- Принцип работы рекуператора — что это такое, и для чего нужен рекуператор — Marley-spb.ru
- Рекуператор воздуха: что это такое и принцип работы
- Рекуператор воздуха, виды и принцип работы
- Вентиляция с рекуперацией: принцип работы
- принцип работы, преимущества, недостатки и технология изготовления своими руками
- Роторный рекуператор
- особенности, принцип работы, разновидности. Установка, минусы и плюсы
- Принцип работы теплообменника рекуператора.
- Рекуператоры – обзор | Темы ScienceDirect
- Восстановление. Типы рекуператоров | Сервер Сервис
- Работа теплообменника
- принцип работы и опции. Конструктивные особенности, назначение
- Вентиляция с рекуперацией тепла
- Приточно-вытяжные системы вентиляции с рекуперацией и рециркуляцией тепла
- Особенности системы вентиляции с рекуперацией тепла, принцип ее действия
- Приточно-вытяжная вентиляция с рекуперацией тепла: принцип работы, обзор достоинств и недостатков
- Выводы и полезное видео по теме
- Теплообменники – типы, конструкции, применение и руководство по выбору
- Анализ методом конечных элементов напряжения в рекуператоре с поперечно-волнистой поверхностью первичного контура на основе модели тепло-структурной связи
- 1. Введение
- 2. Конечноэлементный анализ напряжений, деформаций и деформаций микротурбинного рекуператора [8–10]
- 2.1. Физическая модель и граничные условия
- 2.2. Математическая модель [13]
- 2.3. Grid Division
- 2.4. Дискретность
- 3. Результаты расчетов и анализ
- 3.1. Сравнение и анализ напряжений, деформаций и деформаций между входом и выходом в канале рекуператора без учета теплового напряжения
- 3.2. Сравнение и анализ напряжений, деформаций и деформаций между входом и выходом в канале рекуператора с учетом теплового напряжения
- 3.3. Влияние соотношения давлений на напряжение и деформацию рекуператора
- 3.4. Влияние температуры газа на входе на напряжение и деформацию рекуператора
- 4. Выводы
- Доступность данных
- Конфликт интересов
- Благодарности
Принцип работы рекуператора — что это такое, и для чего нужен рекуператор — Marley-spb.ru
Зачем нужен рекуператор?
В вашей квартире или доме скорее всего устроены 2 вент-канала (вент-шахты) отводящие воздух (вытягивающие) из Кухни и С/узла. Откуда возьмется новый воздух? По проекту -из окон, дверей и щелей. А если у вас хорошие герметичные окна и двери ? Вот и получается, что при закрытых окнах или засоренных шахтах эта система должным образом не работает, а при открытых – сквозняк, пыль, холод и шум проникают внутрь.
Именно здесь и помогает рекуператор воздуха Marley.
Он позволяет проветрить индивидуально каждое помещение без открытия окон и без вашего постоянного участия. Он сам выводит (вытягивает) старый воздух на улицу забирая и сохраняя в себе его тепло, а потом сам поставляет внутрь свежий, очищенный от пыли и подогретый воздух. На это действие Рекуператор Marley расходует всего 3,5-7 Вт/ч (= 1 энергосберегающая лампочка), а проветривает помещение до 25 м2. При парном использовании площадь может быть увеличена до 60 м2.
Для домов с индивидуальным отоплением – очень важно свойство рекуператора сохранять энергию воздуха. Вам не придется его вновь нагревать (как скажем в чисто приточных системах и бризерах) Значит каждую минуту вы будете экономить ваши средства.
Зачем нужна вентиляция?
Наверное, нет такого городского человека, до которого не доходила бы информация о качестве воздуха, которым ему приходится дышать. И тем не менее, планируя ремонт или строительство, не всем приходит в голову мысль о необходимости оснащения жилища, офиса или другого обитаемого помещения качественной системой вентиляции.
А ведь все, что в последующем будет окружать, может также являться дополнительным источником отравления и без того не свежего воздуха. Это и строительно-отделочные материалы, содержащие асбест, и мебель, сделанная из ДСП, и бытовая или офисная техника, и многие другие источники, которые в том или ином количестве присутствуют в любом доме.
Кроме того сам человек в результате своей жизнедеятельности выделяет в час около 16 литров углекислоты. А ведь приходится еще пользоваться бытовой химией, электрической или газовой плитой. О курении уже можно и не говорить. Пластиковые же стеклопакеты и плотные двери надежно и надолго сохраняют все перечисленное.
Откуда же взять тогда 20 л кислорода, необходимые человеку за тот же час? Правильно, можно открыть окно и… в удовольствие подышать уличной копотью, вдохнуть полную грудь пыли и запустить пожить комаров и мух. Зимой и вовсе можно устроить домашним или сослуживцам приятный сквознячок на уровне -25°C.
Второй вариант – установить систему вентиляции и забыть про проблемы с воздухом. Хорошо спроектированная и смонтированная вентиляция MARLEY позволит не только удалить постоянно накапливающиеся пыль, запахи и углекислый газ, но и обеспечить приток очищенного воздуха без лишних затрат. В дополнение к вентиляции MARLEY можно установить кондиционер, и тогда Вы будете иметь совершенную и комфортную климатическую систему.
Что такое Рекуператор?
Рекуператор свежего воздуха – это устройство, позволяющее проветривать помещение практически без потери энергии.
В чем же заключается принцип работы рекуператора от MARLEY?
Основной секрет в инновационном керамическом теплообменнике, через который воздух поступает 70 секунд из помещения, нагревая его, затем 70 секунд — в помещение, снимая с него тепло.
При этом, затраты на электроэнергию ничтожно малы. Прибор потребляет всего 3,5 – 7 Вт (не больше выключенного телевизора).
За счет своей конструкции он не займет много места в Вашем помещении (все агрегаты расположены в толщине стены) и будет смотреться, как хороший вентилятор.
Прибор не создает сквозняков, точнее позволяет их избежать, его можно устанавливать даже за шторами, т.к. он забирает и подает воздух в стороны по стене.
Словом, рекуператор — это прекрасное решение для вентиляции.
За счет чего происходит нагревание холодного поступающего воздуха в рекуператоре Marley MEnV-180?
В рекуператоре расположен керамический элемент с тонкими гранями, которые сохраняют тепло отводимого воздуха. После смены направления движения воздуха керамический элемент отдает тепло поступающему холодному воздуху. Тем самым электроэнергии на нагрев не расходуется.
Как и когда обслуживать рекуператор Marley?
Все очень просто, раз в полгода о необходимости проверить состояние фильтра Вам даст знать лампочка на устройстве. Обслуживание происходит изнутри помещения, открутив 2 болта Вы извлечете керамический элемент и фильтр. Керамический элемент промывается под струей воды, а фильтр пылесосится, либо заменяется новым. С наружной стороны защитный фильтр легко извлекается из колпака и так же пылесосится. Вся процедура занимает 15 минут.
Рекуператор воздуха: что это такое и принцип работы
Принцип работы рекуператора воздуха и его эффективность
Виды рекуператоров воздуха и чем они отличаются друг от друга
Как сделать рекуператор воздуха самостоятельно: инструкция
Что такое рекуперация? Переводя дословно с латинского, recuperatio – обратное получение чего-либо. Касательно воздуха это понятие подразумевает возврат тепловой энергии, уносимой воздухом через систему вентиляции. Именно о таком устройстве, помогающем вентилировать и не охлаждать помещения, мы поговорим в этой статье, в которой вместе с сайтом stroisovety.org ответим на вопросы: что такое рекуператор воздуха, как он работает, какие виды бывают у этого устройства и как его изготовить самостоятельно.
Рекуператор воздуха для частного дома схема
Принцип работы рекуператора воздуха и его эффективность
По своей сути, рекуператор воздуха для частного дома представляет собой ничто иное, как теплообменник, в котором выходящий из помещения воздух отдает большую часть своего тепла входящему с улицы – он его подогревает, предупреждая таким способом охлаждение помещений.
Комнатные рекуператоры воздуха фото
Устроен такой прибор достаточно просто – чтобы понять его принцип работы, представьте себе квадратную трубу, по которой выходящий из помещения воздух идет вдоль нее, а приходящий – поперек. При этом оба потока не смешиваются благодаря специальным теплопроводящим пластинам. Примерно так и устроен современный рекуператор для воздуха, в котором один поток отдает тепло другому. Эффективность работы такого устройства достаточно высока. Приведу цифры – если поток исходящего из помещения воздуха имеет температуру 21˚C, а на улице мороз -10˚C, то после рекуператора уличный воздух будет иметь температуру от +2 до +6˚C. Представляете, сколько энергии можно сэкономить с помощью этого устройства? Много! Счета за оплату энергоносителей снизятся в несколько раз.
Принцип работы рекуператора воздуха схема
Виды рекуператоров воздуха и чем они отличаются друг от друга
Разновидностей рекуператоров не так уж много. Можно выделить всего четыре основных вида, которые получили наибольшее распространение.
- Пластинчатые рекуператоры воздуха. Это самый распространенный тип подобных устройств, являющийся одновременно дешевым и эффективным. Их КПД составляет от 40 до 65%. Устроены такие агрегаты достаточно просто и в своей конструкции не имеют никаких трущихся подвижных частей. А это в первую очередь надежность – они практически не ломаются. Кроме того, комнатные рекуператоры воздуха пластинчатого типа не потребляют никакой энергии – они работают без ее использования. К недостаткам пластинчатых устройств можно отнести его обмерзание в зимний период года и невозможность осуществления влагообмена.
- Роторные рекуператоры воздуха. Этот тип рекуператора для своей работы требует наличия электрической энергии – его электроника, в зависимости от перепада температур снаружи и внутри помещения, подбирает оптимальное количество оборотов ротора, благодаря чему не происходит обледенения этого устройства зимой. Принцип его работы основан на вращении теплообменника, по которому проходит уличный воздух в потоке исходящего теплого воздуха. Именно благодаря такому вращению КПД роторных рекуператоров может достигать 87%. Кроме того, это устройство позволяет частично возвращать влагу назад в помещение, не пересушивая воздух. И еще, регулируя скорость вращения теплообменника, можно изменять скорость теплоотдачи. Рекуператор воздуха фото
- Рециркуляционный водяной рекуператор. У этого устройства КПД практически такое же, как и у пластинчатого рекуператора (50-65%), только в отличие от последнего, он имеет сложную конструкцию, в которой роль посредника для передачи тепла выполняет жидкость (вода или антифриз). Конструктивно эта система имеет некоторое сходство с отоплением. Роль котла в нем играет теплообменник, установленный на вытяжном канале вентиляции, а вместо батареи имеется теплообменник, который установлен на канале всасывания уличного воздуха. В первом вода нагревается, а во втором отдает свое тепло. Единственным преимуществом рециркуляционного водяного рекуператора является возможность установки его отдельных частей в разных местах. К влагообмену эти устройства не приспособлены, а без электроэнергии обходиться не могут, таков уж принцип работы искусственной циркуляции теплоносителя.
- Крышный рекуператор воздуха – для квартиры или дома не подойдет. Это промышленные установки, используемые в системах вентиляции магазинов, цехов и других подобных помещений. Их КПД составляет 55-68%. Основное их отличие – это низкие расходы на обслуживание и установку. Кроме того, благодаря своему месторасположению они экономят подпотолочное пространство, что является немаловажным в таких помещениях, как торговые залы и цехи, где и без того хватает другого оборудования.
Вот и все, можно сказать, что с видами рекуператоров мы разобрались, теперь самое время ознакомиться с возможностью самостоятельного изготовления этого устройства для дома или квартиры.
Рекуператор воздуха для квартиры и дома фото
Как сделать рекуператор воздуха самостоятельно: инструкция
Изготавливаются рекуператоры воздуха своими руками не так сложно, как может показаться на первый взгляд – чтобы было понятнее, изложим по пунктам всю технологию изготовления.
- Изготавливаем теплообменник. Для этого приобретаем листовой оцинкованный металл, пластиковые полосы шириной 2см и толщиной 4мм, а также четыре пластиковых фланца. Металл нарезается одинаковыми прямоугольными пластинами 300 на 300мм, пластиковые полосы режутся в такой же размер. После этого можно приступать к сборке теплообменника. На первый лист с двух сторон приклеиваются с помощью нейтрального силикона пластиковые полосы (плашмя), после чего на эти полосы приклеивается следующий лист. На него пластиковые полосы клеятся с другой стороны листа – если на первом вы приклеили их слева и справа, то на втором нужно будет приклеить спереди и сзади. Снова клеим лист металла. Смотрим что получилось. Должно выйти так – если между первым и вторым листом металла просматривается пустота, то между вторым и третьим она не должна просматриваться. Идея в том, чтобы исходящий поток воздуха проходил через одну полость, а входящий через другую поперек исходящего потока воздуха. Таким вот образом клеим теплообменник, пока он не достигнет высоты 150мм.
- Когда вся эта конструкция высохнет и превратится в цельное изделие, с четырех ее сторон, там, где должен проходить воздух, приклеиваем фланцы, а оставшееся пространство, которое не попало под фланец, герметизируем нейтральным силиконом.
- Помещаем получившийся теплообменник в заранее изготовленный корпус – сделать его можно из любых подходящих материалов (фанера, ДСП, ОСБ).
Как сделать рекуператор воздуха своими руками
Готовый рекуператор подключается к системе приточно-вытяжной вентиляции. Что и куда вы подсоедините не важно, главное – соблюсти вход и выход потоков воздуха.
