриттсом в 1893 году первого настоящего солнечного элемента, который был образован путем покрытия листов селена тонким слоем золота. И из этого скромного начала возникло устройство, которое мы знаем сегодня как солнечная панель .
Рассел Ол, американский изобретатель, работающий в Bell Laboratories, запатентовал первый в мире кремниевый солнечный элемент в 1941 году. Изобретение Ола привело к производству первой солнечной панели в 1954 году той же компанией.Солнечные панели нашли свое первое широкое применение в космических спутниках. Для большинства людей первая солнечная панель в их жизни, вероятно, была встроена в их новый калькулятор – примерно в 1970-х годах!
Сегодня солнечные панели и полные системы солнечных панелей используются для питания самых разных приложений. Да, солнечные панели в виде солнечных батарей все еще используются в калькуляторах. Однако они также используются для обеспечения солнечной энергией целых домов и коммерческих зданий, таких как штаб-квартира Google в Калифорнии.
Как работают солнечные панели?
Солнечные панели собирают чистую возобновляемую энергию в виде солнечного света и преобразуют этот свет в электричество, которое затем можно использовать для обеспечения питания электрических нагрузок. Солнечные панели состоят из нескольких отдельных солнечных элементов, которые сами состоят из слоев кремния, фосфора (который обеспечивает отрицательный заряд) и бора (который обеспечивает положительный заряд). Солнечные панели поглощают фотоны и при этом инициируют электрический ток.Результирующая энергия, генерируемая фотонами, ударяющими по поверхности солнечной панели, позволяет электронам сбиваться с их атомных орбит и превращаться в электрическое поле, создаваемое солнечными элементами, которые затем тянут эти свободные электроны в направленный ток. Весь этот процесс известен как фотоэлектрический эффект. В среднем доме более чем достаточно площади на крыше для необходимого количества солнечных панелей для производства солнечной электроэнергии, достаточной для удовлетворения всех его потребностей в электроэнергии. Избыточная выработка электроэнергии поступает в основную энергосистему, окупаясь за счет использования электроэнергии в ночное время.
В хорошо сбалансированной конфигурации с подключением к сети солнечная батарея вырабатывает энергию в течение дня, которая затем используется дома в ночное время. Программы чистых измерений позволяют владельцам солнечных генераторов получать деньги, если их система производит больше энергии, чем требуется в доме. В автономных солнечных приложениях необходимыми компонентами являются аккумуляторный блок, контроллер заряда и, в большинстве случаев, инвертор. Солнечная батарея отправляет электричество постоянного тока (DC) через контроллер заряда в аккумуляторную батарею.Затем энергия поступает из аккумуляторной батареи в инвертор, который преобразует постоянный ток в переменный ток (AC), который может использоваться для устройств, не работающих на постоянном токе. С помощью инвертора размеры панелей солнечных батарей могут быть изменены в соответствии с самыми высокими требованиями к электрической нагрузке. Переменный ток можно использовать для питания нагрузок в домах или коммерческих зданиях, транспортных средствах для отдыха и лодках, удаленных каютах, коттеджах или домах, удаленном управлении движением, телекоммуникационном оборудовании, мониторинге потока нефти и газа, RTU, SCADA и многом другом.
Преимущества солнечных панелей
Использование солнечных батарей – очень практичный способ производства электроэнергии для многих приложений. Очевидное – это автономная жизнь. Проживание вне сети означает проживание в месте, которое не обслуживается основной электрической сетью. Отдаленные дома и коттеджи хорошо извлекают выгоду из систем солнечной энергии. Больше нет необходимости платить огромные сборы за установку опор электроснабжения и прокладку кабелей от ближайшей точки доступа к основной сети. Солнечная электрическая система потенциально дешевле и может обеспечивать электроэнергию более трех десятилетий при правильном обслуживании.
Помимо того факта, что солнечные панели позволяют жить вне сети, возможно, самое большое преимущество, которое вы получите от использования солнечной энергии, заключается в том, что это одновременно чистый и возобновляемый источник энергии. С наступлением глобального изменения климата стало более важным, чтобы мы делали все возможное, чтобы уменьшить давление на нашу атмосферу из-за выбросов парниковых газов. Солнечные панели не имеют движущихся частей и не требуют значительного обслуживания. Они прочны и служат десятилетиями при надлежащем уходе.
