Мощность калорифераКалорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Москвы равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше. Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле: I = P / U, где I — максимальный потребляемый ток, А; Р — мощность калорифера, Вт; U — напряжение питание:
ΔT = 2,98 * P / L, где ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;Р — мощность калорифера, Вт; L — производительность вентиляции, м 3/ч. Типичные значения расчетной мощности калорифера — от 1 до 5 кВтдля квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер). Рабочеее давление, скорость движения воздуха в воздуховодах, уровень шумаПосле расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума. Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм. Для точного расчета схемы вентиляции и воздухораспределительной сети, а также для разработки проекта вентиляции Вы можете обратиться в наш Проектный отдел | |
Расчет системы вентиляции — Стандарт Климат
Вентиляцию Вы можете заказать с монтажом “под ключ”, позвонив по телефону в Москве: +7(499) 350-94-14. Осуществляем проектирование и поставку вентиляции по России. Письменную заявку просим Вас отправить на email [email protected] или через форму на сайте.
Отправьте заявку и получите КППри проектировании систем вентиляции каждый инженер проводит расчеты согласно вышеупомянутых норм.
Для расчета воздухообмена в жилых помещениях следует руководствоваться этими нормами. Рассмотрим самые простые методы нахождения воздухообмена:
- по площади помещения,
- по санитарно-гигиеническим нормам,
- по кратностям
Расчет по площади помещения
Это самый простой расчет. Расчет вентиляции по площади делается на основании того, что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения, независимо от количества людей.
Расчет по санитарно-гигиеническим нормам
По санитарным нормам для общественных и административно-бытовых зданий на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.
Рассмотрим на примере:
Предположим, в доме живут 2 человека, проведем расчет по санитарным нормам согласно этим данным. Формула расчета вентиляции, включающая нужное количество воздуха выглядит так:
L=n*V (м3/час) , где
- n – нормируемая кратность воздухообмена, час-1;
- V – объём помещения, м3
Получим, что для спальни L2=2*60=120 м3/час, для кабинета примем одного постоянного жителя и одного временного L3=1*60+1*20=80 м3/час. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество
Помещение | Lпр, м3/час | Lвыт, м3/час |
Кухня | – | ≥ 90 |
Спальня | 120 | 120 |
Кабинет | 80 | 80 |
Гостинная | 160 | 160 |
Коридор | – | – |
Санузел | – | ≥ 50 |
Ванная | – | ≥ 25 |
∑ | 360 | 525 |
Составив уравнение воздушных балансов ∑ Lпр = ∑ Lвыт:360<525 м3/час, видим, что количество вытяжного воздуха превышает приточный на ∆L=165 м3/час. Поэтому количество приточного воздуха необходимо увеличить на 165 м3/час. Поскольку помещения спальни, кабинета и гостиной сбалансированы то воздух необходимый для санузла, ванны и кухни можно подать в помещение смежное с ними, к примеру, в коридор, т.е. в таблицу добавится Lприт.коридор=165 м3/час. Из коридора воздухбудет перетекать в ванную, санузлы и кухню, а оттуда посредством вытяжных вентиляторов (если они установлены) или естественной тяги удалятся из квартиры. Такое перетекание необходимо для предотвращения распространения неприятных запахов и влаги. Таким образом, уравнение воздушных балансов ∑ Lпр = ∑ Lвыт: 525=525м3/час – выполняется.
Расчет по кратностям
Кратность воздухообмена – это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 -кранный воздухообмен – половину объема помещения.
В нормативном документе ДБН В.2.2-15-2005 «Жилые здания» есть таблица с приведенными кратностями по помещениям. Рассмотрим на примере, как производится рассчет по данной методике.
Кратность воздухообмена в помещениях жилых зданий
Помещения | Расчетная температура (зимой),ºС | Требования к воздухообмену | ||
Приток | Вытяжка | |||
Общая комната, спальня, кабинет |
20 | 1-кратный | — | |
Кухня | 18 | – | ||
Кухня-столовая | 20 | 1-кратный | По воздушному балансу квартиры, но не менее, м3/час |
90 |
Ванная | 25 | – | 25 | |
Уборная | 20 | – | 50 | |
Совмещенный санузел | 25 | – | 50 | |
Бассейн | 25 | По расчету | ||
Помещение для стиральной машины в квартире | 18 | – | 0,5-кратный | |
Гардеробная для чистки и глажения одежды |
18 | – | 1,5-кратный | |
Вестибюль, общий коридор, лестничная клетка, прихожая квартиры |
16 | – | – | |
Помещение дежурного персонала (консъержа/консъержки) |
18 | 1-кратный | – | |
Незадымляемая лестничная клетка |
14 | – | – | |
Машинное помещение лифтов | 14 | – | 0,5-кратный | |
Мусоросборная камера | 5 | – | 1-кратный | |
Гараж-стоянка | 5 | – | По расчету | |
Электрощитовая | 5 | – | 0,5-кратный |
Последовательность расчета вентиляции по кратностям следующая:
- Считаем объем каждого помещения в доме (объем=высота*длина*ширина).
- Подсчитываем для каждого помещения объем воздуха по формуле: L=n*V (n – нормируемая кратность воздухообмена, час-1; V – объём помещения, м3)
Для этого предварительно выбираем из таблицы “Санитарно-гигиенические нормы. Кратности воздухообмена в помещениях жилых зданий” норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например, кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.
Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры. Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3. Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.
Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт
Составляем уравнение баланса ∑ Lпр = ∑ Lвыт. Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.
Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для помещений.
Рассчет основных параметров при выборе оборудования
При выборе оборудования для системы вентиляции необходимо рассчитать следующие основные параметры:
- Производительность по воздуху;
- Мощность калорифера;
- Рабочее давление, создаваемое вентилятором;
- Скорость потока воздуха и площадь сечения воздуховодов;
- Допустимый уровень шума.
Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.
Производительность по воздуху
Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении.
Например, для помещения площадью 50 м2 с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров/час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).
Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.
Расчет воздухообмена по кратности:
L = n * S * H, где
- L — требуемая производительность приточной вентиляции, м3/ч;
- n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
- S — площадь помещения, м2;
- H — высота помещения, м;
Расчет воздухообмена по количеству людей:
L = N * Lнорм, где
- L — требуемая производительность приточной вентиляции, м3/ч;
- N — количество людей;
- Lнорм — норма расхода воздуха на одного человека:
в состоянии покоя — 20 м3/ч;
“офисная работа” — 40 м3/ч;
при физической нагрузке — 60 м3/ч.
Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.
Типичные значения производительности систем вентиляции:
- Для квартир — от 100 до 500 м3/ч;
- Для коттеджей — от 1000 до 5000 м3/ч;
Мощность калорифера
Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП.
Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны, например, для Москвы она равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах допускается устанавливать калориферы, имеющие мощность меньше расчетной. Но при этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.
При расчете мощности калорифера необходимо учитывать следующие ограничения:
- Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
- Максимально допустимый ток потребления. Величину тока (А), потребляемого калорифером, можно вычислить по формуле:
I = P / U, где
- I — максимальный потребляемый ток, А;
- Р — мощность калорифера, Вт;
- U — напряжение питания: (220 В — для однофазного питания; для трехфазной сети расчёт несколько иной).
В случае, если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:
T = 2,98 * P / L, где
- T — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
- Р — мощность калорифера, Вт;
- L — производительность вентиляции, м3/ч.
Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов и загородных домов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной или паровой калорифер). В любом случае, если есть возможность, лучше использовать водяные или паровые калориферы. Экономия на обогреве в этом случае получается колоссальная.
Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума
После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.
Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха.
Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве и стоят они дороже. Поэтому, при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.
Для бытовых систем приточно-вытяжной вентиляции обычно используются воздуховоды диаметром 160…250 мм или сечением 400х200мм…600х350мм и распределительные решетки размером 100200 мм — 1000500 мм.
Вентиляцию Вы можете заказать с монтажом “под ключ”, позвонив по телефону в Москве: +7(499) 350-94-14. Осуществляем проектирование и поставку вентиляции по России. Письменную заявку просим Вас отправить на email [email protected] или через форму на сайте.
Отправьте заявку и получите КП
Подберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок.
Расчет вентиляции помещений: принципы и примеры расчёта
Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.
Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.
В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.
Содержание статьи:
Причины проблем с вентиляцией
При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.
Если же наблюдается обратная картина, например, постоянная духота, в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.
Галерея изображений
Фото из
Вентиляция частного дома в стиле лофт
Вентканал в перекрытии каркасного дома
Компоненты приточной и вытяжной системы
Вентиляция в паре с кондиционированием
Вентиляционная решетка и вывод вытяжки
Вытяжной вентилятор в ванной комнате
Вентиляция подкровельного пространства
Приточная труба для подвала
Немало проблем доставляет отсутствие характерных для окон и дверей тончайших зазоров, спровоцированное установкой герметичных пластиковых конструкций. В таком случае в дом поступает слишком мало свежего воздуха, нужно позаботиться о его притоке.
Засоры и разгерметизация воздуховодов могут стать причиной серьезных проблем с удалением отработанного воздуха, который насыщен неприятными запахами, а также избыточными водяными парами.
В результате в служебных помещениях могут появиться колонии грибка, что плохо отражается на здоровье людей и может спровоцировать ряд серьезных заболеваний.
Запотевшие окна, плесень и грибок в ванной комнате, духота – все это явные признаки того, что жилые помещения вентилируются неправильно
Но бывает и так, что элементы работают прекрасно, однако описанные выше проблемы остаются нерешенными. Возможно, расчеты вентиляционной системы для конкретного дома или квартиры были проведены неправильно.
Негативно может отразиться на вентилировании помещений их переделка, перепланировка, появление пристроек, установка уже упомянутых ранее пластиковых окон и т.п. При таких существенных изменениях не помещает повторно произвести расчеты и модернизировать имеющуюся вентиляционную систему в соответствии с новыми данными.
Один из простых способов обнаружить проблемы с вентилированием – . К решетке вытяжного отверстия нужно поднести зажженную спичку или лист тонкой бумаги. Не стоит использовать для такой проверки открытый огонь, если в помещении используется газовое нагревательное оборудование.
Слишком герметичные внутренние двери могут препятствовать нормальной циркуляции воздуха по дому, рещить проблему помогут специальные решетки или отверстия
Если пламя или бумага уверенно отклоняется в сторону вытяжки, тяга имеется, если же этого не происходит или отклонение слабое, нерегулярное, проблема с отведением отработанного воздуха становится очевидной. Причиной могут быть засоры или повреждение воздуховода в результате неумелого ремонта.
Не всегда есть возможность устранить поломку, решением проблемы часто становится монтаж дополнительных средств вытяжного вентилирования. Перед их установкой также не помешает провести необходимые расчеты.
Определить наличие или отсутствие нормальной тяги в вытяжной вентиляционной системе дома можно с помощью пламени или листа тонкой бумаги
Как рассчитать воздухообмен?
Все расчеты по системам вентилирования сводятся к тому, чтобы определить объемы воздуха в помещении. В качестве такого помещения может рассматриваться как отдельная комната, так и совокупность комнат в конкретном доме или квартире.
На основании этих данных, а также сведений из нормативных документов рассчитывают основные параметры вентиляционной системы, такие как количество и сечение воздуховодов, мощность вентиляторов и т.п.
Существуют специализированные расчетные методики, позволяющие просчитать не только обновление воздушных масс в помещении, но и удаление тепловой энергии, изменение влажности, выведение загрязнений и т.п. Подобные расчеты выполняются обычно для зданий промышленного, социального или какого-либо специализированного назначения.