Вот, в принципе, и весь рекуператор воздуха пластинчатого типа действия. Ну и в заключение пару советов, которые помогут избавиться от некоторых проблем в процессе эксплуатации этого устройства. Во-первых, корпус рекуператора лучше утеплить – например, оклеить его изнутри теплоотражающим экраном или вспененной полиуретановой подложкой для ламината (так он будет меньше промерзать в зимнее время). Во-вторых, для размораживания теплообменника и удаления с пластин наледи лучше сделать байпас на приточной магистрали и периодически производить подачу свежего воздуха в помещения через него. В такой ситуации теплая исходящая струя будет растапливать наледь.
Автор статьи Александр Куликов
Рекуператор воздуха, виды и принцип работы
Для обеспечения качественной вентиляции и в то же время сохранения тепла в доме придуманы рекуператоры. Смысл их заключается в том, что закачивается свежий воздух из внешней среды, а отработанный выкачивается из помещения. Все это может быть выполнено последовательно либо одновременно. Поток воздуха из улицы и комнаты движется по разным каналам, но входящий воздух нагревается от выходящего из квартиры. Хорошие рекуператоры примерно 90% тепла возвращают в дом, а худшие – только 50%. Рекуператоры выглядят как обычные вытяжки в стене. Они могут быть разных диаметров и форм. Поскольку воздух заходит чуть-чуть холоднее, рекуператоры устанавливают ближе к потолку. Данные устройства, как правило, монтируются в одной комнате, но для циркуляции свежего воздуха по всему помещению следует установить вентиляционные решетки между комнатами. Виды рекуператоров Сегодня их ассортимент настолько велик и разнообразен, что определиться с выбором достаточно сложно. В основном, рекуператоры можно разделить на две группы: • прямоточные; • реверсивные. Первый вариант сконструирован таким образом, что каналы для потока разделены пластиной. Воздух движется в разных направлениях одновременно. Они обычно дешевле, потому что конструкция довольно простая. Здесь не используется электронная система управления. Недостаток их заключается в том, что такие рекуператоры дают плохой возврат тепла – приблизительно 70% на самой минимальной скорости. К примеру, если на улице – 6 °С, то в дом будет заходить – 2 °С. При морозах наружная часть такого типа рекуператора чаще обмерзает. Второй вариант функционирует за счет движущегося теплообменника либо качания воздуха «туда и обратно». То есть, воздух проходит сквозь теплообменник в одну сторону, приблизительно, полминуты, потом останавливается и движется обратно. Теплообменник от комнатного воздуха нагревается, и, когда уличный воздух попадает туда, тепло передается свежему воздуху. Их плюс – они дают хорошее энергосбережение, минус – стоят дороже. Теплообменники в реверсных рекуператорах бывают медные, фарфоровые, целлюлозные. Что касается последнего вида, то он предназначен для регионов с теплой зимой, поскольку в более холодных зонах он просто-напросто промерзнет. В зимнее время возле рекуператора более выражен конденсат. А значит, на агрегате могут возникнуть намерзания. Чтобы этого не случилось, он должен работать постоянно, хотя бы в минимальном режиме.
Компания Дышим Дома устанавливает реверсивные рекуператоры VAKIO BASE и VAKI LUMI. Подробную информацию вы можете получить тут или по телефону (343) 361-12-18.
Вентиляция с рекуперацией: принцип работы
Приточно-вытяжная вентиляция с рекуперацией.
Проветривание комнат даёт ощутимый эффект, но в зимнее время года это ведёт к лишним финансовым затратам на отопление. С другой стороны, стоит лишь закрыть окно и воздух снова становится спертым, застоявшимся. Намного лучше показывает себя современная вентиляция, а справиться с теплопотерями поможет система вентиляции с рекуперацией.
Принцип работы приточно-вытяжной вентиляции, оборудованной рекуператором.
По своей сути данная система представляет собой воздухообмен помещения с улицей. А рекуперация заключается в теплообмене потоков воздуха внутри керамического элемента, благодаря передаче накопленной энергии входящему воздуху от исходящего потока. То есть, выходящий на улицу воздух отдаёт своё тепло направляющемуся воздуху в дом, что позволяет свежему воздуху оставаться таковым и быть тёплым. Исходящий поток, наоборот, остывает, делая систему в целом энергосберегающей.
Пассивные и активные системы вентиляции.
Наиболее просты в устройстве естественные или пассивные проветриватели (их иногда называют приточные каналы или клапаны), так как являются энергонезависимыми и не требуют для работы электроэнергии и наличия вентиляторов. Применяются они для создания притока свежего воздуха с улицы без необходимости открывать окна или балконные двери.
Специальный клапан устанавливается прямо в наружную стену и выводится на улицу. Монтируется он обычно на уровне окна или выше, по полу его никогда не пускают.
Преимуществом же такого решения, как правило, является возможность регулировки потока воздуха по типу жалюзи, за счёт установленной внутри конической решётки. Дополнительно приточный клапан оборудован москитной сеткой и фильтром от уличной пыли и пыльцы. Приточный клапан полезен в случаях, когда вытяжная вентиляция в квартире работает эффективно.
Активные проветриватели, по сути, мало отличаются в устройстве от первых, но в конструкции обязательно присутствуют вентиляторы. Они нагнетают воздух принудительно, что поднимает эффективность на порядок. С другой стороны, появляется зависимость от электричества, в конструкции больше подвижных частей, подверженных износу и поломкам.
Активная вентиляция по способу проветривания.
Среди активных систем различают приточные и приточно-вытяжные системы вентиляции. Первый тип характеризуется принудительной закачкой воздуха в помещение с естественным пассивным его отводом через каналы вытяжной вентиляции. Возможности их установки весьма разнообразны. Монтаж возможен и непосредственно в воздушный канал или в стену. Принципиальным условием является эффективная вытяжная вентиляция, иначе, постоянное нагнетание воздуха в помещение приводит к повышенному давлению и некоторые метеочувствительные люди этот дискомфорт ощущают на себе.
Несмотря на высокую производительность приточной вентиляции, приточно-вытяжная модель – эффективнее. В ней потоки нагнетаются принудительно вентиляторами в помещение и на улицу, что обеспечивает более активный воздухообмен и постоянную циркуляцию воздуха. Обычно в них конструктивно реализована рекуперация, так как в противном случае дом быстро остынет.
Преимущество наличия рекуператора.
Правильно подобранная и смонтированная вентиляция с рекуператором обладает по-настоящему массой преимуществ. Она даёт постоянный приток свежего и чистого воздуха без пыли, а отработанный выводится, не задерживаясь в доме. При этом, утечки тепла практически исключены, что уменьшает затраты на отопление в холода. А в жаркую же погоду система отчасти выполняет функцию кондиционера, убирая горячий воздух из помещения и охлаждая поступающий.
Правильная организация системы вентиляции для дома и квартиры.
Современные строительные нормы подразумевают создание качественной теплоизоляции. Отчасти для этого требуется максимальная герметичность дверных и оконных проёмов. По этой причине без вентиляции воздух во внутренних помещениях имеет тенденцию застаиваться. При постоянном проживании он ко всему прочему переувлажняется, обедняется кислородом и скапливается много пыли. То есть без притока свежего воздуха просто не обойтись, хотя бы ради здоровья. Простые системы вентиляции окажут положительное влияние на климат в доме, но увеличат затраты на отопление. А вот системы с рекуперацией обеспечат и постоянным притоком свежего воздуха, и не дадут теплу покинуть стены дома.
Выбор такой системы для квартиры происходит на основании трёх факторов – производительности, толщины наружных стен и уровня шума.
Производительность определяется примерно в 30 кубов в час на одного человека. То есть, при проживании в квартире двух человек, стоит брать систему, способную на пропуск 60 кубов воздуха за один час. Важно, что подача воздуха осуществляется постоянно, а используем мы его только то время, пока находимся дома. Поэтому, при проектировании используются поправочные коэффициенты. Например, Российский СНИП по отоплению, вентиляции и кондиционированию, рекомендует применять коэффициент до 0,3. С учетом загрузки жилых помещений рекомендуется установка рекуператора с производительностью 40 куб.метров в час для комнат площадью до 20 кв.м., а для комнат до 30 кв.м. – установить рекуператор с производительностью 60 куб.м. в час. Логика расчета такова, что подобные приборы имеют несколько уровней производительности и на средней скорости подачи, приборы должны полностью заменить воздух в комнате быстрее чем за 2 часа.
Также необходимо знать толщину стен, чтобы подобрать необходимые расходные материалы. Система рекуператора размещается в круглом канале длиной 50 см и состоит из мотора, фильтров и керамического теплообменника, что занимает около 30 см.
То есть, если стена дома меньше 30 см, потребуется дополнительная накладка – бленда. С её помощью можно установить рекуператор в стену от 18 см. В случае, если толщина стены превышает 50 см., используется дополнительный канал для установки в стену до 1 метра. Иногда внешняя стена комнаты граничит с застекленной лоджией, но и на этот случай есть решение – воздушный канал можно проложить через лоджию. используются трубы плоского или круглого сечения.
По шуму для квартиры подойдут системы в районе 20-40 децибел. Если выбранная модель более громкая, стоит устанавливать её в гостиной, столовой, а не в спальне.
Подбор модели вентиляции для частного дома в общих чертах не отличается от выбора вентиляции для квартиры. Однако для некоторых особенно больших или вытянутых комнат лучше ставить несколько рекуператоров, хотя обычно хватает двух. В остальном, каждое жилое помещение рекомендуется оборудовать одним прибором.
Особое внимание уделяется влажным зонам, к которым относятся кухня, ванная и туалет. Эти помещения должны быть обязательно оборудованы естественной вытяжной вентиляцией. В квартирах вытяжная вентиляция организована в виде сателлитов, по которым воздух отводится из каждого помещения в основной вентиляционный канал здания. Если вытяжка слабая, применяются вентиляторы для ванной, санузла или кухни.
Возможный дополнительный функционал рекуператора.
В простейшем виде рекуператор состоит из керамического элемента – теплообменникаи электрического мотора – вентилятора. В современных моделях применяется реверсивный вентилятор с обоюдоравным сечением лопасти крыльчатки.
Он затягивает воздух с улицы и вытягивает из дома. Но у него могут быть несколько режимов работы – только приток или вытяжка, выбор интенсивности рекуперации и ночной режим с пониженным шумом. Управлять им можно непосредственно выключателем, дистанционным пультом или с мобильного приложения по сети Wi-Fi. Также рекуператор может быть оснащен дополнительными фильтрами, от одного до нескольких. Они могут защищать от пыли, пыльцы или представлять собой многослойный картридж. Встроенные функции шумоподавления весьма полезны в шумной местности.
В производственной программе фирмы Marley Deutschland GmbH Вы можете выбрать вентиляцию с рекуперацией для квартиры, своего дома или офиса.
Характеристики | Marley MEnV-180 | Marley MEnV-180-II | Marley MEnV-180-PLUS-60 | Marley MEnV-180-PLUS-60-WiFi |
---|---|---|---|---|
Производительность в режиме рекуперации, куб.м./час. | 16-25-37 | 16-25-37 | 16-25-37-60 | 16-25-37-60 |
Коэффициент рекуперации, % | 85 | 85 | 85 | 85 |
Рекомендованная площадь, кв.м. | 20 | 20 | 30 | 30 |
Режимов работы | 3+1 | 3+1 | 4+1 | 4+1 |
Уровень шума, дБ(А) | 22-29-35 | 22-29-35 | 16-25-30-37 | 16-25-30-37 |
Потребление энергии, Вт. | 3-4,5-7 | 3-4,5-7 | 3-4,5-7-11 | 3-4,5-7-11 |
Управление, контроллер | Пульт ДУ | Пульт ДУ | Пуль ДУ | Пульт ДУ + пульт WiFi |
Гильза-утеплитель | EPS (2 halfpipe) | EPP (3 сегмента) | EPS (2 halfpipe) | EPS (2 halfpipe) |
Внешний козырек | ASA -Пластик | ASA -Пластик | ASA -Пластик | ASA -Пластик |
Внутренняя панель | ABS+UV | ABS+UV Глянец | ABS+UV | ABS+UV |
Очистка воздуха | G3+F5 | G3+F5 | G3+F5 | G3+F5 |
Опция, фильтр F8, F9 | + | + | + | + |
Опция, угольный фильтр | + | + | + | + |
Гарантия, лет | 2 | 2 | 2 | 2 |
принцип работы, преимущества, недостатки и технология изготовления своими руками
Чистый и свежий воздух в помещении является залогом хорошего самочувствия, здоровья и крепкого сна. Чтобы обеспечить поступление свежего воздуха необязательно проветривать частный дом или квартиру привычным способом. Для этого есть специальные устройства, которые работают 24 часа в сутки, и обеспечивают непрерывное вентилирование помещения — рекуператоры
Принцип работы
Принцип работы устройства для рекуперации воздуха
Рекуператор — это техническое устройство, в котором происходит теплообмен между потоками воздуха, выходящими и входящими в помещение по системе приточной, принудительно или вытяжной вентиляции. При этом потоки воздуха не смешиваются.
В зимнее время тёплый поток воздуха, выходящий из помещения, при прохождении через конструкцию рекуператора нагревает рабочие элементы. Холодный поток воздуха, входящий в систему вентиляции, проходя через рекуператор, нагревается за счёт теплообмена с рабочими элементами.
Когда температура снаружи помещения выше, чем в помещении, то происходит обратный процесс. Тёплый воздушный поток охлаждается в рекуператоре благодаря рабочим элементам, через которые прошёл прохладный отработанный воздух.