И последнее, но не менее важное, из преимуществ солнечных панелей и солнечной энергии заключается в том, что после того, как система окупила свои первоначальные затраты на установку, электричество, которое она производит на оставшийся срок службы системы, который может достигать 15%. 20 лет в зависимости от качества системы, абсолютно бесплатно! Для владельцев солнечных энергосистем, подключенных к сети, преимущества начинаются с того момента, когда система вводится в эксплуатацию, что потенциально устраняет ежемесячные счета за электроэнергию или, и это лучшая часть, фактически приносит владельцу системы дополнительный доход от электрической компании.Как? Если вы потребляете меньше энергии, чем производит ваша солнечная электрическая система, эту избыточную мощность можно продать, иногда с наценкой, вашей электроэнергетической компании!
Есть много других применений и преимуществ использования солнечных панелей для выработки электроэнергии – их слишком много, чтобы перечислять здесь. Но, просматривая наш веб-сайт, вы получите хорошее общее представление о том, насколько универсальной и удобной может быть солнечная энергия.
Сколько стоят солнечные панели?
Цены на солнечные панели существенно снизились за последние пару лет.Это здорово, потому что в сочетании с федеральным налоговым кредитом на инвестиции в солнечную энергетику в размере 30 долларов и другими применимыми льготами СЕЙЧАС – лучшее время для инвестиций в солнечную энергетическую систему. И учтите: солнечная энергетическая установка стоит примерно столько же, сколько автомобиль среднего размера!
Где я могу купить солнечные батареи?
Ну, прямо здесь, на этом сайте, конечно!
В число наших брендов солнечных панелей входят самые уважаемые производители солнечных панелей. Эти бренды включают, среди прочего, такие названия, как BP Solar, General Electric и Sharp.Мы предлагаем солнечные панели только высочайшего качества от производителей, зарекомендовавших себя в области производства солнечных панелей. Имея более чем 30-летний опыт работы в сфере солнечных панелей, вы можете быть уверены, что на MrSolar.com мы знаем о солнечных батареях!
Сохранить
Сохранить
Solar 101 | EnergySage
С 1954 года, когда ученые Bell Telephone обнаружили, что кремний – элемент, обнаруженный в песке, – создает электрический заряд при воздействии солнечного света, солнечная технология развивалась и была принята более чем в 2 миллионах домов по всей стране.Сегодня солнечные панели представляют собой очень привлекательный вариант для домов и предприятий в качестве экологически чистого и доступного источника энергии.
Благодаря развитию солнечных батарей мы можем использовать энергию неиссякаемого источника энергии – солнца. Системы солнечных батарей работают очень просто:
- В течение дня солнечные элементы в ваших солнечных батареях поглощают энергию солнечного света;
- Цепи внутри ячеек собирают эту энергию и превращают ее в энергию постоянного тока (DC);
- Электроэнергия постоянного тока пропускается через устройство, называемое инвертором, чтобы преобразовать его в полезную электроэнергию переменного тока (AC), которая выходит из настенных розеток;
- Все это означает, что вы можете использовать это электричество в своем доме, хранить его на солнечной батарее или отправлять обратно в сеть.
Ниже мы кратко рассмотрим системы солнечных панелей, а также оборудование, необходимое для выработки энергии с использованием солнца. Вы уже знаете, как работает солнечное оборудование? Большой! Ознакомьтесь со следующими статьями в нашем разделе Solar 101 – типы солнечных установок, что такое коммунальная солнечная энергия и чистые измерения – или перейдите к следующему разделу, чтобы узнать о преимуществах солнечной энергии.
Какие компоненты составляют систему солнечных батарей?