Если есть необходимость или желание выполнить настолько подробные расчеты, лучше всего обратиться к инженеру, изучившему подобные методики.
Для самостоятельных расчетов по жилым помещениям используют следующие варианты:
- по кратностям;
- по санитарно-гигиеническим нормам;
- по площади.
Все эти методики относительно просты, уяснив их суть, даже неспециалист может просчитать основные параметры своей вентиляционной системы. Проще всего воспользоваться расчетами по площади. За основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.
Количество людей, которые постоянно проживают в доме, при этом не учитывается.
Вентиляционная система в жилых зданиях устраивается таким образом, чтобы воздух поступал через спальню и гостиную, а удалялся из кухни и санузла
Расчет по санитарно-гигиеническим нормативам тоже относительно несложен. В этом случае для вычислений используют не площадь, а данные о количестве постоянных и временных жильцов.
Для каждого постоянно проживающего необходимо обеспечить приток свежего воздуха в количестве 60 кубических метров в час. Если в помещении регулярно присутствуют временные посетители, то на каждого такого человека нужно прибавить еще по 20 кубических метров в час.
Несколько сложнее производится расчет по кратности воздухообмена. При его выполнении учитывается назначение каждой отдельной комнаты и нормативы по кратности воздухообмена для каждой из них.
Кратностью воздухообмена называют коэффициент, отражающий количество полной замены отработанного воздуха в помещении в течение одного часа. Соответствующие сведения содержатся в специальной нормативной таблице (СНиП 2.08.01-89* Жилые здания, прил. 4).
С помощью этой таблицы выполняют расчет вентиляции дома по кратностям. Соответствующие коэффициенты отражают кратность воздухообмена за единицу времени в зависимости от назначения помещения
Рассчитать количество воздуха, которое должно быть обновлено в течение часа, можно по формуле:
L=N*V,
Где:
- N – кратность воздухообмена за час, взятая из таблицы;
- V – объём помещения, куб.м.
Объем каждого помещения вычислить очень просто, для этого нужно умножить площадь комнаты на ее высоту. Затем для каждого помещения рассчитывают объем воздухообмена в час по приведенной выше формуле.
Показатель L для каждой комнаты суммируется, итоговое значение позволяет составить представление о том, сколько именно свежего воздуха должно поступать в помещение за единицу времени.
Разумеется, через должно удаляться точно такое же количество отработанного воздуха. В одной и той же комнате не устанавливают и приточную, и вытяжную вентиляцию. Обычно приток воздуха осуществляется через “чистые” помещения: спальню, детскую, гостиную, кабинет и т.п.
Вытяжную вентиляцию в ванной комнате или санузле устанавливают в верхней части стены, встроенный вентилятор работает в автоматическом режиме
Удаляют же воздух из комнат служебного назначения: санузла, ванной, кухни и т.п. Это разумно, поскольку неприятные запахи, характерные для этих помещений, не распространяются по жилищу, а сразу же выводятся наружу, что делает проживание в доме более комфортным.
Поэтому при расчетах берут норматив только для приточной или только для вытяжной вентиляции, как это отражено в нормативной таблице.
Если воздух не нужно подавать в конкретное помещение или удалять из него, в соответствующей графе стоит прочерк. Для некоторых помещений указано минимальное значение кратности воздухообмена. Если расчетная величина оказалась ниже минимальной, следует использовать для расчетов табличную величину.
Если проблемы с вентиляцией обнаружились уже после того, как ремонт в доме был проведен, можно установить приточные и вытяжные клапаны в стене
Разумеется, в доме могут найтись помещения, назначение которых в таблице не отображено. В таких случаях используют нормативы, принятые для жилых помещений, т.е. 3 куб.м на каждый квадратный метр комнаты. Нужно просто умножить площадь комнаты на 3, полученное значение принять за нормативную кратность воздухообмена.
Все значения кратности воздухообмена L следует округлить в сторону увеличения, чтобы они были кратными пяти. Теперь нужно посчитать сумму кратности воздухообмена L для помещений, через которые осуществляется приток воздуха. Отдельно суммируют кратность воздухообмена L тех комнат, из которых производится отведение отработанного воздуха.
Если результат вычислений не отвечает санитарным требованиям, производится установка ,бризера или , модернизируется существующая система или выполняется ее чистка.
Холодный наружный воздух может отрицательно сказаться на качестве отопления в доме, для таких ситуаций используют вентиляционные устройства с рекуператором
Затем следует сравнить эти два показателя. Если L по притоку оказался выше, чем L по вытяжке, то нужно увеличить показатели для тех комнат, по которым при расчетах использовались минимальные значения.
Примеры расчетов объема воздухообмена
Чтобы провести расчет для по кратностям, для начала нужно составить список всех помещений в доме, записать их площадь и высоту потолков.
Например, в гипотетическом доме имеются следующие помещения:
- Спальня – 27 кв.м.;
- Гостиная – 38 кв.м.;
- Кабинет – 18 кв.м.;
- Детская – 12 кв.м.;
- Кухня – 20 кв.м.;
- Санузел – 3 кв.м.;
- Ванная – 4 кв.м.;
- Коридор – 8 кв.м.
Учитывая, что высота потолка во всех помещениях составляет три метра, вычисляем соответствующие объемы воздуха:
- Спальня – 81 куб.м.;
- Гостиная – 114 куб.м.;
- Кабинет – 54 куб.м.;
- Детская – 36 куб.м.;
- Кухня – 60 куб.м.;
- Санузел – 9 куб.м.;
- Ванная – 12 куб.м.;
- Коридор – 24 куб.м.
Теперь, используя приведенную выше таблицу, нужно произвести расчёты вентиляции помещения с учетом кратности воздухообмена, увеличив каждый показатель до значения, кратного пяти:
- Спальня – 81 куб.м.*1 = 85 куб.м.;
- Гостиная – 38 кв.м.*3 = 115 куб.м.;
- Кабинет – 54 куб.м.*1 = 55 куб.м.;
- Детская – 36 куб.м.*1 = 40 куб.м.;
- Кухня – 60 куб.м. – не менее 90 куб.м.;
- Санузел – 9 куб.м. не менее 50 куб.м;
- Ванная – 12 куб.м. не менее 25 куб.м.
Сведения о нормативах для коридора в таблице отсутствуют, поэтому в расчете данные по этому небольшому помещению не учтены. Для гостиной выполнен расчет по площади с учетом норматива три куб. метра на каждый метр площади.
Правильно организованная система вентиляции обеспечит достаточный воздухообмен в гостиной. При проектировании обязательно следует учитывать требования и нормы СНиПов
Теперь нужно отдельно суммировать сведения по помещениям, в которых осуществляется приток воздуха, и отдельно — комнаты, где установлены вытяжные вентиляционные устройства.
Объем воздухообмена по притоку:
- Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
- Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
- Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
- Детская – 36 куб.м.*1 = 40 куб.м/ч;
Всего: 295 куб.м\ч.
Объем воздухообмена по вытяжке:
- Кухня – 60 куб.м. — не менее 90 куб.м/ч;
- Санузел – 9 куб.м. — не менее 50 куб.м/ч;
- Ванная – 12 куб.м. — не менее 25 куб.м/ч.
Всего: 165 куб.м/ч.
Теперь следует сравнить полученные суммы. Очевидно, что необходимый приток превышает вытяжку на 130 куб.м/ч (295 куб.м/ч-165 куб.м/ч).
Чтобы устранить эту разницу, нужно увеличить объемы воздухообмена по вытяжке, например, увеличив показатели по кухне. На практике это проводится, например, заменой воздуховодов на каналы бóльшего сечения.
Правила расчета площади воздушных каналов для замены или модернизации системы вентилирования . Советуем ознакомиться с полезным материалом.
После правок результаты расчета будут выглядеть следующим образом:
Объем воздухообмена по притоку:
- Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
- Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
- Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
- Детская – 36 куб.м.*1 = 40 куб.м/ч;
Всего: 295 куб.м\ч.
Объем воздухообмена по вытяжке:
- Кухня – 60 куб.м. — 220 куб.м/ч;
- Санузел – 9 куб.м. — не менее 50 куб.м/ч;
- Ванная – 12 куб.м. — не менее 25 куб.м/ч.
Всего: 295 куб.м/ч.
Объемы по притоку и вытяжке равны, что соответствует требованиям при расчетах воздухообмена по кратностям.
Расчет вентиляционной системы для кухни также чрезвычайно важен. Особенно, если там используется газовое оборудование для приготовления пищи
Расчет воздухообмена в соответствии с санитарными нормами выполнить значительно проще. Допустим, что в доме, рассмотренном выше, постоянно проживают два человека и еще двое пребывают в помещении нерегулярно.
Расчет выполняется отдельно для каждого помещения в соответствии с нормой 60 куб.м\чел для постоянных жильцов и 20 куб.м\час для временных посетителей:
- Спальня – 2 чел*60 = 120 куб.м\час;
- Кабинет – 1 чел.*60 = 60 куб.м\час;
- Гостиная 2 чел*60 + 2 чел*20 = 160 куб.м\час;
- Детская 1 чел.*60 = 60 куб.м\час.
Всего по притоку — 400 куб.м\час.
Для количества постоянных и временных обитателей дома не существует каких-то строгих правил, эти цифры определяются исходя из реальной ситуации и здравого смысла.
Достаточный объем воздуха, своевременно поступающий в ванную комнату, и также своевременная эвакуация отработанного позволяет предотвратить образование затхлого воздуха и появление плесневелых грибов
Вытяжку рассчитывают по нормам, изложенным в таблице, приведенной выше, и увеличивают до суммарного показателя по притоку:
- Кухня – 60 куб.м. — 300 куб.м/ч;
- Санузел – 9 куб.м. — не менее 50 куб.м/ч;
- Ванная – 12 куб.м. — не менее 50 куб.м/ч.
Всего по вытяжке: 400 куб.м/ч.
Увеличен воздухообмен для кухни и ванной комнаты. Недостаточный объем по вытяжке можно разделить между всеми помещениями, в которых установлена . Или увеличить этот показатель только для одного помещения, как это было сделано при расчете по кратностям.
В соответствии с санитарными нормами воздухообмен рассчитывают подобным образом. Допустим, площадь дома составляет 130 кв.м. Тогда воздухообмен по притоку должен составлять 130 кв.м*3 куб.м\час = 390 куб.м\час.
Остается распределить этот объем на помещения по вытяжке, например, таким образом:
- Кухня – 60 куб.м. — 290 куб.м/ч;
- Санузел – 9 куб.м. — не менее 50 куб.м/ч;
- Ванная – 12 куб.м. — не менее 50 куб.м/ч.
Всего по вытяжке: 390 куб.м/ч.
Баланс воздухообмена — один из основных показателей при проектировании вентиляционных систем. Дальнейшие расчеты выполняются на основе этих сведений.
Как подобрать сечение воздуховода?
Система вентилирования, как известно, может быть канальной или бесканальной. В первом случае нужно правильно подобрать сечение каналов. Если принято решение устанавливать конструкции с прямоугольным сечением, то соотношение его длины и ширины должно приближаться к 3:1.
Длина и ширина сечения канальных воздуховодов с прямоугольной конфигурацией должны соотноситься как три к одному, чтобы уменьшить количество шума
Стандартная по основному вентканалу должна составлять около пяти метров в секунду, а на ответвлениях — до трех метров в секунду. Это обеспечит работу системы с минимальным количеством шума. Скорость движения воздуха во многом зависит от площади сечения воздуховода.
Чтобы подобрать размеры конструкции, можно использовать специальные расчетные таблицы. В такой таблице нужно выбрать слева объем воздухообмена, например, 400 куб.м\ч, а сверху выбрать значение скорости — пять метров в секунду.