При сравнении с обычной системой вентилирования наличие рекуператора позволяет сохранить до 2/3 тепловой энергии. Это уменьшает потребление энергии на 30–40%, что позволяет снизить расходы на оплату центрального отопления, обогревательного оборудования и системы кондиционирования.
Типы конструкций
Роторный рекуператор и схема его работы
Конструктивно рекуператор представляет собой прямоугольный, квадратный или круглый блок, с обеих сторон которого располагаются отверстия для ввода приточного и вытяжного вентиляционного канала.
В зависимости от конструкции блока и его составных элементов рекуператор подразделяется на следующие типы:
- Роторный — устройство с вращающимся ротором в корпусе из нержавеющей или оцинкованной стали. Вращение ротора вокруг горизонтальной оси происходит за счёт подачи электропитания. Рабочими элементами являются алюминиевые гофрированные ленты, намотанные на специальный вал. В процессе вращения пластины соприкасаются с тёплым и холодным потоком воздушной массы. КПД роторного рекуператора — до 85%. Одни из главных недостатков устройства — это большой размер и наличие движущихся элементов, которые изнашиваются и требуют периодической замены.
Устройство дял рекуперации воздуха с рабочими элементами в виде пластин
- Пластинчатый — наиболее популярный тип рекуператоров. Состоит из тонких панелей, соединённых и аккуратно уложенных друг на друга с небольшим вентиляционным зазором. Металлические панели нагреваются за счёт тёплого воздуха, который проходит сквозь устройство. Панели путём теплообмена передают накопленную энергию холодному потоку. КПД устройства — 40–65%. Отличаются высокой надёжностью и возможностью работы без затрат электроэнергии.
Рекуператор с конструкцией из стальных трубок
- Трубчатый — устройство, состоящее из металлических трубок диаметром до 10 мм, скомпонованное в цилиндрический воздуховод. По принципу работы аналогично пластинчатому рекуператору. Нагретый отработанный воздух проходит по трубкам, отдавая часть тепловой энергии, а холодный воздух, перемещаясь в пространстве между трубками, забирает часть тепла. За счёт простой конструкции рекуператор имеет высокую надёжность и занимает мало места.
Рециркуляционный водяной рекуператор для вентиляции в общественных местах
- Рециркуляционный водяной — устройство с промежуточным теплообменником в виде жидкости. Обычно, используется дистиллированная вода или антифриз. В отличие от остальных типов циркуляционный рекуператор имеет более сложную конструкцию. Жидкость циркулирует по каналам между вытяжным и приточным каналом за счёт нагнетающего насоса. КПД рекуператора — до 65%.
В общественных помещениях большой площади применяются крышные рекуператоры воздушного потока, которые устанавливаются в существующую систему вентиляции. КПД крышного рекуператора не превышает 65–68%, но из-за малых габаритов и высокой надёжности устройство идеально для использования в загромождённых помещениях. Для работы в условиях жилого дома и квартиры не подходит.
Видео: что такое рекуперация воздуха
Как выбрать для частного жилья
Пластинчатый рекуператор идеально подходит для использования в частных и загородных домах
КПД устройства напрямую влияет на объем сохраняемой тепловой энергии, срок службы и надёжность рекуператора. Конструкции с ротором наиболее эффективны, но в их работе участвует множество движущихся элементов и требуется электроэнергия. Пластинчатые и трубчатые рекуператоры имеют меньший КПД, но они бесшумны и для их функционирования не требуется электропитание.
Выбор рекуператора для частного жилья в первую очередь должен основываться на требованиях владельца и учитывать, какая система вентиляции присутствует в доме. Для жилого дома оптимально устройство приточно-вытяжной вентиляции с роторным рекуператором.
Эта система будет обладать достаточной мощностью, способной не только осуществлять теплообмен между воздушными потоками, но и регулировать уровень влажность подаваемого воздуха, за счёт регуляции оборотов устройства.
Проветриватель с рекуперацией для квартиры
Если площадь дома небольшая, то вместо роторного рекуператора можно установить устройство с металлическими пластинами. Это сделает систему не только более надёжной, но и позволит сохранить автономность приточной вентиляции.
Для типовых квартир одно из важнейших требований при выборе рекуператора — это его габариты. В большинстве квартир система вентиляции представлена только общедомовой вытяжкой, а поступление свежего воздуха происходит за счёт обычного проветривания.
Для квартир оптимальным выбором будет установка приточно-вытяжных клапанов или установок с рекуперацией воздуха. Это компактные устройства, которые монтируются в стену. Управляющий блок снабжается дистанционным управлением, что позволяет выставить оптимальные параметры вентилирования и нагрева воздуха.
Расчёт мощности системы
Проветриватель для больших помещений повышенной мощности
Габариты и мощность рекуператора влияют на производительность устройства. Чем больше площадь вентилируемого помещения, тем более мощный рекуператор потребуется. Поэтому прежде чем приобретать устройство следует провести расчёт мощности рекуператора.
Для этого используется формула: Q = 0,335 x L x (T1 – T2), где:
- Q (Вт) – мощность устройства;
- L (м3/ч) – объём воздуха, необходимый для нормальной жизнедеятельности человека. Согласно норме для одного человека требуется 60 м3/ч;
- Т1 (оС) – температура воздуха после рекуперации;
- Т2 (оС)– температура воздуха до рекуперации.
Например, рассчитаем мощность рекуператора для квартиры, где проживает 3 человека. Температура воздуха, транспортируемого в помещения, должна равняется не менее 20 оС, а с улицы поступает воздух температурой -10 оС. Q = 0,335 x 180 x 32 = 1929,6 Вт.
При проведении расчёта следует брать минимально возможную температуру (в среднем за 5 лет), которая наблюдалась в регионе, где планируется установка рекуператора. Если устройство не планируется использовать как основной источник обогрева помещения, то показатели температуры подбираются индивидуально.
Изготовление пластинчатого рекуператора воздуха для дома своими руками
Изготовление пластинчатого рекуператора своими руками
Рекуператор воздуха — это дорогое оборудование, рассчитанное на длительный срок использования. Срок окупаемости может варьироваться от 3–8 лет, в зависимости от начальной стоимости агрегата. При возможности устройство для рекуперации воздуха можно изготовить самостоятельно. Для этого лучше всего подойдёт конструкция на основе металлических пластин.
Плюсы и минусы
К преимуществам пластинчатого рекуператора можно отнести:
- простая и надёжная конструкция, не требующая замены рабочих элементов в ходе эксплуатации;
- простая технология монтажа без применения специализированного инструмента;
- КПД до 80% в зависимости от параметров воздуха;
- минимальные затраты энергопотребления для работы приточного и вытяжного вентилятора;
- высокий срок службы за счёт отсутствия движущихся частей и износа деталей;
- возможность модернизации путём добавления большего количества пластин.
- при отсутствии электроэнергии воздух транспортируется по системе вентиляции за счёт естественной тяги.
Главным недостатком пластинчатого рекуператора является образование конденсата на рабочих элементах. При низкой температуре воздуха влага замерзает, что приводит к падению пропускной способности вентиляции. Для решения проблемы применяются специальные устройства, которые прогревают конструкцию рекуператора.
Необходимые материалы
Материал для сборки пластинчатого теплообменника
Для изготовления пластинчатого рекуператора потребуется следующий материал:
- оцинкованный металл толщиной 0,7–1,5 мм, текстолит, полипропилен или поликарбонат общей площадью 7–8 м2;
- тонкие деревянные рейки, пробковая подложка или оргстекло толщиной 2–3 мм;
- нержавеющий металл, пластик, фанера или древесно-стружечная плита;
- пластиковый или металлический фланец для воздуховода в количестве 4 шт.;
- стальной уголок 20×20 мм;
- силиконовый герметик;
- оцинкованные саморезы.
Для равномерной циркуляции воздуха потребуется приобрести 2 вентилятора нужной мощности. В качестве фильтров можно использовать специальные бумажные изделия для вентиляции, которые требуют замены раз в 3–4 месяца.
Технология изготовления
Проклейка изоляционной прокладки на металлическую пластинку
Перед изготовлением рекуператора потребуется подготовить электролобзик, ножовку по металлу, шуруповёрт, молоток, строительный нож, перчатки и защитные очки. Технология изготовления пластинчатого рекуператора состоит из следующего:
- Листовой металл нарезается с помощью ножовки по металлу на пластины размером 20×30, 30×30 или 30×40 см. Размер пластин зависит от габаритов и расчётной мощности рекуператора. Желательно, чтобы общая площадь подготовленных пластин была не менее 3–4 м2.
- Из тонкой деревянной рейки или пробковой подложки нарезаются прокладки шириной 1–1,5 см. Длина равна длине пластины. Далее, из фанеры или ДСП выпиливается 2 полотна такого же размера, как и пластины.
Сборка пластин в единый теплообменник
- На каждую металлическую пластину приклеивается три прокладки — одна по центру и две по противоположным сторонам. После приклейки все пластины собираются в стопку. Для этого каждая полоса промазывается универсальным клеем, после чего панели укладываются друг на друга.
- При укладке каждая последующая панель поворачивается на 90о. Полученная стопка панелей аккуратно прижимается грузом. Для этого сверху укладывается прокладка из дерева, на которую можно положить груз весом 5–7 кг.
- Стальной уголок подгоняется по высоте стопки с панелями. Всего потребуется 4 заготовки, которые прикручиваются по углам стопки. Для крепления используются оцинкованные саморезы.
Установка теплообменника в корпус из дерева или металла
- Приступают к сборке корпуса из фанеры, ДСП, пластика или металла. Высота и длина корпуса будет равна диагонали пластинчатого элемента, а ширина — высоте стопки с пластинами. После раскройки выполняется сборка корпуса с помощью шуруповёрта и саморезом.
- После сборки корпуса на его боковые стенки наносится разметка под монтаж фланцев. Диаметр отверстия должен быть равен сечению воздуховода. Для пропила используется электролобзик. В завершение в отверстия устанавливаются фланцы.
Корпуса для пластинчатого теплообменника
- Внутри корпуса монтируются направляющие под теплообменный короб. Направляющие можно изготовить из уголка. Для фиксации направляющей к коробу используются саморезы и силиконовый герметик. После производится сборка рекуператора. Теплообменный блок помещается в корпус.
Если в корпусе предусмотрено место, то на входе воздушных потоков закрепляются бумажные или тряпичные фильтры и вентиляторы. После сборки рекуператора можно переходить к монтажу в существующую систему вентиляции.
Как самостоятельно сделать трубчатый коаксиальный рекуператор
Трубчатый рекуператор из пластиковой трубы и алюминиевый трубок
По принципу работы трубчатый рекуператор аналогичен пластинчатому типу. Как и в предыдущем случае, при умении работать с электроинструментом системы можно собрать своими руками.
Преимущества и недостатки конструкции
К достоинствам устройства для рекуперации воздуха на основе трубок можно отнести:
- простая конструкция без использования движущихся деталей;
- простой монтаж и быстрое обслуживание в ходе эксплуатации;
- КПД рекуператора до 65–70% в зависимости от условий;
- небольшие размеры и низкий уровень шума.
К существенным недостаткам, как и у пластинчатого рекуператора, следует отнести риск обмерзания в зимний период. Вследствие чего нарушается естественный уровень тяги, и свежий воздух плохо поступает в помещение. Для предотвращения этого в системе должен быть установлен электрический или водяной калорифер.
Материалы для изготовления устройства
Материал для изготовления трубчатого рекуператора
Для сборки трубчатого рекуператора потребуется:
- алюминиевые или стальные полые трубки диаметром 3–5 мм;
- пластиковый канал для вентиляции;
- пластиковый соединитель для воздуховода;
- оцинкованный металл или пластик размером 50×50 см;
- силиконовый герметик.
Сечение воздуховода и соединителей выбирается индивидуально. Оптимально, если сечение будет равно диаметру воздуховода в системе вентиляции. При необходимости возможна установка вентиляторов на приток и отвод воздуха.
Процесс изготовления
Алюминиевые трубки и заготовки для изготолвения теплообменника
Для изготовления рекуператора потребуется электрическая дрель, ножовка по металлу, штангенциркуль, рулетка и карандаш. Последовательность действий при изготовлении трубчатого рекуператора следующая:
- Производится подгонка пластикового канала по длине. При этом учитывается, что длина рабочих элементов будет на 15–20 см короче, чем длина самого корпуса. На конец трубы надевается пластиковый соединитель.
- Измеряется внутреннее сечение пластикового канала при помощи штангенциркуля. Далее, из пластика или металла выпиливаются две заготовки с учётом измеренного сечения. В заготовке просверливаются отверстия сечением равным внешнему диаметру металлической трубки.
- Согласно длине корпуса выполняется подрезка стальных трубок. Количество трубок равно количеству отверстий в заготовке. Для сборки потребуется надставить трубу между двух заготовок. Зазор между отверстием и трубкой заполняется герметиком или эпоксидным клеем.
- После сборки трубчатого теплообменника конструкция помещается в пластиковый корпус. Стык между заготовкой и корпусом заделывается эпоксидным клеем. После высыхания конструкция готова к установке.
В качестве вентилятора лучше использовать изделия канального типа, которые одеваются на один из монтажных концов рекуператора. Для установки описанной выше конструкции достаточно использовать соединитель соответствующего сечения, герметик и обжимной хомут.