Установка солнечных панелей – очень простая система.Любая система солнечных панелей состоит всего из четырех основных компонентов и не имеет движущихся частей, что делает их очень эффективными в установке и обслуживании. Четыре компонента системы солнечных батарей:
- Солнечные фотоэлектрические панели – для преобразования солнечной энергии в электричество
- Инверторы –для преобразования электроэнергии постоянного тока в электроэнергию переменного тока
- Стеллажи и системы крепления – для крепления солнечных панелей к крыше (или к земле, в зависимости от типа установки)
- Системы мониторинга производительности – для отслеживания и контроля производительности и состояния ваших солнечных панелей и инверторов
Солнечные панели
Солнечные панели состоят из серии кремниевых солнечных элементов, покрытых листом стекла и скрепленных металлическим каркасом, с проводкой и схемой внутри и позади элементов для сбора потока электрического тока из солнечных элементов.Каждая солнечная панель, также называемая солнечным модулем, обычно имеет размер примерно 4 на 6 футов и весит примерно 30 фунтов.
Несмотря на отсутствие движущихся частей, «активный» компонент солнечной панели находится в самих кремниевых элементах: когда солнечный свет попадает на кремниевые солнечные элементы, он активирует электроны, которые начинают проходить через элемент. Провода в ячейках улавливают этот поток электронов, который затем объединяется с выходом других элементов солнечной панели. Чтобы подробнее узнать, как на самом деле работают солнечные панели и солнечные элементы, ознакомьтесь с нашей статьей по этой теме.
Обычно солнечные элементы выпускаются в форматах на 60 или 72 элемента. Однако многие компании экспериментируют с новыми способами повышения эффективности солнечных элементов при преобразовании солнечного света в электрический ток, поэтому теперь вы увидите много солнечных панелей с половинным разрезом, где каждая ячейка разрезана пополам, так что у вас есть двойная количество ячеек на солнечном модуле (например, 120 или 144).
Не все панели созданы одинаковыми
Чтобы найти подходящие солнечные панели для вашего дома и вашего кошелька, необходимо учитывать множество критериев, в том числе качество продукции, долговечность и долговечность.Узнайте больше о том, как оценить солнечные панели, в Руководстве покупателя EnergySage для солнечной энергии.
Инверторы
Ячейки солнечных панелей собирают солнечную энергию и превращают ее в электричество постоянного тока. Однако в большинстве домов и предприятий используется переменный ток (AC). Инверторы превращают электричество постоянного тока от ваших панелей в пригодное для использования электричество переменного тока. Есть два основных типа солнечных инверторов: струнные (или централизованные) инверторы и микроинверторы.Струнные инверторы также могут добавлять оптимизаторы мощности, чтобы работать аналогично системе микроинверторов.
Струнный (или централизованный) инвертор: Один инвертор соединяет весь массив солнечных панелей с электрической панелью. Струнные инверторы часто являются наименее дорогим вариантом инвертора и представляют собой очень надежную технологию, которая исторически была наиболее часто устанавливаемым типом инверторов. К каждому инвертору можно подключить несколько групп панелей; однако, если выработка электроэнергии одной из панелей в цепочке падает (что может произойти из-за затенения), это может временно снизить производительность всей цепочки.
Микроинверторы: Если вы выбираете микроинверторы, по одному (обычно) устанавливается на каждой солнечной панели, что позволяет каждой панели максимизировать производительность. Если некоторые из ваших панелей затемнены в разное время дня или если не все они установлены в одном направлении, микроинверторы минимизируют проблемы с производительностью. Стоимость микроинверторов обычно выше, чем стоимость струнных инверторов.
Оптимизаторы мощности: Системы, в которых используются оптимизаторы мощности, представляют собой гибрид микро-инверторных и струнных инверторных систем.Как и в микроинверторах, на каждой панели установлены оптимизаторы мощности. Однако вместо того, чтобы преобразовывать электричество постоянного тока от солнечных панелей в электричество переменного тока, оптимизаторы «кондиционируют» электричество постоянного тока перед отправкой его в централизованный инвертор. Как и микроинверторы, они хорошо работают, когда одна или несколько панелей затенены или если панели установлены в разных направлениях. Системы оптимизатора мощности обычно стоят больше, чем системы струнных инверторов, но меньше, чем системы микроинверторов.
Стеллажно-монтажные системы
Стеллажные и монтажные системы – это элементы оборудования, с помощью которых солнечные панели крепятся к крыше или земле.