Затем нужно найти пересечение горизонтальной линии по воздухообмену с вертикальной линией по скорости.
С помощью этой диаграммы вычисляют сечение воздуховодов для канальной вентиляционной системы. Скорость движения в магистральном канале не должна превышать 5 м/сек
От этого места пересечения проводят линию вниз до кривой, по которой можно определить подходящее сечение. Для прямоугольного воздуховода это будет значение площади, а для круглого – диаметр в миллиметрах. Сначала делают расчеты для магистрального воздуховода, а затем – для ответвлений.
Таким образом расчеты делают, если в доме планируется только один вытяжной канал. Если же предполагается установить несколько вытяжных каналов, то общий объем воздуховода по вытяжке нужно разделить на количество каналов, а затем провести расчеты по изложенному принципу.
Эта таблица позволяет подобрать сечение воздуховода для канальной вентиляции с учетом объемов и скорости перемещения воздушных масс
Кроме того, существуют специализированные калькуляционные программы, с помощью которых можно выполнить подобные расчеты. Для квартир и жилых домов такие программы могут быть даже удобнее, поскольку дают более точный результат.
На нормальный воздухообмен оказывает влияние такое явление как обратная тяга, со спецификой которой и способами борьбы с ней ознакомит .
Выводы и полезное видео по теме
Ролик #1. Полезные сведения по принципам работы системы вентилирования:
Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:
Правильный расчет вентиляции — основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.
Хотите поделиться собственным опытом в расчете и сооружении вентиляции? Возникли вопросы в ходе ознакомления с информацией? Нашли недоработки в тексте? Пишите, пожалуйста, комментарии в блоке, находящимся под текстом статьи.
Расчет вытяжной вентиляции все формулы и примеры
Правильное устройство вентиляции в доме значительно улучшает качество жизни человека. При неправильном расчете приточно – вытяжной вентиляции возникает куча проблем – у человека со здоровьем, у постройки с разрушением.
Перед началом строительства обязательно и необходимо произвести расчёты и, соответственно, применить их в проекте.
ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ
По способу работы, в настоящее время, вентиляционные схемы делятся на:
- Вытяжные. Для удаления использованного воздуха.
- Приточные. Для впуска чистого воздуха.
- Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.
В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:
- Устройства для подогрева или охлаждения подаваемого воздуха.
- Фильтры для очистки запахов и примесей.
- Приборы для увлажнения и распределения воздуха по помещениям.
При расчёте вентиляции учитывают следующие величины:
- Расход воздуха в куб.м./час.
- Давление в воздушных каналах в атмосферах.
- Мощность подогревателя в квт-ах.
- Площадь сечения воздушных каналов в кв.см.
Расчет вытяжной вентиляции пример
Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.
Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.
Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.
Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.
Допустим, в доме живут два человека, тогда:
V(объём) комнаты равен: SхН, где Н – высота комнаты (стандартная 2,5 метра).
V = S х Н = 20 х 2,5 = 50 куб.м.
Далее V х 2 (кратность) = 100 кб.м./ч. По другому – 40 кб.м./ч. (средняя активность) х 2 (человека) = 80 куб.м./час. Выбираем большее значение – 100 кб.м./ч.
В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.
Расчет вытяжной вентиляции производственных помещений
При расчёте вытяжной вентиляции производственного помещения кратность равна 3.
Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.
Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.
V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.
Выбираем большее – 180 куб.м./час.
Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:
- 100 – 500 куб.м./час. – квартирные.
- 1000 – 2000 куб.м./час. – для домов и усадеб.
- 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.
Расчет приточно вытяжной вентиляции
ВОЗДУХОНАГРЕВАТЕЛЬ
В условиях климата средней полосы, воздух, поступающий в помещение необходимо подогревать. Для этого устанавливают приточную вентиляцию с обогревом входящего воздуха.
Нагрев теплоносителя осуществляется различными путями – электро калорифером, впуск воздушных масс около батарейного или печного отопления. Согласно СН и П температура входящего воздуха должна быть не менее 18 гр. цельсия.
Соответственно мощность воздухонагревателя рассчитывается в зависимости от самой низкой ( в данном регионе) уличной температуры. Формула для расчета максимальной температуры нагрева помещения воздухонагревателем:
N /V х 2,98 где 2,98 – константа.
Пример: расход воздуха – 180 куб.м./час. (гараж). N = 2 КВт.
Далее 2000 вт./ 180 кб.м./ч. х 2,98 = 33 град.ц.
Таким образом, гараж можно нагреть до 18 град. При уличной температуре минус 15 град.
ДАВЛЕНИЕ И СЕЧЕНИЕ
На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.
При расчёте диаметра каналов эмпирически принимают следующие величины:
- Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
- Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.
При этом добиваются скорости потока 2,4 – 4,2 м/сек.
О РАСХОДЕ ЭЛЕКТРОЭНЕРГИИ
Расход электроэнергии напрямую зависит от длительности времени работы электронагревателя, а время – функция от температуры окружающего воздуха. Обыкновенно, воздух необходимо подогревать в холодное время года, иногда летом в прохладные ночи. Для расчёта используется формула:
S = (T1 х L х d х c х 16 + Т2 х L х c х n х 8) х N/1000
В этой формуле:
S – количество электроэнергии.
Т1 – максимальная дневная температура.
Т2 – минимальная ночная температура.
L – производительность куб.м./час.
с – объёмная теплоёмкость воздуха – 0, 336 вт х час/ кб.м./ град.ц. Параметр зависит от давления, влажности и температуры воздуха.
d – цена электроэнергии днём.
n – цена электроэнергии ночью.
N – количество дней в месяце.
Таким образом, если придерживаться санитарных норм, стоимость вентиляции существенно повышается, зато комфортность проживающих улучшается. Поэтому при устройстве вентиляционной системы целесообразно найти компромисс между ценой и качеством.
Основные правила расчета систем естественной и вытяжной системы вентиляции помещения
Главная | Основные правила расчета систем естественной и вытяжной системы вентиляции помещенияЖилое, складское, торговое, производственное и любое другое помещение нуждается в естественной или принудительной вентиляции, параметры которой должны соответствовать требованиям безопасности и технологической целесообразности. От того, насколько точно будет проведен расчет систем естественной вентиляции или системы принудительного воздухообмена, зависит комфорт проживающих или работающих в помещении людей и наличие условий для хранения товаров или работы оборудования. При этом недопустим и недостаток воздухообмена что приводит к накоплению углекислого газа и влаги, так и его переизбыток. В последнем случае — это активное движение воздушных масс в помещении, повышенные расходы на установку и содержание вентиляции, а также другие вредные последствия. Поэтому любой проект требует грамотный расчет систем вентиляции с учетом всех действующих факторов. Для полного расчета необходимы специальные знания и навыки, но краткие, наиболее основные моменты расчета систем вентиляции помещения мы рассмотрим ниже.
Основные правила расчета естественной вентиляции
Естественная вентиляция наиболее часто используется в жилых помещениях, при канальной системе воздухообмена – системы воздуховодов проложенных в стенах и перекрытиях здания. В самом простом случае (и наименее эффективном) возможна и бесканальная система вентиляции с воздухообменом через имеющиеся не плотности – дверные и оконные проемы, поры стен и т. д. Но в этом случае невозможно выполнение расчета систем вентиляции из-за неконтролируемости процесса, сложности или невозможности определения исходных данных, которые к тому же постоянно меняются. Недостатками бесканального воздухообмена являются большие потери тепла, малая эффективность и невозможность использования в некоторых типах помещений.Принцип действия естественной вентиляции основан на физическом свойстве воздуха подниматься вверх при нагреве. Благодаря этому отработанный нагретый воздух поднимается вверх по вентиляционным каналам и выводится через выводы на крыше здания. При невозможности обеспечения необходимого воздухообмена с помощью естественной вентиляции или наличия каких либо ограничений в её работе (неправильная планировка, старое здание и т. д.) здание переоборудуется на принудительную систему воздухообмена.
Основные формулы расчета
Потребная величина воздушного обмена является основным параметром, на основании которого и производятся расчеты систем вентиляции. Для её определения используется две формулы – расчета по количеству людей и по площади помещения определяемые в кубометрах в час. Специалисты производят расчет систем вентиляции производственного помещения, как и любых других помещений ориентируясь на требования Строительных норм и правил — СНиП 41-01-2003 или МГСН 3.01.01.
Важно! При расчетах специалисты чаще применяют требования СНиП 41-01-2003 как наиболее жесткие и соответствующие интересам заказчика.
Для расчета производительности системы вентиляции по количеству людей применяется следующая формула:
L=Lnorm x N
Где:
L – потребная производительность вентиляции в м3/ч
Lnorm– нормированный показатель расхода воздуха на одного человека согласно СНиП 41-01-2003. Составляет 60 м3/ч
N – количество человек длительное время пребывающих в данном помещении.
Следующая формула – это расчет системы местной вентиляции по кратности. Воздух в помещении, где находятся люди, должен полностью обновляться не менее одного раза в час. Производительность системы вентиляции должна соответствовать этому требованию, т. е. быть не менее значения определяемого по указанной ниже формуле расчета по кратности.
L= nxSxH
Где:
L – потребная производительность вентиляции в м3/ч;
n – кратность воздухообмена предусмотренная нормативными требованиями. Для жилых помещение это число составляет 1-2, для офисов – 2-3;
S – площадь помещения в м2;
H – высота помещения в м.
Полученные оба значения L, по количеству людей и по кратности, сравниваются и из них выбирается большее. Окончательный расчет систем вентиляции и кондиционирования намного более сложен и требует учета многих других факторов – работающих приборов, положения помещения относительно сторон света и мн. другое. Но эти расчеты уже следует доверить специалистам.
Когда необходима принудительная вентиляция
Принято, что система принудительной вентиляции необходима для помещений площадью более 100 м2. Она используется практически во всех промышленных и торговых помещениях, а также в офисах, складах и других нежилых помещениях. Для жилых помещений необходимость в проектировании и расчете системы вентиляции возникает при большом метраже или наличии факторов препятствующих естественной вентиляции успешно справляться с поставленной задачей.Одним из традиционно сложных помещений является кухня, где мощность вытяжки должна соответствовать типу плиты. Приведём некоторые правила проектирования:
- При установке на кухне электроплиты или двухкомфорочной газовой плиты мощность вытяжки в помещении должна быть не менее 60 м3/ч.
- При установке 4-комфорочной газовой плиты – не менее 90 м3/ч.
- Для совмещенного санузла мощность вытяжки должна быть не менее 50 м3/ч, для раздельного – 25 м3/ч.
- Для совмещенного санузла с ширмой рекомендуется использовать два вытяжных вентилятора меньшей мощности вместо одного большого.
В таком санузле лучше установить два вытяжных вентилятора меньшей мощности, чем один большей, так как ширма является препятствием на пути воздушных масс.
Приточная вентиляция
При расчете систем вентиляции и аспирации большое внимание приточной вентиляции. Обычно она устанавливается в тех случаях, когда мощность вытяжки слишком велика, имеющиеся неплотности не справляются с доступом потребного количества воздуха и возможно возникновение сквозняков и потерь тепла. Приточная вентиляция необходима и в закрытых помещениях, при незначительном или полном отсутствии доступа воздуха извне.В жилых помещениях (квартирах, коттеджах, частных домах) приточная вентиляция может обеспечить двукратный воздухообмен. При проектировании очень важно правильно разместить оборудование и обеспечить направление потоков воздуха в нужном направлении, Также необходимо обеспечить равновесие между входящими и выходящими воздушными потоками – приточной и вытяжной вентиляцией.