Видео: трубчатый рекуператор своими руками
Как узнать КПД системы рекуперации
Формула расчёта КПД рекуператора
При самостоятельном изготовлении рекуператора не всегда удаётся собрать устройство с максимальным показателем КПД. Тем более КПД рекуператора зависит от температуры и влажности воздуха снаружи помещения.
Для расчёта КПД рекуператора используется формула: H = (tр — tу) / (tд — tу), где:
- tр – температура воздуха после рекуперации;
- tу – температура воздуха до рекуперации;
- tд – температура отработанного воздуха, выходящего из помещения.
Итоговое значение следует умножить на 100%. Например, рассчитаем КПД устройства для конкретных условия. Температура воздуха снаружи — 5 оС, после рекуперации — 17 оС, в помещении — 24 оС. КПД = (17 – 5) / (24 – 5) = 0,63 * 100% = 63%.
Установка и подключение системы рекуперации
Для подсоединения рекуператора используется обжимной хомут, герметик и алюминиевая клейкая лента
Процесс установки рекуператора зависит от типа устройства. В большинстве случаев устройство монтируется по аналогии с другими составными элементами в системе. К примеру, чтобы установить пластинчатый рекуператор, технология изготовления которого была описана выше, потребуется:
- С помощью напарника конструкция поднимается под потолок. Выполняется разметка под отверстия для крепления стальных шпилек. Далее, просверливаются отверстия, забиваются пластиковые пробки и вкручиваются стальные шпильки нужной длины.
- Рекуператор снова поднимается под потолок и фиксируется на нужной высоте. Для этого между шпильками монтируется стальная пластина, которая будет удерживать рекуператор на весу.
- Для подсоединения устройства к системе воздуховодов потребуется обработать часть соединяемого фланца и обжимного хомута растворителем. После этого внутренняя часть хомута промазывается герметиком и фиксируется к фланцу. Аналогичным образом монтируют воздуховод к рекуператору. Места стыков проклеиваются алюминиевой клейкой лентой.
Видео: монтаж проветривателя с системой рекуперации
Отзывы
Современные производители предлагают богатый выбор устройств различной мощности для рекуперации воздуха в жилых помещениях. Если вы планируете приобретение такого оборудования, то рекомендуем ознакомиться с отзывами покупателей.
Видео: отзыв о рекуператоре «Экоклим»
https://
Рекуператор воздуха — это современное и практичное оборудование, которые должно устанавливаться в каждую систему приточно-вытяжной вентиляции. Помимо экономии электроэнергии, рекуператор выравнивает уровень влажности и фильтрует воздух, поступающий в помещение, что особенно важно в условиях современных городов.
Роторный рекуператор
Роторный рекуператор – один из видов рекуператоров воздуха. Принцип работы данного рекуператора – роторный теплообменник, вращающийся с определенной скоростью. Этот теплообменник вращаясь нагревается в зоне вытяжного канала, а затем охлаждается в зоне приточного канала. В результате тепло из вытяжного воздуха передается в приточный. Так-же возвращается часть влаги в результате конденсации из вытяжного воздуха и испарения в потоке приточного воздуха с улицы. Роторные рекуператоры обладают более высоким КПД, чем пластинчатые, за счет отсутствия режима разморозки. В пластинчатом рекуператоре для разморозки требуется периодически пускать поток холодного воздуха через байпасный (обводной) канал напрямую в помещение мимо рекуператора, а в роторном автоматикой регулируется скорость вращения ротора таким образом, чтобы не случилось обмерзания.
Откуда же берется конденсат и обмерзание теплообменника рекуператора… Всё просто. Из вытяжного теплого воздуха. В вытяжном воздухе содержится влага. При прохождении через холодные стенки рекуператора (т.к. эти стенки сильно охлаждаются приточным воздухом с улицы) воздух сжимается по законам физики и, как из губки, из него начинает выпадать лишняя влага. Вот она то как раз и замерзает на стенках теплообменника, превращаясь в лёд.
Роторный рекуператор обладает следующими достоинствами:
1. Высокий КПД засчет отсутствия обмерзания. (63-87%)
2. Частичный возврат влаги. Позволяет обходиться без увлажнителей воздуха.
3. Регулируемая скорость вращения рекуператора. Позволяет регулировать интенсивность возврата тепла исходя из общей производительности приточно-вытяжной установки с роторным рекуператором.
4. Компактность. По сравнению с пластинчатым рекуператором занимает значительно меньше места, а следовательно и приточно-вытяжная установка с роторным рекуператором будет существенно компактнее чем с пластинчатым.
А теперь поговорим о недостатках роторных рекуператоров:
1. Передача вытяжного воздуха в приток. В микроканалах роторного рекуператора поочередно проходят то вытяжной, то приточный потоки воздуха – часть вытяжного воздуха попадает в приток. Для минимизации этого явления на роторные рекуператоры устанавливаются продувочные сектора, в которых микроканалы рекуператора продуваются приточным воздухом, который сразу отправляется обратно в вытяжку. А при таком действии снижается общий КПД, т.к. часть сохраненного тепла летит с продувочным воздухом обратно туда, где мы это тепло и взяли – в вытяжку.
2. Сложная конструкция роторного теплообменника включает в себя сам ротор, ремень, привод ротора. Чем больше составляющих – тем чаще техобслуживание и вероятность выхода из строя. С одной стороны это хорошо, т.к. преимущества данной конструкции весомы и роторные рекуператоры не уступают по объемам продаж пластинчатым. А с другой – если у Вас нет желания или специальных людей, которые будут обслуживать рекуператор – это несомненно минус.
3. Привод роторного рекуператора потребляет электроэнергию. Немного конечно, но если делать проекцию на годы эксплуатации – получится кругленькая сумма. Хотя с другой стороны затраты на питание привода роторного рекуператора в сотни раз меньше, чем выгода от его использования.
Мы производим и поставляем роторные рекуператоры.
особенности, принцип работы, разновидности. Установка, минусы и плюсы
Вопросы энергоэффективности жилых домов, коммерческих и промышленных объектов являются одними из наиболее актуальных в современной климатической инженерии. Снижение расходов на отопление или охлаждение помещений достигается с помощью самых разных инструментов. К числу устройств, которые повышают эффективность использования тепловой энергии, относится рекуператор воздуха. Он представляет собой теплообменник специальной конструкции, совмещенный с системой вентиляции. Его устанавливают в жилых помещениях, производственных цехах, больницах, на транспортных средствах и других объектах.
Конструкция и принцип действия
Система для рекуперации воздушных масс состоит из двух частей. Через первую отводится воздух из помещения, а через вторую производится нагнетание свежего уличного воздуха. Внутри рекуператора между этими потоками происходит обмен теплом. В летнее время воздух из помещений охлаждает приточные воздушные массы, а в зимнее – наоборот, нагревает. Это позволяет снижать нагрузку на системы отопления и кондиционирования, обеспечивать экономию электроэнергии, поддерживать в помещении комфортный и здоровый микроклимат.
В большинстве моделей рекуператоров реализована система автоматизированного управления. Она обеспечивает оптимальный режим работы без вмешательства человека. Также многие разновидности устройств оснащаются фильтрами. Благодаря этому оборудование не только подогревает или охлаждает поступающий с улицы воздух, но и очищает его от пыли и аллергенов.
Виды устройств
- роторные. Их конструкция включает вращающийся элемент – барабан. Он изготавливается из алюминиевой фольги, которая отличается очень высокой теплопроводностью. Частота вращения ротора контролируется электроникой и определяется перепадом температур воздуха внутри и снаружи помещения. КПД устройства составляет до 87 %;
- пластинчатые. Наиболее простой и популярный вид рекуператоров. Оборудование не имеет подвижных частей, не потребляет энергию и практически не ломается. К недостаткам пластинчатой конструкции относится сравнительно невысокий КПД (65 %), возможность замерзания зимой, отсутствие влагообмена;
- рециркуляционные водяные. В таких рекуператорах теплообмен осуществляется с помощью воды. Поскольку исходящий и входящий потоки воздуха отделены друг от друга, происходит только передача тепла между ними, без обмена влажностью. Коэффициент полезного действия находится в пределах 40-70 %;
- камерные. Оборудование этого типа имеет камеру с особой заслонкой. В нее поступает теплый воздух из помещения и нагревает ее стенки, после чего отводится наружу. Затем заслонка разворачивается и в камеру поступает холодный уличный воздух. Он нагревается от стенок и подается в помещение. КПД устройства может составлять до 80 %.
Плюсы и минусы
К преимуществам рекуператоров относится сокращение расходов на отопление и кондиционирование до 30-50 %, постоянная работа вентиляции, которая позволяет удалять избыточную влажность, неприятные запахи, углекислый газ, а также дает возможность полностью заменить естественное проветривание. При использовании фильтра обеспечивается эффективная очистка свежего воздуха и защита вентиляционного оборудования от загрязнений.
Есть у оборудования и определенные недостатки. Это шум при работе, необходимость периодической очистки каналов. Также нужно отметить необходимость больших разовых финансовых вложений. Правда, эти расходы довольно быстро окупаются.
Критерии выбора рекуператора
При покупке устройства нужно учитывать:
- климатические условия. Например, пластинчатые модели хорошо подходят для умеренного климата;
- собственное потребление электроэнергии;
- класс воздушного фильтра. Модели G3 обеспечивают очистку только от крупных механических частиц. Самый высокий класс – F7 очищает воздух даже от мелкой пыли;
- размер помещения;
- способ управления (автоматический или ручной).
Также большое значение имеет фирма-производитель рекуператора. Предпочтение необходимо отдавать продукции проверенных компаний, которые изготавливают оборудование из качественных коррозионно-стойких материалов.
Принцип работы теплообменника рекуператора.
Контекст 1
… разнообразие имеющихся в настоящее время теплообменников можно разделить на реверсивные (рекуператор), регенеративные (регенератор) и с прямым контактом (прямой контактный теплообменник) [1]. Первый тип – это рекуператорный теплообменник, рис. 1, тепло передается из точки B напрямую потоком в точку A через материал термоинтерфейса. Обычный теплообменник Рекуператора включает теплообменник с воздушным охлаждением (Рисунок 2), кожухотрубный теплообменник (Рисунок 3) [2] и пластинчатый теплообменник (Рисунок 4) [3,4]….
Context 2
… для поддержания постоянной температуры резервуара с горячей водой использовалась электрическая ложка мощностью 300 Вт с регулятором постоянной температуры для нагрева воды, показанной на рисунке 9. Инфракрасный термо- В этом эксперименте некачественным тепловизором был ThermoPro TP-8, показанный на рисунке 10, тепловизор использовался для наблюдения за двухмерным распределением температуры. В начале эксперимента добавьте воду до заданного уровня. Затем электрическая ложка нагрева должна нагреть воду до требуемой температуры, которая составляла 30 ° C, 40 ° C и 50 ° C….
Контекст 3
… начало эксперимента, добавление воды до заданного уровня, затем нагревание электрической ложкой для нагрева воды до тех пор, пока температура воды не достигнет требуемой температуры. 30˚C, 40˚C и 50˚C. Эти две группы металлических гофрированных листов (W-типа и N-типа) были затем погружены в резервуар для горячей воды с тем же уровнем воды, рис. 11. Тем временем другая термопара была плотно прикреплена к поверхности другой стороны корпуса. металлический гофрированный лист (холодная сторона), регистрируют все распределения температуры во времени….