Для максимальной производительности солнечные панели должны быть направлены на юг и установлены под углом от 30 до 45 градусов (в зависимости от того, как далеко вы находитесь от экватора). Панели, обращенные на восток или запад под углом наклона в пять градусов или более, будут работать хорошо, но будут производить на 10-20 процентов меньше электроэнергии, чем те, которые установлены в идеальных условиях. Для жилых солнечных панелей большинство систем, устанавливаемых на крышу, являются системами «плоского расположения», что означает, что наклон ваших солнечных панелей параллелен наклону вашей крыши.Однако в некоторых случаях вы можете использовать стеллажи, чтобы наклонить или расположить панели под углом, который лучше всего подходит для улавливания солнечных лучей.
Существует два типа креплений: фиксированные крепления, в которых панели остаются неподвижными, и крепления для отслеживания, которые позволяют панелям «следовать» за солнцем, когда оно движется по небу в течение дня (одноосные крепления на направляющих) и во время смена времен года (двухосные гусеницы). Крепления для трекеров подходят только для наземных солнечных батарей.
Системы мониторинга производительности
Системы мониторинга производительности предоставят вам подробную информацию о производительности вашей системы солнечных батарей.С помощью системы мониторинга вы можете измерять и отслеживать количество электроэнергии, производимой вашей системой на почасовой основе.
Наиболее часто используемые инверторы на рынке жилой недвижимости поставляются с приложениями для мониторинга производства , чтобы вы могли отслеживать производительность ваших панелей. В некоторых случаях приложение также обеспечивает мониторинг потребления , чтобы помочь вам отслеживать общую экономию от вашей системы солнечных батарей. Примечание: этот дополнительный мониторинг потребления может осуществляться за дополнительную плату.
Мониторинг вашей системы солнечных панелей может помочь вам выявить любые проблемы с производительностью, чтобы обеспечить максимальную выработку электроэнергии – и финансовую отдачу! – вашей системы солнечных панелей.
Существует два основных типа систем мониторинга:
- Мониторинг на месте: Устройство мониторинга физически находится на вашей территории и регистрирует количество произведенной электроэнергии.
- Удаленный мониторинг: Ваша солнечная фотоэлектрическая система передает данные о своей работе в службу мониторинга, к которой вы можете получить доступ онлайн или с мобильного устройства.
Основы солнечных фотоэлектрических элементов | Министерство энергетики
Кремний
Кремний, безусловно, является наиболее распространенным полупроводниковым материалом, используемым в солнечных элементах, составляя примерно 95% модулей, продаваемых сегодня. Это также второй по распространенности материал на Земле (после кислорода) и наиболее распространенный полупроводник, используемый в компьютерных микросхемах. Кристаллические кремниевые ячейки состоят из атомов кремния, соединенных друг с другом, чтобы сформировать кристаллическую решетку. Эта решетка обеспечивает организованную структуру, которая делает преобразование света в электричество более эффективным.
Солнечные элементы, изготовленные из кремния, в настоящее время обеспечивают сочетание высокой эффективности, низкой стоимости и длительного срока службы. Ожидается, что модули прослужат 25 или более лет, и по истечении этого срока все еще будут производить более 80% своей первоначальной мощности.
Тонкопленочная фотогальваника
Тонкопленочный солнечный элемент изготавливается путем нанесения одного или нескольких тонких слоев фотоэлектрического материала на поддерживающий материал, такой как стекло, пластик или металл. Сегодня на рынке представлены два основных типа тонкопленочных фотоэлектрических полупроводников: теллурид кадмия (CdTe) и диселенид меди, индия, галлия (CIGS).Оба материала можно наносить непосредственно на переднюю или заднюю поверхность модуля.
CdTe является вторым по распространенности фотоэлектрическим материалом после кремния, и элементы CdTe могут быть изготовлены с использованием недорогих производственных процессов. Хотя это делает их рентабельной альтернативой, их эффективность по-прежнему не так высока, как у кремния. Ячейки CIGS обладают оптимальными свойствами для фотоэлектрического материала и высокой эффективностью в лаборатории, но сложность объединения четырех элементов делает переход от лаборатории к производству более сложным.И CdTe, и CIGS требуют большей защиты, чем кремний, чтобы обеспечить длительную работу на открытом воздухе.