Аэродинамический расчет и противодымная вентиляция
Данный расчет проводится для систем принудительного воздухообмена в зданиях с большим количеством помещений, при невозможности использования естественной вентиляции. Используется он при проектировании больниц, учебных заведений, офисов, предприятий торговли и общепита – там, где находится большое количество людей и особо важно правильно распределить направление потоков воздуха.
Роль противодымной вентиляции – блокировка и ограничение распространения дыма и газа при возгорании по другим помещениям по системам воздуховодов. Устанавливается она, как правило, в промышленных зданиях, офисных и торговых центрах – местах с большим количеством людей и повышенной опасностью воспламенения. Данная система эффективна при начальных стадиях возгорания, упрощает проведение эвакуации людей и материальных ценностей, помогает в локализации и устранении пожара.
Сделать заказ
Основы систем вентиляции. Общие принципы и назначения – Вентиляция – Статьи – Интелл Хаус
Вентиляция жилых помещений.Для вентиляции жилых помещений, как правило, используют систему вытяжной вентиляции с естественным побуждением. Для проведения расчета вентиляции необходимы показания воздухообмена и температуры во всех помещениях жилого здания. Компенсация воздуха, удаляемого из помещения, происходит за счет поступления воздуха из вне – через открытые окна, а так же перетекания воздушных масс из других помещений.
При проектирования вентиляции жилого помещения учитываются индивидуальные особенности в каждом конкретном случае. К примеру, в жилом 3-х этажном здании, расположенном в районе с ярко выраженным минусовым температурным режимом, допускается проектирование приточной вентиляции с подогревом наружного воздуха, а в здании, расположенном в жарком климатическом районе с сильными пыльными ветрами, устанавливаются индивидуальные кондиционеры и различные охлаждающие устройства, способные поддерживать температуру не выше 28 градусов.
Обычно вытяжная вентиляция жилых комнат предусматривается через специальные вытяжные каналы кухонь, туалетов, ванных комнат. В 4-х комнатной (и более) квартире, не имеющей сквозного проветривания, нужно проектировать естественную вытяжную вентиляцию из жилых, не смежных с кухней и санузлом, комнат.
При расчете системы вентиляции кухни и санузла одной квартиры возможно объединение горизонтального канала из ванной комнаты с вентиляционным каналом из кухни, вентиляционных каналов из ванной и туалета, вертикальных каналов из ванной и туалетной комнат, кухни, подсобок и чуланов в единый вентиляционный канал. Объединение в один сборный вентиляционный канал возможно, если расстояние (по высоте) между соединяемыми каналами будет не менее 2м. Помимо этого, местные каналы, присоединяемые к сборному каналу, необходимо оборудовать жалюзийными решетками.Вытяжные решетки одно-, двух- и трехкомнатных квартир без вытяжных вентиляторов и кухонных помещений имеют минимальные размеры – 20х25см, в туалетных и ванных комнатах – 15х20см. В жилых комнатах и санузлах устанавливаются регулируемые, а в кухнях – неподвижные вытяжные решетки.
Вентиляции и проветривание необходимы и закрытым лестничным клеткам. Для этого устраиваются вентиляционные шахты, окна и форточки. При отсутствии открывающихся окон, лестничные пролеты проветривают через вытяжные каналы.
В здании с канальной приточной вентиляцией, совмещенной с воздушным отоплением, подача воздуха в жилые помещения осуществляется по каналам воздушного отопления.
Очистка вентиляции.
Главным условием правильной эксплуатации вентиляционных систем является периодическая очистка воздуховодов от нарастания пыли и жировых отложений с последующей дезинфекцией воздушных каналов.
Существует механический и химический метод очистки воздуховодов. Механический способ очистки систем промышленной вентиляции эффективен и абсолютно безопасен. Очистка приточно-вытяжной системы вентиляции производится при помощи сжатого воздуха и промышленных пылесосов. Применение высокоэффективных фильтрующих установок позволяет, не загрязняя помещения, произвести очистку воздуховодов без демонтажа.
Специализированное оборудование состоит из инструментов для решения поставленных задач и различных установок (электромеханическая установка, установка химической обработки воздуховодов, вакуумная и нагнетательная установка высокого давления, установка с турбиной для вращения щеточки и пневматическим приводом, специальный блок фильтрации).
Составление плана проведения работ и перечисление необходимого оборудования происходит после определения степени загрязненности вертикальных и горизонтальных каналов воздуховодов.
Имея высококвалифицированный персонал, используя вентиляционное оборудование ведущих производителей, наша климатическая компания спроектирует, смонтирует и запустит в эксплуатацию любую по сложности систему кондиционирования и вентиляции (СКВ). При выполнении заказа мы учитываем все пожелания клиента по стоимости и марке оборудования
Промышленная вентиляция.Вентиляция создает правильный воздухообмен и чистоту воздушной среды в помещениях. Промышленная вентиляция существует специально для создания в помещении благоприятной для здоровья человека воздушной среды. Промышленную вентиляцию используют для вентиляции крупных объектов, где расходуется большое количество воздуха, холода и тепла и где необходимо поддерживать среду, отвечающую строительным, санитарно-гигиеническим и техническим требованиям.
Параметры, характеризующие систему вентиляции: кратность по воздуху (м3/ч), производительность по воздуху (м3/ч), рабочее давление (кПа), скорость потока воздуха (м/с), мощность калорифера (кВт), допустимый уровень шума (дБ).
При выборе системы вентиляции в каждом индивидуальном случае учитывается размер, расположение, назначение вентилируемых помещений, а так же количество людей, на которое рассчитано помещение. Все параметры определяются в соответствии со СНиП.
Если следовать старым проверенным способам – периодически проветривать помещение, открывая окно, то вместе с так называемым “свежим” уличным воздухом в помещение будут поступать пыль, неприятные запахи, уличный шум, будет нарушаться температурный режим (зимой слишком холодно, а летом слишком жарко).
При отсутствии вентиляции в закрытых помещениях возрастает концентрация вредных веществ, что негативно сказывается на самочувствии людей, вызывает головную боль, сонливость и снижение работоспособности.
Если говорить о производственных помещениях, то химический состав новоприобретенного воздуха может негативно сказаться на технологическом процессе.
Вентиляция административных зданий и проектных организаций.
Для вентиляции зданий, административных учреждений, проектных и научно-исследовательских организаций применяется приточно-вытяжная вентиляция. Расчет вентиляции проводится с использованием данных таблицы воздухообмена и расчетной температуры в различных помещениях административного здания.
Для создания и поддержания оптимальных параметров воздуха в учреждении, расположенном в жарком климате, устанавливаются кондиционеры. Для организаций, находящихся в других климатических условиях, кондиционирование не является обязательным и требует экономического обоснования.
Приток и вытяжка воздуха.
Для вентиляции и кондиционирования помещений общественного питания необходима изолированная система приточной вентиляции с механическим побуждением, поскольку приточный воздух должен подаваться непосредственно в конференц-залы, столовые и другие помещения обслуживающего характера. Для всех остальных помещений учреждения подходит единая система приточной вентиляции.
Удаляющая воздух изолированная система вентиляции с механическим побуждением, предусматривается для: санузлов, курительных и аккумуляторных комнат, проектных залов, больших кабинетов, холлов и коридоров, служебных и общепитовых помещений.
Для конференц-залов используется система вытяжной вентиляции с естественным побуждением. Из служебного помещения площадью менее 35 м2. воздух удаляется за счет перетекания воздушных масс в холл или в коридор, в отличие от помещения большей площадью, из которого воздух должен удаляться механически.
В больших зданиях, где работает много сотрудников, проектируется механическое побуждение вентиляции. Вытяжная вентиляция с естественным побуждением рассчитана на невысокие здания с количеством сотрудников примерно 300 человек.
В помещениях, где воздухообмен определяется, исходя из условия растворения избытков влаги (например, в конференц-залах) применяются одноканальные системы низкого давления с рециркуляцией воздуха. Для служебных помещений и кабинетов централизованная рециркуляция воздуха не допускается, а применяются одноканальные, совмещенные с отоплением системы с местными доводчиками (фанкойлами).
При проектировании приточно-вытяжной вентиляции с механическим побуждением для лабораторных помещений НИИ естественных и технических наук, обязательно предусматривается обогрев и очистка помещения, а так же увлажнение воздуха. Температура, относительная влажность и скорость движения воздушных масс в лабораториях принимается как для помещений с легкими работами, так и согласно технологическим требованиям. Для удаления воздуха в нерабочее время в лабораторных помещениях обязательно должны быть открывающиеся окна и системы естественной вентиляции.
Не допускается и не разрешается рециркуляция воздуха в помещениях, где происходит работа с вредными веществами или выделяются горючие пары и газы!
Зная скорость движения воздуха в проеме вытяжного шкафа, можно подсчитать объем удаляемого через него воздуха.
ПДК вещества в рабочей зоне, мг/куб.м. Скорость движения воздуха, м/с
Более 10 0.5
От 10 до 0.1 0.7
Менее 0.1 1
В лабораторное помещение должно подаваться 90% всего объема воздуха, удаляемого местными вытяжными системами, оставляя на коридор и холл только 10%. Особое внимание должно уделяться холлам и вестибюлям зданий химических лабораторий, которые примыкают к лестничным клеткам или шахтам лифтов. В подобных местах должен быть не менее, чем 20-кратный воздухообмен.
Для каждого помещения с производством категорий А, Б и Е должны проектироваться индивидуальные системы вытяжной вентиляции, кондиционирования и воздушного отопления.
Оборудованная вытяжными шкафами, система вытяжной вентиляции лаборатории категории В бывает двух типов: децентрализованная – от вытяжных шкафов с индивидуальным воздуховодом и вентилятором для каждого помещения в отдельности и централизованная – где вытяжные воздуховоды от каждого лабораторного помещения объединены в единый сборный вертикальный коллектор, находящийся за пределами здания, или в горизонтальный коллектор, расположенный в специальном помещении на техническом этаже.
Проектирования общих приточных коллекторов возможно для лабораторий категории В, при этом, коллекторы и поэтажные ветвления воздуховодов можно объединить не более чем для 9 этажей. При этом каждое из этажных ответвлений, обслуживающих помещения площадью до 300 кв.м., необходимо оснащать обратными самозакрывающимися клапанами.
Так же в лабораторных помещениях возможно объединение местных отсосов и общеобменной вентиляции в одну вытяжную систему. При удалении из лабораторий воздушных масс, смешанных с химически активными веществами, следует использовать коррозионно-стойкие воздуховоды.
Параметры расчета систем вентиляции.
Подбор оборудования для системы вентиляции и кондиционирования начинается с точного расчета. Расчет вентиляции производится с помощью следующих параметров: производительность по воздуху (м3/ч), рабочее давление (Па) и скорость потока воздуха в воздуховодах (м/с), допустимый уровень шума (дБ), мощность калорифера (кВт).
Производительность по воздуху.
Первым производится расчет требуемой производительности по воздуху или “прокачки”, измеряемой в м3/ч. Готовится поэтажный план здания с экспликацией и определяется требуемая кратность воздухообмена (сколько раз в течение одного часа в одном помещении полностью меняется воздух) для каждого помещения. Требуемая кратность воздухообмена в помещении зависит от его прямого назначения, количества находящихся в нем людей, мощности оборудования, выделяющего тепло, и определяется СНиП (Строительными Нормами и Правилами). В отличие от жилых домов, где достаточно однократного воздухообмена, в офисных помещениях не хватает, здесь требуется 2 – 3 кратный воздухообмен.