Context 4
… на рисунке 12, исходное тепловое изображение N-типа при температуре окружающей среды 20 ° C и температуре воды 30 ° C. В момент времени, равный нулю, температура холодной стороны (S1) металлического гофрированного листа составляла 20,1 ° C, что соответствует тепловому балансу между металлическим листом и окружающей средой. …
Контекст 5
… время равно нулю, температура холодной стороны (S1) металлического гофрированного листа составляла 20,1 ° C, что соответствует тепловому балансу между металлическим листом и окружающей средой.Через 60 секунд, рис. 13, температура S1 достигла 21,5 ° C, что было всего на 1,4 ° C по сравнению с начальной температурой, это также означало, что скорость повышения температуры была очень медленной при разнице температур 10. ˚C между температурой воды и температурой окружающей среды. Состояние было полностью изменено, когда к металлическому гофрированному листу была вставлена тепловая трубка (W-образная). На Рисунке 14 показаны те же условия испытаний, что и на Рисунке 13, но вместо этого использовалась W-образная. …
Контекст 6
… 60 секунд, рис. 13, температура S1 была до 21,5 ° C, и это было всего на 1,4 ° C разницы по сравнению с начальной температурой, это также означало, что скорость повышения температуры была очень медленной из-за разницы температур. 10˚C между температурой воды и температурой окружающей среды. Состояние было полностью изменено, когда к металлическому гофрированному листу была вставлена тепловая трубка (W-образная). На Рисунке 14 показаны те же условия испытаний, что и на Рисунке 13, но вместо этого использовалась W-образная. Температура холодной стороны (S1) металлического гофрированного листа составляла 20 ° С.7 ° C в исходном состоянии, однако через 60 секунд температура S1 достигла 25,5 ° C, рис. 15, в этом случае температура повысилась на 4,8 ° C от начального состояния. …
Context 7
… 60 секунд, рисунок 13, температура S1 была до 21,5 ° C, что составляло всего 1,4 ° C по сравнению с исходной температурой, она также была Это означает, что скорость повышения температуры была очень медленной при разнице температур 10 ° C между температурой воды и температурой окружающей среды.Состояние было полностью изменено, когда к металлическому гофрированному листу была вставлена тепловая трубка (W-образная). На Рисунке 14 показаны те же условия испытаний, что и на Рисунке 13, но вместо этого использовалась W-образная. Температура холодной стороны (S1) металлического гофрированного листа составляла 20,7 ° C в исходном состоянии, однако через 60 секунд температура S1 достигла 25,5 ° C, рисунок 15, температура повысилась на 4,8 ° C от начального состояния. в этом случае. …
Context 8
… состояние было полностью изменено, когда металлический гофрированный лист был вставлен с тепловой трубкой (W-типа), на рисунке 14 показаны те же условия испытаний, что и на рисунке 13, но использовалась буква W. -type вместо этого.Температура холодной стороны (S1) металлического гофрированного листа составляла 20,7 ° C в исходном состоянии, однако через 60 секунд температура S1 достигла 25,5 ° C, рисунок 15, температура повысилась на 4,8 ° C от начального состояния. в этом случае. Результат показал, что разница температур 4,8 ° C для W-типа была больше, чем разница температур 1,4 ° C для N-типа. …
Context 9
… результат очевидно показал, что разница температур 4,8 ° C для W-типа была больше, чем разница температур 1.4˚C для N-типа. На рисунке 16 показано сравнение повышения температуры между типами W и N при температуре воды 30 ° C, красная линия представляет скорость повышения температуры для W-типа, а синяя линия представляет скорость повышения температуры для воды. N-тип. Кривая показывает, что красный был быстрее синего. …
Context 10
… на рисунке 17, исходное тепловое изображение N-типа при температуре окружающей среды 20 ° C и температуре воды 40 ° C. Когда момент времени равен нулю, температура холодной стороны (S1) металлического гофрированного листа составляла 23.6˚C. …
Контекст 11
… в момент времени, равного нулю, температура холодной стороны (S1) металлического гофрированного листа составляла 23,6 ° C. На рисунке 18 показано, что температура S1 остается неизменной на уровне 23,6 ° C через 60 секунд, в этом случае изменения температуры почти не произошло. На рисунке 19 показаны условия испытаний для W-типа в исходном состоянии, температура холодной стороны (S1) металлического гофрированного листа составляла 21,7 ° C. …
Контекст 12
… 18 показал, что температура S1 не изменилась 23.6 ° C через 60 секунд, в этом случае почти не было изменения температуры. На рисунке 19 показаны условия испытаний для W-типа в исходном состоянии, температура холодной стороны (S1) металлического гофрированного листа составляла 21,7 ° C. Но через 60 секунд температура S1 поднялась до 30,6 ° C, рисунок 20, при этом температура повысилась на 8,9 ° C по сравнению с начальным состоянием. …
Контекст 13
… через 60 секунд температура S1 достигла 30,6 ° C, рисунок 20, температура повысилась на 8,9 ° C от начального состояния.На рисунке 21 показано сравнение повышения температуры между типами W и N при температуре воды 40 ° C, красная линия представляет скорость повышения температуры для W-типа, а синяя линия представляет скорость повышения температуры для N- тип. Кривая показывает, что красный был быстрее синего. …
Контекст 14
… В случае металлического гофрированного листа с тепловой трубкой температура поверхности листа будет более однородной, как показано на рисунках 15, 20 и 25.Причина, по которой температура поверхности однородна, заключалась в том, что тепловая трубка не только передает тепло в осевом направлении листа, но также распределяет тепло в направлении XY листа, в результате чего температура поверхность листа однородная. …
Рекуператоры – обзор | Темы ScienceDirect
6.5.3 Рекуператоры тепла
Рекуператоры тепла – это оборудование, которое позволяет утилизировать часть энергии кондиционированного воздуха внутри помещений, оборудованных системой механической вентиляции.Они состоят из теплообменника, который приводит вытяжной воздух в помещении в тепловой контакт с наружным воздухом для обновления. Зимой подогревают снаружи холодный воздух, а летом дают ему остыть; у них также есть фильтры, улучшающие качество воздуха. Таким образом, можно рекуперировать значительную часть энергии, используемой для нагрева или охлаждения воздуха в помещении, которая была бы полностью потеряна без рекуператора. Обычно они поставляются в виде коробок с некоторыми мундштуками, которые устанавливаются в системе вентиляции, включая вентиляторы для нагнетания и возврата, см. Рис.6.25.
Рисунок 6.25. Внешний вид рекуператора тепла.
Есть три типа рекуператоров: с перекрестным потоком, , в котором горячий и холодный воздух циркулируют перпендикулярно друг другу, так что они пересекаются, с параллельным потоком и с роторным потоком , который имеет ротор с высокой теплоотдачей. инерция, которая вращается, приводимая в движение двигателем.
Технический кодекс устанавливает в своем Основном документе механическую или гибридную систему вентиляции жилых помещений. Следовательно, если вентиляция гибридного типа, размещение рекуператоров не может быть рассмотрено, так как приток не проходит через решетки и воздуховоды.Однако в третичном секторе, в тех местах, где воздушный поток, выбрасываемый наружу, превышает 0,5 м 3 / с, RITE требует наличия блоков рекуперации тепла.
Рассмотрим рекуператор тепла, в котором мы используем 0 и 1 для состояний всасываемого воздуха на входе и выходе рекуператора и 2 и 3 для состояний вытяжного воздуха также на входе и выходе рекуператора. Использование V˙ для объемного расхода воздуха, который вводится в здание, который, как мы предполагаем, совпадает с расходом, который удаляется (рекуператор уравновешен), где ρ 0 , ρ i – плотности наружного и внутреннего воздуха соответственно, и, учитывая, например, некоторые зимние условия, из баланса энергии можно записать уравнение
(6.85) V˙ϱi (h3 − h4) + W˙v = V˙ρ0 (h2 − h0) + Q˙l
, где мощность вентиляторов W˙v используется для преодоления потерь напора, а Q˙l – тепловые потери, которые приблизительно можно считать незначительными.
Работа рекуператора характеризуется его эффективностью , ASHRAE 1993 [48], которая, как мы знаем, определяется как теплообмен по отношению к максимуму, который мог бы быть обменен. Учитывая, что коэффициент теплоемкости для двух воздушных потоков одинаков, эффективность рекуператора составляет
(6.86) ε = T1 − T0T2 − T0
Эффективность меняется от часа к часу, поскольку внешняя температура меняется, поэтому более привлекательно определить среднюю сезонную эффективность , которая будет равна
(6,87) ε¯ = ∑i = 1HεihiH
, где h i – количество часов, в которых эффективность равна ε i и H – общее количество часов в периоде, например , отопления.Обращаясь теперь к определению эффективности, если мы примем во внимание, что рекуператор является адиабатическим, поскольку уменьшение энтальпии вытяжного воздуха совпадает с увеличением энтальпии воздуха для обновления, то его энергоэффективность будет равна единице. Теперь мы также можем определить КПД, считая энергию воздуха в помещении единственно доступной, поскольку энергия в состоянии 3 является частью потерь, это
(6,88) η = V˙ρ0 (h2 − h0) V˙ρih3 + W˙v = 1 − V˙ρih4 + Q˙lV˙ρih3 + W˙v
Как и для эффективности, наиболее интересным значением является средняя сезонная эффективность , которая рассчитывается аналогичным образом.
С другой стороны, беря баланс эксергии в рекуператоре, мы имеем
(6,89) V˙ρi (b2 − b3) + W˙v = V˙ϱ0 (b1 − b0) + I˙rec
, где термин I˙rec охватывает эксергию, связанную с потерями тепла и внутренними эксергетическими деструкциями из-за термической и механической необратимости. Фактически, поскольку эксергия воздуха в состоянии 3 окончательно разрушается, она должна быть включена в понятие необратимости, а поскольку состояние 0 – это окружающий воздух, баланс эксергии дает
(6.90) V˙ρ2b2 + W˙v = V˙ρ0b1 + I˙T, rec
при эксергетическом КПД оборудования
(6,91) φ = V˙ρ0b1V˙ρ2b2 + W˙v = 1 − I˙ T, recV˙ρ2b2 + W˙v
Таким же образом, как для КПД и энергоэффективности, мы рассчитаем средний сезонный КПД по эксергии рекуператора.
Восстановление. Типы рекуператоров | Сервер Сервис
Рекуператор – устройство, предназначенное для освежения воздуха и нормализации температуры. Он предотвращает потерю тепла в помещении зимой, а летом предотвращает попадание наружного воздуха.
Что означает рекуперация?
Рекуперация (от латинского «recuperatio» означает «возврат») – это частичный возврат энергии для ее повторного использования. Эта система позволяет эффективно проветривать помещение и экономить на отоплении. Рекуператор легко накапливает 2/3 тепла, уходящего от отопления.
Принцип действия рекуператора
Приточно-вытяжные системы вентиляции в наши дни стали более популярными. Так, зимой их используют для очистки свежего воздуха и обогрева его обогревателем.Теплый чистящий воздух нагревает и разбавляет загрязненную воздушную массу. «Вытяжной» воздух попадает в вытяжную вентиляцию, а затем выводится на улицу.
Основная цель рекуперации – нагрев поступающего воздуха. Вы также можете установить температуру самостоятельно. Практически все современные модели оснащены системой автоматического управления. Приточно-вытяжная система вентиляции с рекуператором подает теплый воздух, очищенный от пыли и аллергенов. Это также снижает потребление тепла.
Типы рекуператоров
Самым популярным типом является пластинчатый теплообменник, но есть и другие типы.Ниже представлена дополнительная информация о рекуператорах.
Рекуператор с пластинчатым теплообменником (Пластинчатый рекуператор)
Рекуператор с пластинчатым теплообменником (пластинчатый рекуператор)Применяется в приточно-вытяжных системах вентиляции. Его отличительной особенностью является разделение приточного и отводимого воздушных потоков, которые не могут быть смешаны из-за конструктивных особенностей устройства.
Преимущества:1. КПД до 92%.
2.Не требует частого обслуживания.
3. Нет деталей, потребляющих электроэнергию. Значит, можно сэкономить электроэнергию.
Недостатки:1. Иногда возникает необходимость в пересечении воздуховодов в рекуператоре. Не всегда можно провести
2. Пластинчатый теплообменник зимой можно замерзнуть. Во избежание этого необходимо время от времени отключать приточный вентилятор или использовать перепускной клапан.
3. Такие рекуператоры используются только для теплообмена.
Рекуператор с роторным теплообменником (Роторный рекуператор)
Рекуператор с роторным теплообменником (Роторный рекуператор)Роторные рекуператоры занимают второе место по популярности. Принцип действия основан на прохождении приточного и вытяжного воздуха через вращающийся теплообменник.
Преимущества:1. КПД около 85%.
2. Роторный теплообменник может возвращать тепло и влажность.
3.Можно контролировать общий КПД рекуператора
. Недостатки:1. Для обеспечения притока свежего воздуха необходимо установить дополнительные фильтры на приточно-вытяжной.
3. В рекуператоре есть мобильные компоненты и потребители электроэнергии. Поэтому необходимо проводить регулярный ремонт (по сравнению с пластинчатыми рекуператорами).
Рекуператор оборотный
Рекуператор рециркуляции водыРекуператоры рециркуляции воды применяются в приточно-вытяжных системах вентиляции.Они передают тепловую энергию от отдельно стоящего вытяжного теплообменника к приточному за счет воды. антифриз или другие теплоносители.
Теплообменники (приточный и вытяжной) расположены отдельно друг от друга и соединяются посредством теплоизоляционного трубопровода. Такие рекуператоры используются не так часто из-за низкого КПД и частого обслуживания.
Рекуператор крыши
Рекуператор крышиКровельные рекуператоры установлены на крыше здания.Он идеально подходит для больших зданий, таких как торговые центры, производственные цеха, тканевые здания и другие. Такой тип рекуператоров позволяет сэкономить место под потолком, так как теплообменники устанавливаются снаружи.
Преимущества:
- КПД 68%.
- Установлен на крыше. Специальная система крепления исключает дополнительную нагрузку на конструкцию крыши.
- Низкие затраты и эксплуатационные расходы.
Server Service Компания занимается профессиональным проектированием и монтажом систем вентиляции.Также мы занимаемся поставкой вентиляционных установок со встроенными рекуператорами из Китая и Европы по лучшим ценам.
Установка системы вентиляции с рекуперацией позволяет:
- Повышение эффективности вентиляции;
- Снижение потребления тепловой и электрической энергии;
- Создание комфортной атмосферы в помещении.
Есть вопросы? Позвоните нам: +998 (70) 202-01-32 и вы получите всю необходимую информацию.
Работа теплообменника
Работа теплообменника для передачи тепла воздух-воздух
Работа теплообменников происходит за счет передачи энергии в виде тепла от одной среды (воздуха, другого газа или жидкости) к другой. Работа теплообменников, в которых существует полное разделение между двумя средами и не происходит промежуточного накопления тепла, известна как «рекуперация тепла рекуператора». Recair разрабатывает и производит рекуператоры для передачи тепла воздух-воздух.
Работа теплообменника с максимально возможным КПД
Чтобы максимизировать теплопередачу при работе теплообменника, форма промежуточной стенки в теплообменнике спроектирована так, чтобы расстояние, которое должен проходить тепловой поток, было минимальным. В связи с этим необходимо учитывать допустимый перепад давления в теплообменнике.
Два воздушных потока движутся противотоком, но параллельно друг другу вдоль промежуточной стенки, которая в принципе бесконечно велика (на практике максимально велика).Поток холодного воздуха может быть нагрет до температуры выходящего потока горячего воздуха и наоборот (поток горячего воздуха может быть охлажден до температуры выходящего потока холодного воздуха).