Перовскитная фотогальваникаПеровскитные солнечные элементы представляют собой тип тонкопленочных элементов, названных в честь их характерной кристаллической структуры. Ячейки из перовскита состоят из слоев материалов, которые напечатаны, покрыты или нанесены вакуумным осаждением на нижележащий опорный слой, известный как подложка. Как правило, их легко собрать, и они могут достигать эффективности, аналогичной кристаллическому кремнию.В лаборатории эффективность перовскитных фотоэлементов повышалась быстрее, чем у любого другого фотоэлектрического материала, с 3% в 2009 году до более 25% в 2020 году. Чтобы быть коммерчески жизнеспособными, перовскитные фотоэлементы должны стать достаточно стабильными, чтобы выдержать 20 лет на открытом воздухе, поэтому исследователи работают над тем, чтобы сделать их более долговечными и разрабатывают крупномасштабные и недорогие технологии производства.
Органические фотоэлектрические элементы
Органические фотоэлектрические элементы, или OPV, состоят из богатых углеродом (органических) соединений и могут быть адаптированы для улучшения определенных функций фотоэлектрических элементов, таких как ширина запрещенной зоны, прозрачность или цвет.Элементы OPV в настоящее время примерно вдвое менее эффективны, чем элементы из кристаллического кремния, и имеют более короткий срок службы, но могут быть дешевле в производстве в больших объемах. Их также можно наносить на различные вспомогательные материалы, такие как гибкий пластик, благодаря чему OPV может использоваться в самых разных целях.PV
Как работают солнечные панели? Объяснение науки о Солнце.
Все мы знаем, что солнечные фотоэлектрические (PV) панели преобразуют солнечный свет в полезное электричество, но мало кто знает настоящую науку, лежащую в основе этого процесса.На этой неделе в блоге мы поговорим о мельчайших подробностях науки о солнечной энергии. Это может показаться сложным, но все сводится к фотоэлектрическому эффекту; способность материи испускать электроны, когда купается в свете.
Прежде чем мы перейдем к молекулярному уровню, давайте кратко рассмотрим базовый процесс производства электроэнергии:
Основные этапы производства и передачи солнечной энергии
- Солнечный свет попадает на солнечные панели и создает электрическое поле.
- Генерируемое электричество течет к краю панели и попадает в проводящий провод.
- Проводящий провод подводит электричество к инвертору, где оно преобразуется из электричества постоянного тока в переменный ток, который используется для питания зданий.
- Другой провод передает электроэнергию переменного тока от инвертора к электрической панели на участке (также называемой коробкой выключателя), которая распределяет электричество по всему зданию по мере необходимости.
- Любая электроэнергия, которая не требуется при генерации, проходит через счетчик коммунальных услуг в коммунальную электрическую сеть.Поскольку электричество проходит через счетчик, он заставляет счетчик работать в обратном направлении, кредитуя вашу собственность за избыточную выработку.
Теперь, когда у нас есть базовое представление о генерации и потоке солнечной электроэнергии, давайте глубже погрузимся в науку, лежащую в основе солнечных фотоэлектрических панелей.
Наука о солнечных фотоэлементах
Солнечные фотоэлектрические панели состоят из множества небольших фотоэлектрических элементов – это означает, что они могут преобразовывать солнечный свет в электричество. Эти элементы сделаны из полупроводниковых материалов, чаще всего из кремния, материала, который может проводить электричество, сохраняя при этом электрический дисбаланс, необходимый для создания электрического поля.
Когда солнечный свет попадает на полупроводник в фотоэлементе (шаг 1 в нашем высокоуровневом обзоре), энергия света в форме фотонов поглощается, выбивая ряд электронов, которые затем свободно дрейфуют в элементе. Солнечный элемент специально разработан с положительно и отрицательно заряженными полупроводниками, зажатыми вместе, чтобы создать электрическое поле (см. Изображение слева для визуализации). Это электрическое поле заставляет дрейфующие электроны течь в определенном направлении – к проводящим металлическим пластинам, выстилающим ячейку.Этот поток известен как энергетический ток, и сила тока определяет, сколько электричества может произвести каждая ячейка. Как только свободные электроны попадают в металлические пластины, ток направляется в провода, позволяя электронам течь, как в любом другом источнике генерации электричества (шаг 2 в нашем процессе).