Требуемую производительность по воздуху можно получить, просуммировав расчетные значения воздухообмена для всех помещений здания. Типичные значения производительности – 100 – 800 м3/ч для жилых квартир, 1000 – 2000 м3/ч для загородных домов, 1000 – 10000 м3/ч для офисных помещений.
Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума.
После расчета производительности по воздуху приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов и т.п.) и распределителей воздуха. Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. По этой схеме рассчитывают три взаимосвязанных параметра – рабочее давление, скорость потока воздуха и уровень шума.
Требуемое рабочее давление определяется мощностью вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором.
От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают 5 – 6 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать “тихие” воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании систем вентиляции часто приходится искать компромисс между уровнем шума, требуемой мощностью вентилятора и диаметром воздуховодов.
Мощность калорифера.
Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается, исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже 16˚С. Минимальная температура наружного воздуха зависит от климатической зоны и для Москвы равна -26˚С (рассчитывается, как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 40˚С. Типичные значения расчетной мощности калорифера – от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов.
Аэродинамический расчет системы вентиляции | Техническая библиотека ПромВентХолод
Цель аэродинамического расчета
Целью аэродинамического расчета является определение потерь давления (сопротивления) движению воздуха во всех элементах системы вентиляции – воздуховодах, их фасонных элементах, решетках, диффузорах, воздухонагревателях и других. Зная общую величину этих потерь, можно подобрать вентилятор, способный обеспечить необходимый расход воздуха. Различают прямую и обратную задачи аэродинамического расчета. Прямая задача решается при проектировании вновь создаваемых систем вентиляции, состоит в определении площади сечения всех участков системы при заданном расходе через них. Обратная задача – определение расхода воздуха при заданной площади сечения эксплуатируемых или реконструируемых систем вентиляции. В таких случаях для достижения требуемого расхода достаточно изменения частоты вращения вентилятора или его замены на другой типоразмер.Аэродинамический расчет
начинают после определения кратности воздухообмена помещений и принятия решения по трассировке (схеме прокладки) воздуховодов и каналов. Кратность воздухообмена является количественной характеристикой работы системы вентиляции, показывает, сколько раз в течение 1-го часа объем воздуха помещения полностью заменится новым. Кратность зависит от характеристик помещения, его назначения и может отличаться в несколько раз. Перед началом аэродинамического расчета создается схема системы в аксонометрической проекции и масштабе М 1:100. На схеме выделяют основные элементы системы: воздуховоды, их фасонные части, фильтры, шумоглушители, клапана, воздухонагреватели, вентиляторы, решетки и другие. По этой схеме, строительным планам помещений определяют длину отдельных ветвей. Схему делят на расчетные участки, которые имеют постоянный расход воздуха. Границами расчетных участков являются фасонные элементы – отводы, тройники и прочие. Определяют расход на каждом участке, наносят его, длину, номер участка на схему. Далее выбирают магистраль – наиболее длинную цепь последовательно расположенных участков, считая от начала системы до самого удаленного ответвления. Если в системе несколько магистралей одинаковой длины, то главной выбирают с большим расходом. Принимается форма поперечного сечения воздуховодов – круглая, прямоугольная или квадратная. Потери давления на участках зависят от скорости воздуха и состоят из: потерь на трение и в местных сопротивлениях. Общие потери давления системы вентиляции равны потерям магистрали и состоят из суммы потерь всех ее расчетных участков. Выбирают направление расчета – от самого дальнего участка до вентилятора.Рассчитывают площадь сечения воздуховода F = Q / v рек, м². Здесь Q – расход воздуха, м³/с, v рек – рекомендуемая скорость воздуха, м/с (справочная величина).
По площади F определяют диаметр D (для круглой формы) или высоту A и ширину B (для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. D ст , А ст и В ст (справочная величина).
Пересчитывают фактические площадь сечения F факт и скорость v факт.
Для прямоугольного воздуховода определяют т.н. эквивалентный диаметр DL = (2A ст* B ст) / (A ст + B ст), м.
Определяют величину критерия подобия Рейнольдса Re = 64100* D ст* v факт. Для прямоугольной формы D L = D ст.
Коэффициент трения λ тр = 0,3164 ⁄ Re-0,25 при Re≤60000, λ тр = 0,1266 ⁄ Re-0,167 при Re>60000.
Коэффициент местного сопротивления λм зависит от их типа, количества и выбирается из справочников.
Потери давления на расчетном участке Р = ((λтр*L) / Dст + λм) *0,6* v2 факт, Па. Здесь L – длина расчетного участка.
Суммируя потери давления участков, получим потери магистрали и системы вентиляции.
Зная потери давления системы, выбирают вентилятор. Создаваемое им давление и расход воздуха принимаются с 10 % запасом. По его аэродинамической характеристике, представленной фирмой-изготовителем, определяют величину коэффициента полезного действия (КПД) n.
Подсчитывают N = (Q вент * P вент) / (3600 * 1000 * n), кВт, мощность, потребляемую электродвигателем вентилятора, сравнивают ее с данными изготовителя. Здесь Q вент, P вент – расход воздуха и давление, создаваемое вентилятором.
Также рекомендуем Вам следующий материал:
Проектирование систем вентиляции
Для проектирования систем вентиляции можно использовать приведенную ниже процедуру:
- Расчет тепловой или охлаждающей нагрузки, включая явное и скрытое тепло
- Рассчитайте необходимую воздушную смену в соответствии с количеством людей и их деятельностью или любыми другими особенностями. процесс в помещениях
- Расчет температуры приточного воздуха
- Расчет массы циркулирующего воздуха
- Расчет потерь температуры в воздуховодах
- Расчет производительности компонентов – нагревателей, охладителей, омывателей, увлажнителей
- Расчет размера котла или нагревателя
- Конструкция и Расчет системы воздуховодов
1.Расчет тепловых и охлаждающих нагрузок
Расчет тепловых и охлаждающих нагрузок по
- Расчет тепловых или охлаждающих нагрузок в помещении
- Расчет тепловых или охлаждающих нагрузок на окружающую среду
2. Расчет воздушных перемещений в соответствии с жильцами или любыми процессами
Расчет создаваемого загрязнения по лицам, их деятельности и процессам.
3. Расчет температуры подаваемого воздуха
Расчет температуры подаваемого воздуха. Общие рекомендации:
- Для обогрева, 38-50 o C (100-120 o F) Может подойти
- Для охлаждения, где впускные отверстия находятся рядом с рабочими зонами, 6-8 o C (10-15 o F) Может подойти температура ниже комнатной
- Для охлаждения, где используются высокоскоростные диффузионные струи, может быть подходящей 17 o C (30 o F) ниже комнатной температуры
4.Расчет количества воздуха
Нагрев воздуха
Если для обогрева используется воздух, необходимый расход воздуха может быть выражен как
q h = H h / (ρ c p (t с – t r )) (1)
где
q h = объем воздуха для обогрева (м 3 / с)
H h = тепловая нагрузка (Вт)
c p = удельная теплоемкость воздуха (Дж / кг K)
t s = температура подачи ( o C)
t r = комнатная температура ( o C)
ρ = плотность воздуха (кг / м 3 )
Воздушное охлаждение
Если для охлаждения используется воздух, необходимый расход воздуха может быть выражен как
q c = H c / (ρ c p (t o – t r )) (2)
где
q c = объем воздуха для охлаждения (м 3 / с)
H c = охлаждающая нагрузка (Вт)
t o = температура на выходе ( o C), где t o = t r , если воздух в помещении смешанный
Пример – Нагревание
Если тепловая нагрузка составляет H h = 400 Вт , температура подачи t s = 30 o C и комнатная температура t 90 075 r = 22 o C , расход воздуха можно рассчитать как:
q h = (400 Вт) / ((1.2 кг / м 3 ) (1005 Дж / кг K) ((30 o C) – (22 o C)))
= 0,041 м 3 / с
= 149 м 3 / ч
Влажность
Увлажнение
Если наружный воздух более влажный, чем воздух в помещении, то воздух в помещении можно увлажнять, подавая воздух снаружи. Количество приточного воздуха можно рассчитать как
q mh = Q h / (ρ (x 1 – x 2 )) (3)
где
q mh = объем воздуха для увлажнения (м 3 / с)
Q h = подаваемая влажность (кг / с)
ρ = плотность воздуха (кг / м 3 )
x 2 = влажность воздуха в помещении (кг / кг)
x 1 = влажность приточного воздуха ( кг / кг)
Осушение
Если наружный воздух менее влажный, чем воздух в помещении, то воздух в помещении можно осушать, подавая воздух снаружи.Количество приточного воздуха можно рассчитать как
q md = Q d / (ρ (x 2 – x 1 )) (4)
где
q md = объем воздуха для осушения (м 3 / с)
Q d = влага, подлежащая осушению (кг / с)
Пример – Увлажнение
При добавлении влаги Q h = 0.003 кг / с , влажность помещения x 1 = 0,001 кг / кг и влажность приточного воздуха x 2 = 0,008 кг / кг , количество воздуха может быть выражено как:
q mh = (0,003 кг / с) / ((1,2 кг / м 3 ) ((0,008 кг / кг) – (0,001 кг / кг)))
= 0,36 м 3 / s
В качестве альтернативы количество воздуха определяется требованиями людей или процессов.
5. Потери температуры в воздуховодах
Потери тепла из воздуховода можно рассчитать как
H = A k ((t 1 + t 2 ) / 2 – t r ) (5)
где
H = теплопотери (Вт)
A = площадь стенок воздуховода (м 2 )
t 1 = начальная температура в воздуховоде ( o C)
t 2 = конечная температура в воздуховоде ( o C)
k = коэффициент теплопотерь стенок воздуховода (Вт / м ) 2 К) (5.68 Вт / м 2 K для воздуховодов из листового металла, 2,3 Вт / м 2 K для изолированных воздуховодов)
t r = температура окружающей среды ( o C)
Потери тепла в воздушном потоке могут быть выражены как
H = 1000 qc p (t 1 – t 2 ) (5b)
, где
q = масса проходящего воздуха (кг / с)
c p = удельная теплоемкость воздуха (кДж / кг · К)
(5) и (5b) могут быть объединены с
H = A k ((t 1 + t 2 ) / 2 – t r )) = 1000 qc p (t 1 – t 2 ) (5c)
Обратите внимание, что для более высоких температур ps следует использовать средние логарифмические значения температуры.
6. Выбор нагревателей, стиральных машин, увлажнителей и охладителей
Установки, такие как нагреватели, фильтры и т. Д., Должны выбираться на основе количества и производительности воздуха из каталогов производителей.
7. Котел
Мощность котла может быть выражена как
B = H (1 + x) (6)
, где
B = мощность котла (кВт)
H = общая тепловая нагрузка всех нагревательных блоков в системе (кВт)
x = запас для нагрева системы, обычно используются значения 0.От 1 до 0,2
Котел с правильной мощностью должен быть выбран из производственных каталогов.