Для равномерного распределения воздушных потоков по ширине теплообменника в промежуточной стенке выполнены треугольные каналы; эти каналы имеют малый диаметр и такое же сопротивление. Таким образом, воздушные потоки во всех каналах идентичны. Каждый треугольный канал окружен тремя одинаковыми каналами, в которых происходит противоток.Таким образом можно достичь чрезвычайно высокого КПД теплообменника 93%. Благодаря тому, что теплообменник обеспечивает очень небольшую разницу температур между входящим наружным воздухом и выходящим внутренним воздухом, в результате создается очень комфортный климат для жизни и работы.
Для получения дополнительной информации перейдите по этой ссылке:
»Работа теплообменника
принцип работы и опции. Конструктивные особенности, назначение
Вентиляция в помещениях может быть естественной, принцип которой основан на природных явлениях (стихийный тип) или на воздухообмене через специально проделанные отверстия в здании (организованная вентиляция).Однако в этом случае, несмотря на минимальные материальные затраты, зависимость от сезона, климата, а также отсутствие возможности очищать воздух не полностью удовлетворяют потребности людей.
Приточно-вытяжная вентиляция, воздухообмен
Искусственная вентиляция позволяет создать более комфортные условия для находящихся в помещении, но ее конструкция требует определенных финансовых вложений НС. К тому же она достаточно энергоемкая … Чтобы компенсировать плюсы и минусы обоих типов систем вентиляции, чаще всего используется их комбинация.
Any is Система искусственной вентиляции легких по своему назначению подразделяется на приточную и вытяжную. В первом случае оборудование должно обеспечивать принудительную подачу воздуха в помещение. В этом случае отработанные воздушные массы естественным образом отводятся наружу.
Видео – Приточно-вытяжная вентиляция с рекуперацией в квартире
Рекуператоры
Приточно-вытяжная вентиляция – это комплексный подход к проблеме вентиляции.
Приточно-вытяжные установки обеспечивают активный приток свежего воздуха в помещение и отвод вытяжных воздушных масс из помещения. Все более популярными становятся рекуператоры, преимуществом которых является подача свежего воздуха, подогретого до комнатной температуры, с минимальным годовым потреблением энергии.
Рекуператоры возвращают до 95% тепла обратно в помещение, практически не создавая дополнительных затрат энергии. Таким образом, рекуператоры являются наиболее экономичным типом вентустановки с подачей теплого воздуха в помещение.Это достигается за счет накопления тепла вытяжного воздуха помещения на теплообменниках.
Рекуператоры последних моделей совмещают в себе функции приточно-вытяжной вентиляции и тонкой очистки воздуха от аллергенов, оснащены датчиками углекислого газа, теплообменниками специальной конструкции для поддержания оптимального влажностного режима и возможностью управления со смартфона.
Установка рекуператора эффективно помогает справиться с духотой, контролем влажности помещения, плесени и сырости в доме, конденсата на пластиковых окнах.
Мы являемся официальным дилером ведущих производителей и можем предоставить гарантию лучшей цены. Вы можете выбрать и купить любую модель рекуператора с доставкой по Москве и России.
Известно, что существует несколько типов систем вентиляции помещений. Наиболее распространена естественная вентиляция, когда приток и отток воздуха осуществляется через вентиляционные шахты, открытые форточки и окна, а также через трещины и протечки в конструкциях.
Естественная вентиляция, конечно, нужна, но ее эксплуатация связана с массой неудобств, к тому же с ее устройством добиться экономии практически невозможно.А движение воздуха через приоткрытые окна и двери с натяжкой называть вентиляцией – скорее всего, это будет обычная вентиляция. Для достижения необходимой интенсивности циркуляции воздушных масс окна должны быть открыты круглосуточно, что недостижимо в холодное время года.
Именно поэтому установка принудительной или механической вентиляции считается более правильным и рациональным подходом. Иногда без принудительной вентиляции обойтись просто невозможно, чаще всего к ее устройству прибегают в производственных помещениях с худшими условиями труда.Оставим в стороне промышленников и производственников и обратим внимание на жилые дома и квартиры.
Часто в погоне за сбережениями владельцы коттеджей, загородных домов или квартир вкладывают огромные деньги в утепление и герметизацию своего жилища и только потом понимают, что из-за недостатка кислорода трудно оставаться в помещении.
Решение проблемы очевидно – нужно устроить вентиляцию. Подсознание подсказывает, что лучшим вариантом будет энергосберегающий вентиляционный прибор.Отсутствие правильно продуманной вентиляции может превратить ваш дом в настоящую газовую камеру. Избежать этого можно, выбрав наиболее рациональное решение – приточно-вытяжную вентиляцию с рекуперацией тепла и влаги.
Что такое рекуперация тепла
Под восстановлением понимается его сохранение. Выходящий воздушный поток изменяет температуру (нагревает, охлаждает) воздуха, подаваемого вентиляционной установкой.
Система вентиляции с рекуперацией тепла
Конструкция предполагает разделение воздушных потоков для предотвращения смешивания.Однако использование роторного теплообменника не исключает возможности попадания потока отработанного воздуха во входящий.
Сам «Рекуператор воздуха» представляет собой устройство, обеспечивающее рекуперацию тепла от выхлопных газов. Теплообмен осуществляется через перегородку между теплоносителями, при этом направление движения воздушных масс остается неизменным.
Наиболее важная характеристика рекуператора определяется эффективностью или эффективностью рекуперации. Его расчет определяется из соотношения максимально возможной выработки тепла и фактически полученного тепла за теплообменником.
КПД рекуператоров может варьироваться в широком диапазоне – от 36 до 95%. Этот показатель определяется типом используемого рекуператора, скоростью воздушного потока через теплообменник и разницей температур между выходящим и входящим воздухом.
Виды рекуператоров, их достоинства и недостатки
Существует 5 основных типов рекуператоров воздуха:
- пластинчатый;
- Поворотный;
- с промежуточным теплоносителем;
- Камера;
- Тепловые трубки.
Пластинчатый
Пластинчатый рекуператор отличается наличием пластиковых или металлических пластин. Отводимый и набегающий потоки проходят по противоположным сторонам теплопроводных пластин, не контактируя друг с другом.
В среднем КПД таких устройств составляет 55-75%. Отсутствие подвижных частей можно считать положительной характеристикой. К недостаткам можно отнести образование конденсата, который часто приводит к замерзанию рекуперативного устройства.
Есть пластинчатые рекуператоры с влагопроницаемыми пластинами, обеспечивающими отсутствие конденсата. КПД и принцип работы остались неизменными, исключена возможность обмерзания рекуператора, однако при этом исключена возможность использования устройства для снижения уровня влажности в помещении.
В роторном рекуператоре передача тепла осуществляется с помощью ротора, который вращается между приточным и вытяжным каналами. Это устройство отличается высоким КПД (70-85%) и пониженным энергопотреблением.
К недостаткам можно отнести небольшое перемешивание потоков и, как следствие, распространение запахов, большое количество сложной механики, что усложняет процесс обслуживания. Роторные рекуператоры эффективно используются для осушения помещений, поэтому идеально подходят для установки в плавательных бассейнах.
Рекуператоры с промежуточным теплоносителем
В рекуператорах с промежуточным теплоносителем за теплообмен отвечает вода или водно-гликолевый раствор.
Вытяжной воздух обеспечивает нагрев охлаждающей жидкости, которая, в свою очередь, передает тепло входящему потоку воздуха. Воздушные потоки не смешиваются, устройство отличается относительно низким КПД (40-55%), обычно используется в производственных помещениях с большой площадью.
Камерные рекуператоры
Отличительной особенностью камерных рекуператоров является наличие заслонки, разделяющей камеру на две части. Высокий КПД (70-80%) достигается за счет возможности изменения направления воздушного потока перемещением заслонки.
К недостаткам можно отнести небольшое перемешивание потоков, передачу запахов и наличие движущихся частей.
Тепловые трубки – это целая система трубок, заполненных фреоном, который испаряется при повышении температуры. В другой части трубок фреон охлаждается с образованием конденсата.
К преимуществам относится исключение смешивания потоков и отсутствие движущихся частей. КПД достигает 65-70%.
Следует отметить, что ранее рекуперативные агрегаты из-за значительных габаритов использовались исключительно в производстве; Сейчас на строительном рынке представлены рекуператоры с небольшими габаритами, которые можно успешно использовать даже в небольших домах и квартирах.
Главное преимущество рекуператоров в том, что нет необходимости в воздуховодах. Однако этот фактор также можно считать недостатком, так как для эффективной работы требуется достаточный зазор между вытяжным и приточным воздухом, иначе свежий воздух сразу же вытягивается из помещения. Минимально допустимое расстояние между встречными воздушными потоками должно быть не менее 1,5-1,7 м.
Для чего нужна регенерация влаги?
Рекуперация влаги необходима для достижения комфортного соотношения влажности и температуры в помещении.Лучше всего человек чувствует себя при уровне влажности 50-65%.
В отопительный период и без того сухой зимний воздух теряет еще больше влаги из-за контакта с горячим теплоносителем, часто уровень влажности падает до 25-30%. С этим показателем человек не только ощущает дискомфорт, но и наносит значительный вред своему здоровью.
Помимо того, что сухой воздух отрицательно влияет на самочувствие и здоровье человека, он также наносит непоправимый ущерб мебели и столярным изделиям из натурального дерева, а также картинам и музыкальным инструментам.Кто-то может сказать, что сухой воздух помогает избавиться от сырости и плесени, но это далеко не так. С подобными недостатками можно бороться за счет утепления стен и установки качественной приточно-вытяжной вентиляции с поддержанием комфортного уровня влажности.
Вентиляция с рекуперацией тепла и влаги: схема, виды, преимущества и недостатки
Что такое вентиляция с рекуперацией тепла. Как работает эта система, какие бывают типы, их плюсы и минусы.
Вентиляция с рекуперацией тепла
В период энергетического кризиса и удорожания энергоресурсов использование энергосберегающих технологий во всех сферах хозяйствования становится особенно актуальным.В этом вопросе нельзя недооценивать роль рекуператоров тепла. Инженерные сооружения не только существенно экономят газ для отопления помещений, но и практически бесплатно возвращают тепло обратно в полезное использование, предназначенное для выброса в атмосферу.
Работа воздухообмена с воздушным отоплением
Приточно-вытяжная вентиляция с рекуперацией тепла решает три основные задачи:
- обеспечение помещений свежим воздухом;
- возврат тепловой энергии, уходящей с воздухом через систему вентиляции;
- предотвращает попадание холодных струй в дом.
Схематично процесс можно рассмотреть на примере. Организация воздухообмена необходима даже в морозный зимний день с температурой за окном -22 ° С. Для этого включенная приточно-вытяжная система при работающем вентиляторе качает воздух с улицы. Он просачивается через фильтрующие элементы и, уже очищенный, попадает в теплообменник.
По мере прохождения воздух успевает прогреться до + 14- + 15 ° С. Такую температуру можно считать достаточной, но не соответствующей санитарным нормам для проживания.Для достижения параметров комнатной температуры необходимо довести воздух до требуемых значений с помощью функции нагрева до + 20 ° С в самом рекуператоре с помощью маломощного (водяного, электрического) нагревателя (водяного, электрического). – 1 или 2 кВт. При таких температурных показателях в помещения попадает воздух.
Обогреватель работает в автоматическом режиме: при понижении температуры наружного воздуха он включается и работает до тех пор, пока не прогреется до требуемых значений. При этом сточный поток уже нагрет до «комфортных» 18 или 20 градусов.Его удаляют с помощью встроенной вентиляционной установки, предварительно пропустив через кассету теплообмена. В нем он отдает тепло набегающему холодному воздуху с улицы, и только потом уходит в атмосферу из рекуператора с температурой не более 14-15 ° С.
Внимание! Монтаж металлопластиковых конструкций нарушает естественный приток свежих воздушных потоков в квартиру или дом. Проблема решается принудительной системой подачи ненагретого воздуха с улицы, но при этом сводит на нет эффективность энергосбережения за счет пластиковых окон.Приточно-вытяжная вентиляция с рекуператором – комплексное решение проблемы отопления с одновременно работающим воздухообменом, активный метод экономии энергии.
Преимущества приточно-вытяжной системы с функцией обогрева
- Обеспечивает свежий воздух, улучшает качество воздуха в помещении.
- Предотвращает отложение влаги на поверхности, образование конденсата, плесени и грибка.
- Устраняет условия появления вирусов и бактерий в помещении.
- Экономия затрат на электрическую и тепловую энергию за счет восстановления потерь из исходящих потоков около 90% тепла.
- Обеспечивает регулярный воздухообмен.
- Универсальность исполнения систем теплообмена расширяет область их применения на объектах разного типа.
- Экономичное использование и уход. Техническое обслуживание, включающее очистку, замену фильтров, проверку всех узлов и компонентов системы, проводится ежегодно только один раз.
Внимание! Эксплуатация рекуператоров в старых жилых домах, где естественный воздухообмен обеспечивается деревянными оконными конструкциями, трещинами в деревянных перекрытиях и протечками в дверях, будет характеризоваться неэффективностью.Наибольший эффект от рекуперации тепла наблюдается в современных зданиях с качественной изоляцией помещений и хорошей герметичностью.