Поскольку солнечная панель генерирует электрический ток, энергия течет по проводам к инвертору (см. Шаг 3 выше). В то время как солнечные панели вырабатывают электричество постоянного тока (DC), большинству потребителей электроэнергии требуется электричество переменного тока (AC) для питания своих зданий.Функция инвертора состоит в том, чтобы переключать электричество с постоянного тока на переменный, делая его доступным для повседневного использования.
После того, как электричество преобразуется в пригодное для использования состояние (мощность переменного тока), оно отправляется от инвертора на электрическую панель (также называемую коробкой выключателя) [шаг 4] и распределяется по всему зданию по мере необходимости. Электричество теперь доступно для питания фонарей, приборов и других электрических устройств с помощью солнечной энергии.
Любая электроэнергия, которая не потребляется через блок выключателя, направляется в энергосистему через счетчик коммунальных услуг (наш последний шаг, как описано выше).Счетчик коммунальных услуг измеряет поток электроэнергии из сети в вашу собственность и наоборот. Когда ваша солнечная энергетическая система производит больше электроэнергии, чем вы используете на месте, этот счетчик фактически работает в обратном направлении, и вам засчитывают избыточную электроэнергию, произведенную в процессе чистого измерения. Когда вы используете больше электроэнергии, чем вырабатывает ваша солнечная батарея, вы получаете дополнительную электроэнергию из сети через этот счетчик, заставляя ее работать нормально. Если вы не полностью отключились от сети через решение для хранения, вам нужно будет вытащить часть энергии из сети, особенно ночью, когда ваша солнечная батарея не производит.Однако большая часть этой сетевой энергии будет компенсирована избыточной солнечной энергией, которую вы производите в течение дня и в периоды меньшего использования.
Хотя детали, лежащие в основе солнечной энергии, носят в высшей степени научный характер, не требуется ученый, чтобы рассказать о преимуществах, которые солнечная установка может принести бизнесу или владельцу недвижимости. Опытный разработчик солнечной энергии расскажет вам об этих преимуществах и поможет понять, подходит ли солнечное решение для вашего бизнеса.
Как работают солнечные панели? | Фотоэлектрические элементы
Проще говоря, солнечная панель работает, позволяя фотонам или частицам света выбивать электроны из атомов, создавая поток электричества.Солнечные панели на самом деле состоят из множества небольших блоков, называемых фотоэлектрическими элементами. (Фотоэлектрические системы просто означают, что они преобразуют солнечный свет в электричество.) Многие элементы, соединенные вместе, составляют солнечную панель.
Каждый фотоэлектрический элемент представляет собой сэндвич, состоящий из двух пластин полупроводящего материала, обычно кремния – того же материала, что и в микроэлектронике.
Для работы фотоэлектрическим элементам необходимо создать электрическое поле. Подобно магнитному полю, которое возникает из-за противоположных полюсов, электрическое поле возникает, когда противоположные заряды разделены.Чтобы получить это поле, производители «смешивают» кремний с другими материалами, придавая каждому кусочку сэндвича положительный или отрицательный электрический заряд.
В частности, они вводят фосфор в верхний слой кремния, который добавляет к этому слою дополнительные электроны с отрицательным зарядом. Между тем нижний слой получает дозу бора, что приводит к уменьшению количества электронов или положительному заряду. Все это складывается в электрическое поле на стыке между слоями кремния. Затем, когда фотон солнечного света выбивает электрон, электрическое поле выталкивает этот электрон из кремниевого перехода.
Пара других компонентов ячейки превращает эти электроны в полезную энергию. Металлические проводящие пластины по бокам ячейки собирают электроны и переносят их на провода. В этот момент электроны могут течь, как любой другой источник электричества.
Недавно исследователи создали ультратонкие гибкие солнечные элементы толщиной всего 1,3 микрона – примерно 1/100 ширины человеческого волоса – и в 20 раз легче листа офисной бумаги. Фактически, элементы настолько легкие, что могут находиться на вершине мыльного пузыря, и при этом они производят энергию с такой же эффективностью, как и солнечные элементы на основе стекла, сообщили ученые в исследовании, опубликованном в 2016 году в журнале Organic Electronics.Такие более легкие и гибкие солнечные элементы могут быть интегрированы в архитектуру, аэрокосмические технологии или даже в носимую электронику.