8. Размеры воздуховодов
Скорость воздуха в воздуховоде можно выразить как:
v = Q / A (7)
, где
v = скорость воздуха (м / с)
Q = объем воздуха (м 3 / с)
A = поперечное сечение воздуховода (м 2 )
Общая потеря давления в воздуховодах может быть рассчитана как
dp t = dp f + dp s + dp c (8)
где
dp t = общая потеря давления в системе (Па, Н / м 2 )
dp f = большая потеря давления в каналах из-за трения (Па, Н / м 2 )
900 74 dp s = незначительная потеря давления в фитингах, коленах и т. Д.(Па, Н / м 2 )
dp c = незначительная потеря давления в компонентах, таких как фильтры, нагреватели и т. Д. (Па, Н / м 2 )
Основное давление потери в воздуховодах из-за трения можно рассчитать как
dp f = R l (9)
, где
R = сопротивление трению в воздуховоде на единицу длины (Па, Н / м 2 на м воздуховода)
l = длина воздуховода (м)
Сопротивление трению в воздуховоде на единицу длины можно рассчитать как
R = λ / d h (ρ v 2 /2) (10)
где
R = потеря давления (Па, Н / м 2 )
λ 9007 9 = коэффициент трения
d h = гидравлический диаметр (м)
Принципы вентиляции
Системы вентиляции можно классифицировать по их способности подавать и отводить воздух из вентилируемых помещений.Обычно различают
- принцип кратчайшего пути
- смешанный принцип
- принцип вытеснения
- принцип поршня
Принцип кратчайшего пути
Система вентиляции является «короткой» при отводе подпиточного воздуха из помещение до того, как оно было в зонах обслуживания людей.
“Сокращение” снижает эффективность системы вентиляции, не имеет никакой цели и обычно избегается.
Принцип смешивания
В системе вентиляции, основанной на смешанном принципе, подпиточный воздух подается в комнату с высокой скоростью, и / или местные вентиляторы используются для перемешивания воздуха в помещении до однородной массы.
Смешанный принцип подходит для систем вентиляции, охлаждения и отопления
- , где требуется однородная температура в помещении
- , где требуется однородная концентрация загрязняющих веществ в помещении
Принцип вытеснения
Принцип вытеснения тепло и загрязнения передаются из жилой зоны, расположенной близко к полу, к потолку, откуда они выводятся через систему отвода.
Подпиточный воздух подается с низкой скоростью очень близко к полу. Приточный воздух обычно холоднее, чем средний воздух в жилой зоне. Откачиваемый воздух у потолка теплее, чем в среднем в жилой зоне.
Действия в помещении, люди и машины, создают конвективные потоки воздуха от пола до потолка:
- тепло и загрязнения переносятся из жилой зоны
- тепло (свет), подаваемое под потолком, имеет ограниченное влияние на температура в помещении
- температура охлаждения приточного воздуха ограничена до нескольких градусов ниже температуры в жилой зоне
- концентрация загрязнения в жилой зоне ограничена
Вытесняющая система вентиляции подходит для систем вентиляции и охлаждения .Система не предназначена для обогрева.
Принцип поршня
В системе вентиляции, основанной на поршневом принципе, приточный воздух движется через помещения как «поршень».
Поршневой принцип можно рассматривать как крайний вариант вытеснительной системы с минимальной турбулентностью воздушного потока, проходящего через помещение.
- используется в специальных приложениях – например, в чистых помещениях, операционных и т. Д.
Примечание! Чтобы поток оставался «ламинарным» и стабильным, скорость воздуха в помещении не должна быть ниже 0.25 м / с, что требует относительно больших объемных расходов.
Конструкция вентиляции: 4 шага к процедуре вентиляции
– Реклама –
Нам нужно дышать чистым воздухом, чтобы оставаться здоровыми. Поскольку мы проводим большую часть времени в закрытых зданиях, правильная вентиляция имеет решающее значение. Исходя из этого, здесь может возникнуть вопрос, как спроектировать эффективную систему вентиляции. С другой стороны, дизайн вентиляции напрямую связан со счетами за электроэнергию.Таким образом, повышается важность уделять этому больше внимания.
Пора уделить больше внимания дизайну вентиляции. Здесь у нас есть некоторые соображения, которые следует иметь в виду.
Проектирование вентиляции и определение размеров воздуховодов с помощью инженерных программ (ссылка: h4space.com.au ) 4 шага для руководства при проектировании вентиляцииВ этой части мы поможем вам спроектировать вентиляционную систему всего за четыре шага:
Шаг 1: Выберите, где вы хотите вентилироватьРешите, какие места в вашем здании нуждаются в вентиляции.Обычно эти области в доме включают гостиную, черновой пол и крышу.
Предположим, вы собираетесь разработать эффективную систему вентиляции и сделать воздуховод более эффективным. В этом случае следует проветрить кровельное пространство, чтобы снизить температуру. В жаркие дни ваша крыша может нагреваться, как печь, и направлять кондиционированный воздух через тепло в дом. Таким образом, температура воздуха повысится, прежде чем достигнет вашего жилого помещения.
Кроме того, вы можете установить вентилятор для всего дома, чтобы уменьшить вашу зависимость от кондиционеров.Вентилятор для всего дома непрерывно отводит тепло из жилого помещения и крыши днем и ночью. Он помогает регулировать температуру в доме и предотвращать сильную жару или холод в течение года.
Кроме того, еще одна проблема, которую следует учитывать при проектировании вентиляции для охлаждения дома, – это влажность внутри помещения. При использовании кондиционера в под полом может подниматься сырость. Таким образом, влагу из чернового пола необходимо удалять с помощью системы вентиляции, чтобы снизить риск повреждения конструкции и других возможных рисков.
Шаг 2: Определите оборудование, которое может вам понадобиться при проектировании вентиляции- Пространство на крыше : Вентилятор на крыше необходим. Здесь вы можете выбрать механическую вентиляцию или естественную ветровую систему. Умные вентиляционные отверстия работают в 6 раз лучше, чем ветряные.
- Черный пол : в этой ситуации необходим черный пол. Может быть полезна двойная система, одна для отвода горячего влажного воздуха, а другая для забора свежего сухого воздуха.
- Жилая площадь : здесь необходим вентилятор для дома. Предположим, вы проветриваете определенную комнату, например, ванную комнату или прачечную. В этом случае можно использовать кровельный вентилятор с воздуховодами и потолочными решетками. Однако, если вы проветриваете влажное помещение, такое как ванная комната или прачечная, вы должны выводить эти помещения прямо наружу, то есть не в пространство на крыше.
Вы должны определить количество вентиляционных отверстий, которые могут быть использованы при проектировании вентиляции. Грубо говоря, можно сказать:
- На каждую площадь площадью 87 м 2 требуется 1 умная форточка или 1-2 ветряных форточки для вентиляции кровельного пространства.
- Для вентиляции кровли и жилого помещения площадью до 150 м 2 нужна 1 целая система вентиляции.
- Для вентиляции черного пола необходимы 2 вентилятора.
Эти факторы можно приблизительно учесть при проектировании вентиляции.Однако, чтобы получить надлежащий, эффективный дизайн с точным количеством компонентов, вам следует обратиться к одному специалисту в этой области.
Шаг 4. Обратите внимание на скорость потока подпиточного воздуха.Убедитесь, что в вентилируемую зону поступает достаточное количество подпиточного воздуха. Чтобы оптимизировать конструкцию вентиляции, вы должны предусмотреть вход для холодного свежего воздуха, поступающего извне, так называемого свежего воздуха. Необходимо удалить загрязненный воздух и заменить его вентилируемым.В связи с этим следует обратить внимание на следующие подсказки в конструкции вентиляции:
- В свес крыши можно установить вентиляционные отверстия для подачи подпиточного воздуха в кровельное пространство.
- В жилом помещении можно подготовить свежий воздух, просто открыв окна.
- В черновом полу двойная система вентиляции необходима для создания достаточного количества подпиточного воздуха. Таким образом, будет установлено одно вентиляционное отверстие для втягивания наружного воздуха во внутреннее пространство.
При проектировании вентиляции можно использовать процедуру, указанную ниже:
- Рассчитайте тепловую или охлаждающую нагрузку, содержащую как явное, так и скрытое тепло.
- Рассчитайте количество воздухообменов с учетом количества и активности живых людей.
- Рассчитайте температуру входящего воздуха
- Рассчитайте массу воздуха, которая должна циркулировать в зоне
- Рассчитайте количество энергии и температурных контуров в оборудовании и воздуховодах.
- Рассчитайте свойства, которые могут быть достигнуты на выходе таких компонентов, как нагреватели, омыватели, увлажнители, охладители и т. Д.
- Рассчитайте размер бойлера или нагревателя.
- Проектирование и определение размеров системы воздуховодов
Теперь каждый процесс проектирования вентиляции будет проработан более подробно.
1. Расчет нагрузки на охлаждение и обогрев:В этой части вам необходимо рассчитать нагрузки на отопление и охлаждение в помещении, в дополнение к окружающим нагрузкам, чтобы получить точные нагрузки, которые вам необходимо придумать для вентиляции. площадь.
2. Количество воздухообменниковИсходя из количества людей, находящихся в помещении, а также времени и вида деятельности, которую они могут проводить в этом районе, вы можете узнать, сколько загрязняющих веществ там выбрасывается.Таким образом, можно рассчитать приток свежего воздуха, который необходимо обеспечить за счет конструкции вентиляции. Затем вы можете рассчитать критические воздушные сдвиги, чтобы обеспечить доступность здорового воздуха.
3. Температура подаваемого воздухаСуществует несколько стандартных рекомендаций по расчету температуры подаваемого воздуха. Один из которых написан здесь:
- Температура от 38 до 50 градусов Цельсия (100-120 o F) подходит для обогрева помещения.
- Когда вы собираетесь охладить зону, где зона находится рядом с впускными отверстиями, температура на впуске должна быть отрегулирована на 6-8 o C ниже температуры зоны.
- Для охлаждения с помощью высокоскоростных диффузных струй температура воздуха на входе должна быть установлена на 17 o C ниже комнатной температуры.
Если мы собираемся обогревать комнату, выражение, из которого вы можете найти объем воздуха, будет
q h = Q h / (ρ c p (T s – T r ))
где
q h = объем воздуха для обогрева (м 3 / с )
Q h = тепловая нагрузка (Вт)
ρ = плотность воздуха (кг / м 3 )
c p = удельная тепловой воздух (Дж / кг K)
T s = температура подачи ( o C )
T r = комнатная температура ( o C )
Для c При расчете охлаждающей нагрузки имеем:
q c = Q c / (ρ c p (T o – T r ))
в котором
q c = объем воздуха для отопления (м 3 / с)
Q c = тепловая нагрузка (Вт)
ρ = плотность воздуха (кг / м 3 )
c p = удельная теплоемкость воздуха (Дж / кг K)
T o = Наружная температура ( o C )
T r = комнатная температура ( o C )
5.Потеря температуры в воздуховодахЕще одним параметром при проектировании вентиляции является потеря температуры в воздуховодах. Количество теплопотерь из воздуховода рассчитывается на основе стенок воздуховода, начальной и конечной температуры в воздуховоде, температуры вокруг воздуховода и коэффициента теплопотерь. Коэффициент теплопотери у каждого вещества разный. Например, она составляет 5,68 Вт / м 2 K для воздуховодов из листового металла и 2,3 Вт / м 2 K для изолированных воздуховодов. Уравнение, по которому рассчитываются потери тепла в воздуховоде:
H = k A ((T 1 + T 2 ) / 2 – T r )
где
H = потери тепла (Вт),
A = площадь стенок воздуховода (м 2 ),
T 1 = начальная температура в воздуховоде ( o C),
T 2 = конечная температура в воздуховоде ( o C),
и
T r = окружающая среда комнатная температура ( o C).
После определения тепловых потерь, тепловые потери воздуха можно найти из
H = 1000 qc p (T 1 – T 2 )
где
q = масса проходящего воздуха (кг / с)
и
c p = удельная теплоемкость воздуха (кДж / кг · K).
Таким образом, потеря температуры в воздуховодах определяется комбинацией приведенных выше уравнений.
6. Выбор нагревателя, охладителя, стиральной машины и увлажнителяПри расчетном дизайне необходимо выбрать надлежащее оборудование на основе количества воздуха и мощности нагрева или охлаждения. Для выбора этих агрегатов следует искать их в каталогах, представленных производителями.