Виды теплообменников
Наиболее распространены четыре категории единиц:
- Поворотного типа. Работает от сети. Экономично, но технически сложно. Рабочий элемент – вращающийся ротор с нанесенной по всей поверхности металлической фольгой. Теплообменник с наружным воздухом, протекающим внутрь, реагирует на разницу температур снаружи и внутри помещения.Это регулирует скорость его вращения. Меняется интенсивность подачи тепла, зимой предотвращается обмерзание рекуператора, что позволяет воздуху не пересыхать. КПД устройств достаточно высокий и может составлять 87%. При этом можно смешивать набегающие потоки (до 3% от общего количества) и запахи и загрязнения перелива.
- Пластинчатые модели. Они считаются самыми «популярными» из-за демократичной цены и экономичности. Благодаря алюминиевому теплообменнику она достигает 40-65%.Благодаря отсутствию вращающихся и фрикционных узлов и деталей они считаются простыми в исполнении и надежными в эксплуатации. Воздушные потоки, разделенные алюминиевой фольгой, не диффундируют, они проходят по обе стороны от теплопроводных элементов. Разновидность: пластинчатая модель с пластиковым теплообменником. Его КПД выше, но в остальном он имеет те же характеристики.
Внимание! Пластинчатые устройства проигрывают поворотным в том, что они замораживают и сушат воздух. Обязательно его дополнительное постоянное увлажнение.Идеально подходит для влажных бассейнов.
- Рециркуляционный вид. Его «хитрость» заключается в его сложной конструкции и использовании жидкого носителя (воды, водно-гликолевого раствора или антифриза) в качестве промежуточного звена при передаче тепла. На вытяжном рукаве установлен теплообменник, который забирает тепло от потока отработанного воздуха и нагревает им жидкость. Другой теплообменник, но уже на входе воздуха с улицы, отдает тепло поступающему воздуху, не смешиваясь с ним. КПД таких установок достигает 65%, во влагообмене они не участвуют.Для работы требуется электричество.
- Крышные устройства эффективны (58-68%), но не подходят для домашнего использования. Используется как неотъемлемое звено при вентиляции магазинов, мастерских и других подобных помещений.
Расчет КПД рекуператора
Можно приблизительно рассчитать, насколько эффективна будет установленная приточная вентиляция с рекуперацией тепла как зимой, так и летом, когда агрегат работает на охлаждение.Формула расчета температуры приточного воздушного потока для установки в зависимости от числовой характеристики энергоэффективности (КПД), температуры наружного и внутреннего воздуха имеет следующий вид:
Тп = (твн – тул) * КПД + тул,
где значения температуры:
Тпп – ожидаемый на выходе из рекуператора;
твн – в помещении;
Для расчетов принимается паспортное значение КПД устройства.
В качестве примера: при морозе -25 ° С и комнатной температуре + 19 ° С, а также КПД установки 80% (0,8) расчет показывает, что требуемые параметры воздуха после прохождения через теплообменник будут :
Tp = (19 – (-25)) * 0,8 – 25 = 10,2 ° С
Получен расчетный температурный показатель воздуха после рекуператора. Фактически с учетом неизбежных потерь это значение будет в пределах + 8 ° С.
В жару + 30 ° С во дворе и 22 ° С в квартире воздух в теплообменнике такого же КПД перед входом в комнату охлаждается до расчетной температуры:
Тп = тул + (твн – тул) * КПД
Подставляя данные, получаем:
Тр = 30 + (22-30) * 0.8 = 23,6 ° С
Внимание! Заявленная производителем эффективность установки будет отличаться от реальной. На корректировку значения влияют влажность воздуха, тип кассеты теплообменника, величина разницы температур снаружи и внутри. При неправильной установке и эксплуатации рекуператора КПД также снизится.
Современные энергосберегающие системы вентиляции с включением рекуператоров – еще один шаг к экономному использованию теплоносителей.Причем настройки температурного обмена актуальны зимой, но не менее востребованы летом.
Приточно-вытяжная вентиляция с рекуперацией тепла
Как работает приточно-вытяжная вентиляция с рекуперацией тепла. В чем преимущества приточно-вытяжной вентиляции с рекуператором.
Приточно-вытяжные системы вентиляции с рекуперацией и рециркуляцией тепла
Рециркуляция воздуха в системах вентиляции – это смешивание определенного количества вытяжного (вытяжного) воздуха с приточным.Благодаря этому достигается снижение энергозатрат на подогрев свежего воздуха в зимний период.
Приточно-вытяжная вентиляция с рекуперацией и рециркуляцией тепла,
где L – расход воздуха, T – температура.
Рекуперация тепла в вентиляции Это метод передачи тепловой энергии от потока вытяжного воздуха к потоку приточного воздуха. Рекуперация тепла используется при разнице температур между вытяжным и приточным воздухом для повышения температуры свежего воздуха.Этот процесс не предполагает перемешивания воздушных потоков; процесс передачи тепла происходит через любой материал.
Температура и движение воздуха в рекуператоре
Устройства для рекуперации тепла называются рекуператорами тепла. Они бывают двух типов:
Теплообменники-рекуператоры – передают тепловой поток через стену. Чаще всего встречаются в установках приточно-вытяжных систем вентиляции.
Рекуператоры – в первом цикле нагреваются от выходящего воздуха, во втором охлаждаются, отдавая тепло приточному воздуху.
Вентиляция с рекуперацией тепла – наиболее распространенный способ использования рекуперации тепла. Основным элементом этой системы является приточно-вытяжная установка, в состав которой входит рекуператор. Устройство приточной установки с рекуператором позволяет передавать нагретому воздуху до 80-90% тепла, что значительно снижает мощность воздухонагревателя, в котором нагревается приточный воздух, в случае отсутствие теплового потока от рекуператора.
Особенности использования рециркуляции и рекуперации
Основным отличием рекуперации от рециркуляции является отсутствие смешивания воздуха из помещения наружу.Рекуперация тепла применима в большинстве случаев, в то время как рециркуляция имеет ряд ограничений, которые указаны в нормах.
СНиП 41-01-2003 не допускает повторную подачу воздуха (рециркуляцию) в следующих ситуациях:
- В помещениях, расход воздуха в которых определяется из расчета выделяемых вредных веществ;
- В помещениях, где присутствуют болезнетворные бактерии и грибки в высоких концентрациях;
- В помещениях с наличием вредных веществ, возгоняемых при контакте с нагретыми поверхностями;
- В номерах категории В и А;
- В помещениях, в которых работа ведется с вредными или легковоспламеняющимися газами, парами;
- В помещениях категории В1-В2, в которых возможно выделение легковоспламеняющейся пыли и аэрозолей;
- Из систем с местным отсосом вредных веществ и взрывоопасных смесей с воздухом;
- Из вестибюлей-шлюзов.
Рециркуляция в приточно-вытяжных установках активно применяется чаще всего при высокой производительности систем, когда воздухообмен может составлять от 1000-1500 м 3 / ч до 10000-15000 м 3 / ч. Удаляемый воздух несет большой запас тепловой энергии, смешивая ее с внешним потоком, позволяет повысить температуру приточного воздуха, тем самым уменьшая требуемую мощность нагревательного элемента. Но в таких случаях перед повторным попаданием в помещение воздух должен пройти через систему фильтрации.
Рециркуляционная вентиляция позволяет повысить энергоэффективность, решить проблему энергосбережения в случае, когда 70-80% удаляемого воздуха снова попадает в систему вентиляции.
Приточно-вытяжные установки с рекуперацией могут быть установлены практически при любом расходе воздуха (от 200 м 3 / ч до нескольких тысяч м 3 / ч), как малых, так и больших. Рекуперация также позволяет передавать тепло от вытяжного воздуха к приточному, тем самым снижая потребность в энергии для нагревательного элемента.
Сравнительно небольшие установки используются в системах вентиляции квартир и коттеджей. На практике приточно-вытяжные установки монтируют под потолком (например, между потолком и подвесным потолком).Это решение требует определенных требований к установке, а именно: небольшие габаритные размеры, низкий уровень шума, простота обслуживания.
Приточно-вытяжная установка с рекуперацией требует технического обслуживания, для чего требуется люк в потолке для обслуживания рекуператора, фильтров, нагнетателей (вентиляторов).
Основные элементы приточно-вытяжных установок
Приточно-вытяжная установка с рекуперацией или рециркуляцией, имеющая в своем арсенале как первый, так и второй процесс, всегда представляет собой сложный организм, требующий высокоорганизованного управления.За своим защитным боксом приточно-вытяжная установка скрывает такие основные компоненты, как:
- Два вентилятора различных типов, которые определяют производительность установки с точки зрения потребления.
- Рекуператор теплообменника – нагревает приточный воздух за счет передачи тепла от отработанного воздуха.
- Электронагреватель – нагревает приточный воздух до необходимых параметров в случае отсутствия теплового потока от вытяжного воздуха.
- Воздушный фильтр – благодаря ему наружный воздух контролируется и очищается, а также обрабатывается отработанный воздух перед рекуператором для защиты теплообменника.
- Клапаны воздушные с электроприводом – могут устанавливаться перед выходными воздуховодами для дополнительного регулирования расхода воздуха и блокировки воздуховода при выключении оборудования.
- Байпас – благодаря которому воздушный поток может быть направлен мимо рекуператора в теплое время года, тем самым не нагревая приточный воздух, а подавая его прямо в помещение.
- Камера рециркуляции – обеспечивает подмешивание удаленного воздуха к приточному, обеспечивая рециркуляцию воздушного потока.
Помимо основных компонентов вентиляционной установки, она также включает в себя большое количество мелких компонентов, таких как датчики, систему автоматизации для управления и защиты и т. Д.
Вентиляция с рекуперацией, рециркуляция
Устройство, расчет, требования к вентиляции с рекуперацией, рециркуляцией. Бесплатная консультация.
Особенности системы вентиляции с рекуперацией тепла, принцип ее действия
Рекуператор тепла часто становится частью системы вентиляции.Однако не многие люди знают, что это за устройство и какие функции у него есть. Также немаловажный вопрос – окупится ли покупка рекуператора, как он изменит работу системы вентиляции, можно ли создать такой элемент своими руками. На этот и многие другие вопросы мы ответим в информации ниже.
Как работает система
Необычное название получил обычный теплообменник. Задача устройства – забрать часть тепла от уже отработанного вытяжного воздуха из помещения.Извлеченное тепло передается потоку, который поступает из системы подачи чистого воздуха. Приведенная выше информация определяет, что цель использования такой системы – сэкономить на отоплении дома. В этом случае следует отметить следующие моменты:
- Летом система позволяет снизить затраты на работы по кондиционированию.
- Рассматриваемый прибор может работать в обе стороны, то есть забирать тепло в приточно-вытяжной системе.
Как работает система рекуперации тепла
Из приведенной выше информации следует, что рекуператор тепла установлен во многих системах вентиляции.Он не активен, многие версии не потребляют энергию, не шумят и имеют средний КПД. Теплообменники устанавливались годами, но в последнее время многие задаются вопросом, есть ли причины усложнять систему вентиляции с помощью этого устройства, которое имеет довольно много проблем из-за работы в среде с разными температурами.
Проблемы с установкой системы
Потенциальных проблем, связанных с использованием такого оборудования, практически нет.Некоторые решает производитель, другие становятся головной болью покупателя. К основным проблемам относятся:
- Образование конденсата. Законы физики определяют, что когда воздух с высокой температурой проходит через холодную замкнутую среду, образуется конденсат. Если температура окружающего воздуха будет ниже нуля, то плавники начнут промерзать. Вся информация, представленная в этом пункте, определяет значительное снижение КПД устройства.
- Энергоэффективность. Все системы вентиляции, работающие совместно с рекуператором, энергозависимы.Проведенный экономический расчет показывает, что полезными будут только те модели рекуператоров, которые сэкономят больше энергии, чем потратят.
- Срок окупаемости. Как уже отмечалось ранее, устройство предназначено для экономии энергии. Важным определяющим фактором является то, сколько лет потребуется, чтобы покупка и установка рекуператоров окупились. Если рассматриваемый показатель превышает 10-летнюю отметку, то в установке нет смысла, так как за это время потребуется замена других элементов системы.Если расчеты показывают, что срок окупаемости составляет 20 лет, то возможность установки устройства рассматривать не стоит.
Конденсат на выходе. система
Перечисленные выше проблемы следует учитывать при выборе теплообменников, которых существует несколько десятков типов.
Опции устройства
Боковая панель: Важно: существует несколько версий теплообменника. Рассматривая принцип работы устройства, следует учитывать, что он зависит от типа самого устройства.Пластинчатый тип устройства – это устройство, в котором приточный и вытяжной каналы проходят через общий корпус. Два канала разделены перегородками. Перегородка состоит из большого количества пластин, которые часто изготавливаются из меди или алюминия. Важно отметить, что медный состав имеет более высокую теплопроводность, чем алюминий. Однако алюминий дешевле.
Характеристики рассматриваемого устройства включают следующее:
- Тепло передается от одного канала к другому с помощью теплопроводящих пластин.
- Принцип теплопередачи определяет, что проблема появления конденсата возникает сразу при включении теплообменника в систему.
- Для исключения вероятности образования конденсата установлен датчик обледенения теплового типа. При появлении сигнала с датчика реле открывает специальный клапан – байпас.
- Когда клапан открыт, холодный воздух проходит в два канала.
Данный класс устройств можно отнести к низкой ценовой категории.Это связано с тем, что при создании конструкции используется примитивный метод теплопередачи. Эффективность этого метода ниже. Важным моментом является то, что стоимость устройства зависит от его габаритов и размеров самой системы питания. Примером может служить канал размером 400 на 200 миллиметров и 600 на 300 миллиметров. Разница в цене будет более 10 000 руб.