Существуют и другие типы технологий солнечной энергии, в том числе солнечная тепловая энергия и концентрированная солнечная энергия (CSP), которые работают иначе, чем фотоэлектрические солнечные панели, но все они используют энергию солнечного света для производства электричества или нагрева воды или воздуха. .
Примечание редактора : эта статья была первоначально опубликована 7 декабря.16 декабря 2013 г., и 6 декабря 2017 г. он был обновлен, чтобы включить последние достижения в области солнечных технологий.
Оригинальная статья о Live Science.
Фотовольтаика | SEIA
Фотоэлектрические (PV) устройства вырабатывают электричество непосредственно из солнечного света посредством электронного процесса, который естественным образом происходит в определенных типах материалов, называемых полупроводниками. Электроны в этих материалах высвобождаются солнечной энергией и могут перемещаться по электрической цепи, питая электрические устройства или посылая электричество в сеть.
Фотоэлектрические устройствамогут использоваться для питания чего угодно, от небольшой электроники, такой как калькуляторы и дорожные знаки, до домов и крупных коммерческих предприятий.
Как сравнить солнечные инверторы | Как сравнить солнечные панели
Как работает фотоэлектрическая технология?
Фотоны ударяют и ионизируют полупроводниковый материал на солнечной панели, в результате чего внешние электроны вырываются из своих атомных связей. Благодаря полупроводниковой структуре электроны движутся в одном направлении, создавая электрический ток.Солнечные элементы не на 100% эффективны в солнечных элементах из кристаллического кремния, отчасти потому, что только определенный свет в пределах спектра может быть поглощен. Часть светового спектра отражается, часть слишком слабая, чтобы создавать электричество (инфракрасный), а часть (ультрафиолет) создает тепловую энергию вместо электричества.
Схема типичного кристаллического кремниевого солнечного элемента. Для изготовления этого типа ячейки пластины из высокочистого кремния «легируют» различными примесями и сплавляют друг с другом. Полученная структура создает путь для электрического тока внутри и между солнечными элементами .
Другие типы фотоэлектрической техники
Помимо кристаллического кремния (c-Si), существуют два других основных типа фотоэлектрических технологий:
- Тонкопленочные фотоэлектрические установки – быстрорастущий, но небольшой сегмент коммерческого солнечного рынка. Многие фирмы, производящие тонкие пленки, являются стартапами, разрабатывающими экспериментальные технологии. Как правило, они менее эффективны, но часто дешевле, чем модули c-Si.
- В США концентрирующие массивы PV находятся в основном на юго-западе пустыни.Они используют линзы и зеркала для отражения концентрированной солнечной энергии на высокоэффективные элементы. Для их максимальной эффективности требуется прямой солнечный свет и системы слежения.
- Интегрированные в здание фотоэлектрические элементы служат как внешним слоем конструкции, так и вырабатывают электроэнергию для использования на месте или экспорта в сеть. Системы BIPV могут обеспечить экономию материалов и затрат на электроэнергию, уменьшить загрязнение и повысить архитектурную привлекательность здания.
История фотоэлектрической техники
Эффект PV наблюдался еще в 1839 году Александром Эдмундом Беккерелем и был предметом научных исследований в начале двадцатого века.В 1954 году Bell Labs в США представила первое солнечное фотоэлектрическое устройство, которое производило полезное количество электроэнергии, а к 1958 году солнечные элементы использовались в различных небольших научных и коммерческих приложениях.
Энергетический кризис 1970-х годов привел к появлению большого интереса к использованию солнечных элементов для производства электроэнергии в домах и на предприятиях, но непомерно высокие цены (почти в 30 раз выше нынешних) сделали крупномасштабные приложения непрактичными.
Промышленные разработки и исследования в последующие годы сделали фотоэлектрические устройства более осуществимыми, и начался цикл увеличения производства и снижения затрат, который продолжается и сегодня.
Затраты на солнечную фотовольтаику
Быстро падающие цены сделали солнечную энергию более доступной, чем когда-либо. Средняя цена готовой фотоэлектрической системы упала на 59 процентов за последнее десятилетие.