7. Расчет типоразмера котлаВ зависимости от расчетной нагрузки, расчета нагрузки на охлаждение и обогрев, мы можем определить размер котла; но имейте в виду, что к расчетной нагрузке следует добавить запас от 10 до 20%, чтобы точно определить размер котла.Это означает:
B = Q (1 + x)
, где
B = мощность котла (кВт),
Q = общая тепловая нагрузка всех нагревательных агрегатов в системе (кВт ),
x = запас на нагрев системы, обычно используются значения от 0,1 до 0,2.
Наконец, подходящий котел с соответствующей мощностью можно выбрать из каталогов производителя.
8. Размер воздуховодаЧтобы определить размер воздуховода в конструкции вентиляции, первым делом необходимо определить скорость воздуха в нем.Затем необходимо рассчитать общую потерю давления в воздуховодах. Эти потери давления состоят из большой потери давления, незначительной потери давления и незначительных потерь в фильтрах, нагревателях и других компонентах. Основная потеря давления в воздуховодах составляет
dp f = R l ,
, где
R = сопротивление трению в воздуховоде на единицу длины (Па, Н / м2 на м воздуховода)
и
l = длина воздуховода (м).
С учетом упомянутых соотношений гидравлический диаметр воздуховода может быть рассчитан по следующей формуле:
R = f / d h (ρ v 2 /2)
где
f = коэффициент трения,
d h = гидравлический диаметр.
Чтобы узнать больше о размерах воздуховодов при проектировании вентиляции, щелкните здесь.
Образец проекта воздуховода в здании (Ссылка: energy-models.com )– Объявление –
Принципы и расчеты вентиляции чердака – urdesignmag
Вентиляция чердака имеет несколько целей, как мы вскоре выясним . Однако установка надлежащей системы вентиляции может оказаться проблематичной без правильных знаний заранее, поскольку есть факторы, которые вы должны принять во внимание, и конкретные расчеты, которые необходимо выполнить, чтобы полностью извлечь выгоду из настройки, и удерживает структурные повреждения и другие проблемы под контролем .
Чем полезна круглогодичная вентиляция чердака
В теплую погоду
Летом в верхних комнатах дома всегда теплее, чем в комнатах на нижних уровнях, что в конечном итоге заставляет домовладельцев включать свои вентиляторы или системы кондиционирования на более длительное время, в конечном итоге тратя больше денег, когда приходят счета за электричество. .
Обычно горячий воздух имеет тенденцию подниматься, поскольку он легче, в то время как холодный воздух опускается из-за своей более плотной структуры.Однако, когда не контролируется надлежащая вентиляция чердака, в этом пространстве накапливается тепло, оно перемещается вниз и излучается на пол, что в конечном итоге приводит к повышению температуры в помещениях, расположенных непосредственно под ним. Но это не единственная проблема, поскольку со временем избыточного тепла может привести к разрушению черепицы , что приведет к преждевременному разрушению кровельных материалов.
В холодную погоду
С наступлением холодов температура может резко упасть, но это не значит, что движение нагретого воздуха больше не может вызывать проблем на чердаке.Когда температура падает, условия меняются, а это означает, что вместо тепла с чердака, поступающего в ваш дом, нагретый воздух в помещении перемещается из жилых помещений на чердак вместе с влагой.
По мере того, как теплый влажный воздух движется в этом пространстве, где воздух прохладный и сухой, влага конденсируется и капает на изоляцию ниже, что снижает эффективность изоляции. Таким образом, разворачивается более суровая последовательность событий, в более холодных помещениях наблюдаются более высокие потери тепла, в то время как печь должна перекачивать больше, что также подразумевает более высокие счета за электроэнергию.
Но не вся конденсирующаяся влага попадает в изоляцию, часть ее поглощается конструктивными элементами дома, а это означает, что древесина будет гнить быстрее, а материалы крыши со временем ухудшатся.
Избыточное количество влаги в воздухе напрямую влияет как на структурную целостность вашего дома, так и на ваше здоровье. При повышении влажности создаются надлежащие условия для появления и распространения гнили и плесени .Хотя надлежащие меры по вентиляции помогают в некоторой степени решить проблему, рекомендуется сочетать вентиляцию с использованием системы осушения, которая удаляет лишнюю влагу из воздуха, помогая повысить эффективность и поддерживать влажность в безопасном диапазоне 45–55%.
Осушители различаются по размеру и мощности, но осушители для ползания оказываются наиболее эффективными, когда речь идет об обслуживании структурной защиты дома. Не забывайте использовать осушитель воздуха , соответствующий размеру вашего дома и существующим условиям .Для этого вам следует ознакомиться с руководством по покупке, составленным на сайте Popular.Reviews, поскольку оно может помочь вам точно выяснить, на какие аспекты следует обратить внимание, чтобы обеспечить эффективность системы осушения.
Как работают разные типы вентиляции
- Естественная конвекция: Метод пассивной вентиляции, использующий естественную плавучесть воздуха, поскольку он обеспечивает входные и выходные отверстия низко и высоко на крыше. Когда воздух на чердаке нагревается, он становится легким и поднимается, позволяя ему выйти через высокие вентиляционные отверстия.Когда теплый воздух выходит из замкнутого пространства, холодный воздух поступает через вентиляционные отверстия.
- Принцип Бернулли : Этот принцип демонстрирует вентиляцию за счет эффекта ветра, поскольку ветер может создавать положительное давление на наветренной стороне крыши, создавая при этом отрицательное давление на защищаемой стороне. Таким образом, достаточный воздушный поток через проем создает достаточный перепад давления, чтобы вытягивать воздух из чердака.
- Электропитание / Вентилятор чердака: Подход к активной / механической вентиляции, который реализуется двумя разными способами:
- В домах, где нет кондиционера , вы можете в определенной степени контролировать температуру в этом помещении с помощью чердачных вентиляторов.Обычно люди предпочитают вешать вентиляторы на потолок в центральном коридоре. Наружный воздух втягивается внутрь через открытые окна, а выбрасывается через чердак. Просто убедитесь, что имеется достаточно розеток, чтобы вентилятор не выдерживал абсурдно высокое давление. Однако для более рентабельной вентиляции вы можете использовать солнечную энергию, как показывает сравнение Института Optima между солнечными вентиляторами на чердаке и электрическими моделями, буквально не добавляя затрат к счетам за электроэнергию за счет использования экологически чистой альтернативы.Существует дополнительная привилегия, заключающаяся в том, что вы можете получить налоговую скидку, предоставляемую федеральным правительством, так что вы можете получить больше прибыли, чем первоначально ожидалось, с этим вариантом.
- В домах с кондиционированием воздуха можно использовать электрические чердачные вентиляторы, если вытяжные вентиляторы монтируются через крышу. Убедитесь, что на противоположных концах чердака есть приточные отверстия для вентилируемого воздуха или низко расположенные вентиляционные отверстия на крыше, если у вас нет свеса.
Формула расчета
Существует общепризнанная формула, которую вы можете применить для сбалансированной вентиляции чердака, известная как правило 1/150 :
- В нем указано, что на каждые 150 кв.футов чердачного помещения , вам потребуется кв.м вентиляции . Таким образом, вы сначала должны рассчитать квадратные метры чердака, если вы этого еще не знаете, и для этого вам нужно измерить три значения – длину, ширину и высоту пространства.
- Для приточной и вытяжной вентиляции каждый квадратный фут вентиляции делится на 2 .
- Умножьте полученное число на 144 , чтобы получить результат в квадратных дюймах, и все готово.
Вот пример использования чердака площадью 3000 квадратных футов:
3000/150 = всего 20 квадратных футов
20/2 = 10 квадратных футов / впуск и 10 квадратных футов / выпуск
10 x 144 = 1440 квадратных дюймов / впуск и 1440 квадратных дюймов / выпуск
После того, как вы произведете необходимые расчеты, вы можете уверенно покупать чердачные вентиляторы, не беспокоясь о низкой производительности.
Правила и спецификации
- Убедитесь, что чердак не сообщается с кондиционированным помещением, если вы намереваетесь добавить вентиляцию для этого пространства, поскольку вы уменьшаете эффект кондиционирования воздуха в помещении , что в конечном итоге приводит к тому, что кондиционер работает тяжелее и тщетнее, чем воздух. смешивается с вентилируемым чердаком.
- Проверьте и убедитесь, что потолочный воздушный барьер сплошной и нет утечки. Очевидно, если есть утечки, немедленно устраните их.
- Убедитесь, что вентиляционные отверстия расположены низко и высоко на крыше .
- Убедитесь, что все каналы механической вентиляции и водопроводные трубы выходят наружу.
Комментарии
комментария
онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.
«Мне нравится широта ваших курсов по HVAC; не только экология или экономия энергии
курса.”
Russell Bailey, P.E.
Нью-Йорк
“Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.
, чтобы познакомить меня с новыми источниками
информации »
Стивен Дедак, P.E.
Нью-Джерси
«Материал был очень информативным и организованным.Я многому научился и их было
очень быстро отвечает на вопросы.
Это было на высшем уровне. Будет использовать
снова. Спасибо. “
Blair Hayward, P.E.
Альберта, Канада
“Простой в использовании веб-сайт. Хорошо организованный. Я действительно буду снова пользоваться вашими услугами.
проеду по вашей компании
имя другим на работе.”
Roy Pfleiderer, P.E.
Нью-Йорк
“Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком.
с деталями Канзаса
Городская авария Хаятт “.
Майкл Морган, P.E.
Техас
«Мне очень нравится ваша бизнес-модель.Мне нравится просматривать текст перед покупкой. Нашел класс
информативно и полезно
в моей работе ».
Вильям Сенкевич, П.Е.
Флорида
«У вас большой выбор курсов, а статьи очень информативны. You
– лучшее, что я нашел ».
Рассел Смит, П.E.
Пенсильвания
“Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр
материал. “
Хесус Сьерра, П.Е.
Калифорния
“Спасибо, что позволили мне просмотреть неправильные ответы. На самом деле
человек узнает больше
от сбоев.”
John Scondras, P.E.
Пенсильвания
«Курс составлен хорошо, и использование тематических исследований является эффективным.
способ обучения »
Джек Лундберг, P.E.
Висконсин
“Я очень впечатлен тем, как вы представляете курсы, т.е. позволяете
студент для ознакомления с курсом
материала до оплаты и
получает викторину.”
Арвин Свангер, П.Е.
Вирджиния
“Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и
получил огромное удовольствие “.
Мехди Рахими, П.Е.
Нью-Йорк
«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.
в режиме онлайн
курса.”
Уильям Валериоти, P.E.
Техас
“Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее представление о
.обсуждаемых тем ».
Майкл Райан, P.E.
Пенсильвания
“Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.”
Джеральд Нотт, П.Е.
Нью-Джерси
“Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было
информативно, выгодно и экономично.
Я очень рекомендую
всем инженерам ».
Джеймс Шурелл, P.E.
Огайо
«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и
не основано на каком-то неясном разделе
законов, которые не применяются
до «нормальная» практика.”
Марк Каноник, П.Е.
Нью-Йорк
«Отличный опыт! Я многому научился, чтобы использовать его в своем медицинском устройстве.
организация “
Иван Харлан, П.Е.
Теннесси
«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».
Юджин Бойл, П.E.
Калифорния
“Это был очень приятный опыт. Тема была интересной и хорошо изложенной,
а онлайн-формат был очень
Доступно и просто
использовать. Большое спасибо. “
Патрисия Адамс, P.E.
Канзас
«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.”