Для получения дополнительной информации о состоянии рынка солнечных панелей в США посетите нашу страницу данных по солнечной промышленности.
Современная фотогальваника
Стоимость фотоэлектрических систем резко упала, поскольку промышленность увеличила производство и постепенно улучшила технологию с использованием новых материалов.Стоимость установки также снизилась благодаря более опытным и обученным установщикам. В глобальном масштабе США занимают третий по величине рынок фотоэлектрических установок и продолжают быстро расти.
Большинство современных солнечных элементов изготавливаются либо из кристаллического кремния, либо из тонкопленочного полупроводникового материала. Кремниевые элементы более эффективны при преобразовании солнечного света в электричество, но, как правило, требуют более высоких производственных затрат. Тонкопленочные материалы обычно имеют меньшую эффективность, но могут быть проще и дешевле в производстве.Специализированная категория солнечных элементов, называемых многопереходными или тандемными элементами, используется в приложениях, требующих очень малого веса и очень высокой эффективности, таких как спутники и военные приложения. Все типы фотоэлектрических систем сегодня широко используются в самых разных областях.
На сегодняшний день доступны тысячи индивидуальных моделей фотоэлектрических панелей от сотен компаний. Сравните солнечные панели по их эффективности, выходной мощности, гарантиям и другим параметрам на EnergySage.
Солнечная панель – Energy Education
Рисунок 1.Солнечная панель, состоящая из множества фотоэлектрических элементов. [1]Солнечная панель или солнечный модуль является одним из компонентов фотоэлектрической системы. Они построены из серии фотоэлектрических элементов, собранных в виде панели. Они бывают различных прямоугольных форм и устанавливаются в комбинации для выработки электроэнергии. [2] Солнечные панели, иногда также называемые фотоэлектрическими батареями собирают энергию Солнца в виде солнечного света и преобразуют ее в электричество, которое можно использовать для питания домов или предприятий.Эти панели могут использоваться для дополнения электричества здания или обеспечения электроэнергией в удаленных местах.
Помимо жилого и коммерческого использования, солнечная энергия используется в крупных промышленных или коммунальных целях. В этом случае тысячи или даже миллионы солнечных панелей объединяются в обширную солнечную батарею или солнечную ферму, которая обеспечивает электричеством большие городские жители.
Из чего сделаны солнечные панели?
Главный компонент любой солнечной панели – это фотоэлемент.В частности, несколько солнечных элементов используются для создания одной солнечной панели. Эти клетки являются частью устройства, преобразующего солнечный свет в электричество. Большинство солнечных панелей изготовлено из солнечных элементов кристаллического кремниевого типа. [2] Эти элементы состоят из слоев кремния, фосфора и бора (хотя существует несколько различных типов фотоэлектрических элементов). [3] Эти ячейки после создания выкладываются в виде сетки. Количество используемых ячеек во многом зависит от размера создаваемой панели, так как существует множество различных вариантов размеров. [2]
После размещения ячеек сама панель герметизируется для защиты ячеек внутри и покрывается неотражающим стеклом. Это стекло защищает солнечные элементы от повреждений и не является отражающим, чтобы солнечный свет все еще мог достигать элементов. [2] После герметизации эта панель помещается в жесткий металлический каркас. Эта рама предназначена для предотвращения деформации и включает дренажное отверстие для предотвращения скопления воды на панели, поскольку скопление воды может снизить эффективность панели.Кроме того, задняя часть панели также герметична, чтобы предотвратить повреждение. [2]
Как работают солнечные батареи
- основная статья
Солнечные панели служат способом установки ряда солнечных элементов, чтобы их уникальные свойства можно было использовать для выработки электроэнергии. Отдельные клетки поглощают фотоны от Солнца, что приводит к выработке электрического тока в клетке за счет явления, известного как фотоэлектрический эффект. [3] Инвертор используется для преобразования постоянного тока, генерируемого солнечной панелью, в переменный ток. Вместе эти две технологии создают фотоэлектрическую систему. [3] При установке солнечной панели выбирается правильная ориентация, чтобы солнечная панель была обращена в направлении, наиболее подходящем для конкретного применения.