Джозеф Фриссора, P.E.
Нью-Джерси
«Должен признаться, я действительно многому научился. Помогает иметь печатный тест во время
обзор текстового материала. Я
также оценил просмотр
фактических случаев “.
Жаклин Брукс, П.Е.
Флорида
“Документ” Общие ошибки ADA при проектировании объектов “очень полезен.
тест действительно потребовал исследования в
документ но ответы были
в наличии “
Гарольд Катлер, П.Е.
Массачусетс
“Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.
в транспортной инженерии, что мне нужно
для выполнения требований
Сертификат ВОМ.”
Джозеф Гилрой, П.Е.
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».
Ричард Роудс, P.E.
Мэриленд
«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.
Надеюсь увидеть больше 40%
курсов со скидкой.”
Кристина Николас, П.Е.
Нью-Йорк
“Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще
курса. Процесс прост, и
намного эффективнее, чем
в пути “.
Деннис Мейер, P.E.
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов.
Инженеры получат блоки PDH
в любое время.Очень удобно ».
Пол Абелла, P.E.
Аризона
«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало
время искать где
получить мои кредиты от. “
Кристен Фаррелл, P.E.
Висконсин
«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями
и графики; определенно делает это
легче поглотить все
теории »
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по
.мой собственный темп во время моего утром
до метро
на работу.”
Клиффорд Гринблатт, П.Е.
Мэриленд
“Просто найти интересные курсы, скачать документы и взять
викторина. Я бы очень рекомендовал
вам на любой PE, требующий
Единицы CE “
Марк Хардкасл, П.Е.
Миссури
«Очень хороший выбор тем из многих областей техники.”
Randall Dreiling, P.E.
Миссури
«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь
по ваш промо-адрес который
сниженная цена
на 40% “
Конрадо Казем, П.E.
Теннесси
«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».
Charles Fleischer, P.E.
Нью-Йорк
“Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику
коды и Нью-Мексико
правил. “
Брун Гильберт, П.E.
Калифорния
«Мне очень понравились занятия. Они стоили потраченного времени и усилий».
Дэвид Рейнольдс, P.E.
Канзас
«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng
.при необходимости дополнительно
аттестат. “
Томас Каппеллин, П.E.
Иллинойс
“У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали
мне то, за что я заплатил – много
оценено! “
Джефф Ханслик, P.E.
Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы.
для инженера »
Майк Зайдл, П.E.
Небраска
“Курс был по разумной цене, а материал краток.
хорошо организовано. “
Глен Шварц, П.Е.
Нью-Джерси
«Вопросы подходили для уроков, а материал урока –
.хороший справочный материал
для деревянного дизайна. “
Брайан Адамс, П.E.
Миннесота
“Отлично, я смог получить полезные рекомендации по простому телефонному звонку.”
Роберт Велнер, P.E.
Нью-Йорк
“У меня был большой опыт работы в прибрежном строительстве – проектирование
Building курс и
очень рекомендую .”
Денис Солано, P.E.
Флорида
“Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими
хорошо подготовлены. »
Юджин Брэкбилл, P.E.
Коннектикут
«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на номер
.обзор везде и
всякий раз, когда.”
Тим Чиддикс, P.E.
Колорадо
«Отлично! Сохраняю широкий выбор тем на выбор».
Уильям Бараттино, P.E.
Вирджиния
«Процесс прямой, никакой ерунды. Хороший опыт».
Тайрон Бааш, П.E.
Иллинойс
“Вопросы на экзамене были зондирующими и продемонстрировали понимание
материала. Полная
и комплексное ».
Майкл Тобин, P.E.
Аризона
“Это мой второй курс, и мне понравилось то, что мне предлагали курс
поможет по моей линии
работ.”
Рики Хефлин, P.E.
Оклахома
«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».
Анджела Уотсон, P.E.
Монтана
«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».
Кеннет Пейдж, П.E.
Мэриленд
“Это был отличный источник информации о солнечном нагреве воды. Информативный
и отличный освежитель ».
Луан Мане, П.Е.
Conneticut
“Мне нравится, как зарегистрироваться и читать материалы в автономном режиме, а затем
вернуться, чтобы пройти викторину “
Алекс Млсна, П.E.
Индиана
«Я оценил объем информации, предоставленной для класса. Я знаю
это вся информация, которую я могу
использование в реальных жизненных ситуациях »
Натали Дерингер, P.E.
Южная Дакота
“Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне
успешно завершено
курс.”
Ира Бродский, П.Е.
Нью-Джерси
“Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а потом вернуться.
и пройдите викторину. Очень
удобно а на моем
собственный график “
Майкл Глэдд, P.E.
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.”
Деннис Фундзак, П.Е.
Огайо
“Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH
сертификат. Спасибо за создание
процесс простой ».
Фред Шейбе, P.E.
Висконсин
«Положительный опыт.Быстро нашел курс, который соответствовал моим потребностям, и прошел
один час PDH в
один час. “
Стив Торкильдсон, P.E.
Южная Каролина
“Мне понравилось загружать документы для проверки содержания
и пригодность, до
имея платить за
материал .”
Ричард Вимеленберг, P.E.
Мэриленд
«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».
Дуглас Стаффорд, П.Е.
Техас
«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем
.процесс, который требует
улучшение.”
Thomas Stalcup, P.E.
Арканзас
“Мне очень нравится удобство участия в онлайн-викторине и получение сразу
сертификат. “
Марлен Делани, П.Е.
Иллинойс
“Учебные модули CEDengineering – это очень удобный способ доступа к информации по номеру
.много разные технические зоны за пределами
по своей специализации без
надо ехать.”
Гектор Герреро, П.Е.
Грузия
(PDF) Методы расчета для системы отопления и вентиляции электрических машин
Методы расчета для системы отопления и вентиляции электрических машин 59
Motor-CAD имеет некоторые преимущества перед CFD:
– Проблема определения времени (от минут до часов / дней / недель)
– Расчетная скорость (мгновенно в часы / дни)
– Время постобработки (мгновенно в часы)
– Простота использования.
Motor-CAD позволяет оптимизировать систему охлаждения и выявляет уязвимые места конструкции
и / или проблемы изготовления; он проверяет, подходит ли предоставленный двигатель для конкретного приложения
.
Окончательный вывод по использованию Motor-CAD заключается в том, что программа представляет собой быстрый метод проектирования
для двигателей и электрогенераторов с тепловой точки зрения, принимая во внимание тот факт
, что тепловая аналогичная схема электрических машин является такой же. Важное значение имеет проектирование
электромагнитное, механическое.
Сведения об авторе
Отилия Неделку и Корнелиу Иоан Сэлиштяну
Департамент электроники, телекоммуникаций и энергетики,
Валахийский университет Тырговиште, Румыния
15. Список литературы
[1] Bâlă C. (1982) – Электрические машины – Дидактическое и педагогическое издательство, Бухарест,
Румыния.
[2] Чиок И., Бичир Н., Кристя Н. (1981) – Электрические машины. Рекомендации по дизайну. Vol. I, II, III.
–Romanian Writing Publishing, Крайова, Румыния.
[3] Неделку О. (2010) – Моделирование отопления и вентиляции электрических машин,
Bibliotheca Publishing, Тырговиште, Румыния.
[4] Чуа Л. О., Лин П. М. (1975) – Компьютерный анализ электронных схем:
Алгоритмы и вычислительные методы, Прентис Холл, Энглвуд Клиффс, Нью-
Джерси.
[5] Leca, A., Prisecaru, I. (1994) – Теплофизические и термодинамические свойства. –
Technical Publishing, Бухарест, Румыния.
[6] Думитриу Л., Иордаче М., (1998) – Современная теория электрических цепей – Том 1 – Теоретические основы
, Приложения, алгоритмы и компьютерные программы, All Educational
Publishing, Бухарест, Румыния.
[7] Иордаче М., Думитриу Л. (2004) – Компьютерный анализ нелинейных аналоговых схем
, Издательство Politechnica Press, Бухарест, Румыния.
[8] Иордаче М., Думитриу Л. (1999) – PANCIA – Программный анализ аналоговых схем,
Руководство пользователя, издательство Politechnica Press, Бухарест, Румыния.
[9] МакКалла В. Дж. (1988) – Основы компьютерного моделирования схем, Kluwer
Academic Publishers, Бостон.
Вытесняющая вентиляция – обзор
11.2.5.2 Вытесняющая вентиляция
Поскольку вытесняющие системы вентиляции становятся все более популярными и заменяют традиционные смесительные системы вентиляции, проведение численных исследований потока представляет большой интерес. При смешанной вентиляции свежий воздух подается с высокой скоростью (импульсом), вызывая общую рециркуляцию в помещении, что обеспечивает эффективное перемешивание.Таким образом, загрязненный воздух эффективно разбавляется. Однако при вытеснительной вентиляции цель заключается в разделении свежего и загрязненного воздуха. Принципиальная схема вытесняемого помещения показана на рис. 11.12
РИСУНОК 11.12. Вытесняющая вентиляция.
(© 1995 Munksgaard International Publishers Ltd., Копенгаген, Дания.) Авторское право © 1995 г.В вытеснительных системах вентиляции воздух подается в комнату с низкой скоростью, с объемным расходом V˙in около пола, и удаляется около потолок.Температура приточного воздуха немного ниже, чем в помещении. Воздух нагревается находящимися в комнате предметами, например компьютерными терминалами и копировальными аппаратами, и поднимается вверх за счет плавучести.
При проектировании вытяжной системы вентиляции важно точно спрогнозировать поток через источники тепла. Восходящий поток над источником тепла напоминает шлейф. Поток в шлейфе поднимается до потолка. Объемный расход в шлейфах для данного вертикального расстояния от источника тепла y равен V˙plume (y) и увеличивается с y из-за уноса.У потолка поток распространяется в стороны. Под потолком расположен выход, через который воздух удаляется со скоростью V˙in. Остальная часть потока V˙plume (H) −Vin ( H – высота помещения) течет вниз. Фронт расслоения y фронт расположен там, где V˙in = V˙plume.
Одна из первых симуляций вытеснительной вентиляции была представлена в исх. 34 и 35. Прогнозы сравнивались с экспериментами на водной модели, поэтому радиация не принималась во внимание.В вентилируемых помещениях следует учитывать излучение. 16 В исх. Численно исследовано 36 шлейфов, связанных с вытеснительной вентиляцией.
При вытеснительной вентиляции есть области с очень низкой турбулентностью, и поток может быть даже ламинарным. Следовательно, важно использовать модель турбулентности, которая может обрабатывать эти области. Модель k-∈ порождает большие численные проблемы в областях с низкой турбулентностью. Причина в том, что когда k стремится к нулю, член разрушения в уравнении ∈ стремится к бесконечности.Уравнение E:
∂∂xj (ρU¯j∈) = ∂∂xj [(μ + μtσ∈) ∂∈∂xj] + ∈k (c∈1pk − c∈2ρ∈).
Член разрушения (последний член в правой части) включает ∈ 2 / k , и это вызывает проблемы при k → 0, даже если ∈ также стремится к нулю; они оба должны стремиться к нулю с правильной скоростью, чтобы избежать проблем, а это часто бывает не так.
В модели k -ω таких проблем нет. Модель была предложена Wilcox 2 , 12 и набирает популярность; были представлены модификации. 11 , 13 , 37 Уравнение ω:
∂∂xj (ρU¯jω) = ∂∂xj [(μ + μtσω) ∂ω∂xj] + ωk (cω1pk − cω2ρkω ).
Если значение k стремится к нулю в области низкой турбулентности, член турбулентной диффузии просто стремится к нулю.