Схема вентиляции с рекуперацией
В состав конструкции входят следующие элементы:
- Два приточных воздуховода: один для свежего воздуха, другой – для отработанного воздуха.
- Из фильтра грубой очистки для подачи воздуха с улицы.
- Непосредственно сам теплообменник, который расположен в центральной части.
- Заслонка, необходимая для подачи воздуха при обледенении.
- Клапан слива конденсата.
- Вентилятор, который нагнетает воздух в систему.
- Два канала на задней части конструкции.
Размеры теплообменника зависят от мощности системы вентиляции и размеров воздуховодов.
Следующим типом конструкции можно назвать устройства с тепловыми трубками. Его устройство практически идентично предыдущему. Отличие лишь в том, что в конструкции нет огромного количества пластин, проникающих в перегородку между каналами. Для этого используется тепловая трубка – специальное устройство, передающее тепло. Преимущество системы в том, что фреон испаряется на более теплом конце герметичной медной трубки. Конденсат накапливается в более холодном конце. К особенностям рассматриваемой конструкции относятся:
Функционирование системы имеет следующие особенности:
- Система содержит рабочую жидкость, поглощающую тепловую энергию.
- Пар переходит из более теплой точки в более холодную.
- По законам физики пар снова конденсируется в жидкость и испускает сохраненную температуру.
- Через фитиль вода течет обратно в теплую точку, где снова превращается в пар.
Конструкция герметична и работает с высокой эффективностью. Достоинством можно назвать то, что конструкция меньше по размеру и проще в эксплуатации.
Поворотного типа можно назвать современной версией.На границе приточного и вытяжного каналов расположено устройство с лопастями – они медленно вращаются. Устройство сконструировано таким образом, что пластины нагреваются с одной стороны и передаются с другой путем вращения. Это потому, что лезвия расположены под углом для перенаправления тепла. Характеристики роторной системы включают следующее:
- Довольно высокий КПД. Как правило, пластинчатые системы и трубчатые системы имеют КПД не более 50%. Это связано с тем, что в них нет активных элементов.Путем перенаправления воздушного потока эффективность системы может быть увеличена до 70-75%.
- Вращение лопастей также определяет решение проблемы конденсации на поверхности. Также решается проблема с низкой влажностью в холодное время года.
Однако есть и недостатки:
- Как правило, чем сложнее система, тем она менее надежна. В роторной системе есть вращающийся элемент, который может выйти из строя.
- Если в помещении повышенная влажность, то использовать конструкцию не рекомендуется.
Также важно понимать, что камеры рекуператоров не имеют герметичного разделения. Этот момент определяет передачу запаха из одной камеры в другую. В целом роторная система напоминает своего рода вентилятор довольно больших габаритов с громоздкими лопастями. Для повышения эффективности системы устройство необходимо подключить к источнику питания.
Теплоноситель промежуточного типа представляет собой классическую конструкцию, состоящую из водяного отопления конвекторами и насосами.Система используется крайне редко из-за ее невысокой эффективности и сложности конструкции. Однако практически незаменим, когда приточный и вытяжной каналы расположены на большом расстоянии друг от друга. Тепло передается через воду, которая уже много лет используется для создания таких систем. Для обеспечения циркуляции воды вне зависимости от расположения устройств в системе устанавливается насос. Важно понимать, что особенности конструкции в этом случае определяют низкую надежность системы и необходимость периодических проверок.
Особенности системы вентиляции с рекуперацией тепла, принцип ее действия
Вентиляция с рекуперацией тепла обеспечивает комфортный и здоровый микроклимат в помещении и удержание тепла. Определение эффективности и вариантов исполнения.
Приточно-вытяжная вентиляция с рекуперацией тепла: принцип работы, обзор достоинств и недостатков
Подача свежего воздуха в холодный период времени приводит к необходимости его подогрева для обеспечения правильного микроклимата в помещении.Приточно-вытяжная вентиляция с рекуперацией тепла позволяет минимизировать затраты на электроэнергию.
Понимание принципов его работы позволит максимально эффективно снизить тепловые потери при сохранении достаточного объема заменяемого воздуха.
Энергосбережение в системах вентиляции
В осенне-весенний период при проветривании помещения серьезной проблемой является большая разница температур между входящим и выходящим воздухом. Холодный поток устремляется вниз и создает неблагоприятный микроклимат в домах, офисах и на производстве или недопустимый вертикальный перепад температур на складе.
Распространенным решением проблемы является встраивание в приточную вентиляцию воздухонагревателя, с помощью которого нагревается поток. Такая система требует энергозатрат, при этом выход значительного количества теплого воздуха наружу приводит к значительным потерям тепла.
Если каналы подачи и отвода воздуха расположены рядом, можно частично передать тепло от выходящего потока к входящему. Это позволит снизить потребление электричества воздухонагревателем или полностью отказаться от него.Устройство для обеспечения теплообмена между газовыми потоками разной температуры называется рекуператором.
В теплое время года, когда температура наружного воздуха намного выше, чем в помещении, для охлаждения входящего потока можно использовать рекуператор.
Агрегат с рекуператором
Внутреннее устройство приточно-вытяжных систем вентиляции со встроенным рекуператором достаточно простое, поэтому их можно приобрести и установить самостоятельно. В случае, если сборка или самостоятельная сборка вызывает затруднения, вы можете приобрести готовые решения в виде стандартного моноблока или индивидуальных сборных конструкций на заказ.
Основные элементы и их параметры
Корпус с тепло- и звукоизоляцией обычно изготавливается из листовой стали. В случае настенного монтажа он должен выдерживать давление, возникающее при вспенивании трещин вокруг агрегата, а также предотвращать вибрацию от работы вентиляторов.
В случае распределенного забора и прохождения воздуха через различные помещения к корпусу подсоединяется система воздуховодов. Он оборудован клапанами и заслонками для распределения потока.
При отсутствии воздуховодов на входе со стороны помещения устанавливается решетка или диффузор для распределения воздушного потока. На входе со стороны улицы устанавливается решетка наружного воздухозаборника для предотвращения попадания птиц, крупных насекомых и мусора в вентиляционную систему.
Движение воздуха обеспечивают два вентилятора осевого или центробежного типа. При наличии рекуператора естественная циркуляция воздуха в достаточном объеме невозможна из-за аэродинамического сопротивления, создаваемого этим агрегатом.
Наличие рекуператора предполагает установку фильтров тонкой очистки на входе обоих потоков. Это необходимо для снижения интенсивности пыле-жирового засорения тонких каналов теплообменника. В противном случае для полноценного функционирования системы потребуется увеличить периодичность профилактического обслуживания.
Один или несколько рекуператоров занимают основной объем приточно-вытяжной установки. Их монтируют по центру конструкции.
В случае сильных морозов, характерных для территории и недостаточной эффективности рекуператора, для обогрева наружного воздуха можно установить дополнительный отопитель. Также при необходимости смонтируйте увлажнитель, ионизатор и другие устройства для создания благоприятного микроклимата в помещении.
Современные модели предусматривают наличие электронного блока управления. В комплексных модификациях есть функции программирования режимов работы в зависимости от физических параметров воздушной среды.Внешние панели имеют привлекательный внешний вид, поэтому хорошо вписываются в любой интерьер помещения.
Решение проблемы конденсации
Охлаждение воздуха, поступающего из помещения, создает предпосылки для отвода влаги и конденсации. В случае большого расхода большая его часть не успевает накапливаться в рекуператоре и выходит наружу. Когда воздух движется медленно, значительная часть воды остается внутри устройства. Поэтому необходимо обеспечить сбор влаги и отвод ее за пределы корпуса приточно-вытяжной системы.
Влагу убирают в закрытую емкость. Его размещают только в помещении, чтобы избежать промерзания отводных каналов при минусовых температурах. Алгоритма надежного расчета объема воды, производимой при использовании систем с рекуператором, не существует, поэтому он определяется экспериментально.
Повторное использование конденсата для увлажнения воздуха нежелательно, поскольку вода поглощает многие загрязнители, такие как человеческий пот, запахи и т. Д.
Вы можете значительно уменьшить объем конденсата и избежать проблем, связанных с его внешним видом, организовав отдельную вытяжную систему от ванной и кухни.Именно в этих помещениях воздух имеет наибольшую влажность. При наличии нескольких вытяжных систем необходимо ограничить воздухообмен между технической и жилой помещениями, установив обратные клапаны.
При охлаждении выходящего воздушного потока до отрицательных температур внутри рекуператора конденсат превращается в лед, что вызывает уменьшение свободного сечения потока и, как следствие, уменьшение объема или полное прекращение вентиляция.
Для периодического или одноразового оттаивания рекуператора устанавливается байпас – байпасный канал для движения приточного воздуха.Когда поток проходит в обход устройства, теплообмен прекращается, теплообменник нагревается и лед переходит в жидкое состояние. Вода поступает в емкость для сбора конденсата или испаряется наружу.
Когда поток проходит через байпас, рекуператор не нагревает приточный воздух. Поэтому при включении этого режима необходимо автоматическое включение обогревателя.
Особенности различных типов рекуператоров
Существует несколько конструктивно различных вариантов реализации теплообмена между холодным и нагретым воздушными потоками.Каждый из них имеет свои отличительные особенности, определяющие основное назначение каждого типа рекуператора.
Рекуператор поперечного сечения пластинчатый
Конструкция пластинчатого рекуператора основана на тонкостенных панелях, попеременно соединенных таким образом, чтобы чередовать прохождение между ними разно-температурных потоков под углом 90 градусов. Одна из модификаций этой модели – устройство с оребренными воздуховодами. У него более высокий коэффициент теплопередачи.
Теплообменные панели могут изготавливаться из различных материалов:
- Сплавы на основе меди, латуни и алюминия обладают хорошей теплопроводностью и не подвержены ржавчине;
- пластик из полимерного гидрофобного материала с высоким коэффициентом теплопроводности; они легкие;
- гигроскопическая целлюлоза позволяет конденсату проходить через пластину и обратно в комнату.
Недостатком является возможность образования конденсата при низких температурах. Из-за небольшого расстояния между пластинами влага или лед значительно увеличивает аэродинамическое сопротивление. В случае замерзания необходимо перекрыть поступающий воздушный поток для прогрева пластин.
Преимущества пластинчатых рекуператоров следующие:
- низкая стоимость;
- долгий срок службы;
- большой период между профилактическим обслуживанием и простотой его выполнения;
- малые габариты и вес.
Этот тип рекуператора наиболее распространен для жилых и офисных зданий. Он также используется в некоторых технологических процессах, например, для оптимизации сжигания топлива при работе печи.
Барабанный или роторный тип
Принцип работы роторного рекуператора основан на вращении теплообменника, внутри которого расположены слои гофрированного металла с высокой теплоемкостью. В результате взаимодействия с выходящим потоком сектор барабана нагревается, что впоследствии отдает тепло поступающему воздуху.
Преимущества роторных рекуператоров следующие:
- достаточно высокий КПД по сравнению с конкурирующими типами;
- возврат большого количества влаги, которая остается на барабане в виде конденсата и испаряется при контакте с поступающим сухим воздухом.
Рекуператоры этого типа реже используются в жилых домах с квартирной или дачной вентиляцией. Его часто используют в крупных котельных для возврата тепла в печи или для крупных промышленных, торговых и развлекательных объектов.
Однако у этого типа устройства есть существенные недостатки:
- относительно сложная конструкция с движущимися частями, включая электродвигатель, барабан и ременной привод, которая требует постоянного обслуживания;
- повышенный уровень шума.
Иногда для устройств этого типа можно встретить термин «регенеративный теплообменник», что более правильно, чем «рекуператор». Дело в том, что незначительная часть уходящего воздуха попадает обратно из-за неплотного прилегания барабана к корпусу конструкции.
Это накладывает дополнительные ограничения на использование устройств этого типа. Например, загрязненный воздух от отопительных печей нельзя использовать в качестве теплоносителя.
Система труб и обсадных труб
Рекуператор трубчатого типа представляет собой систему тонкостенных трубок малого диаметра, расположенных в изолированном кожухе, по которым протекает наружный воздух. Через кожух из помещения выводится теплая воздушная масса, которая нагревает набегающую струю.
Основные преимущества трубчатых рекуператоров:
- высокий КПД, за счет противоточного принципа движения охлаждающей жидкости и поступающего воздуха;
- простота конструкции и отсутствие движущихся частей обеспечивает низкий уровень шума и отсутствие необходимости в обслуживании;
- долгий срок службы;
- наименьшее поперечное сечение среди всех типов рекуперационных устройств.
В трубках для данного типа устройств используется легкосплавный металл или, реже, полимер. Эти материалы не гигроскопичны; поэтому при значительной разнице температур потока в кожухе может образоваться интенсивная конденсация, что требует конструктивного решения для ее удаления. Еще один недостаток – металлическое наполнение имеет значительный вес, несмотря на небольшие размеры.
Простота конструкции трубчатого рекуператора делает этот тип устройств популярным для самостоятельного изготовления.В качестве наружного кожуха обычно используются пластиковые трубы для воздуховодов, утепленные оболочкой из пенополиуретана.
Устройство промежуточного теплоносителя
Иногда приточный и вытяжной воздуховоды располагаются на некотором расстоянии друг от друга. Такая ситуация может возникнуть из-за технологических особенностей здания или санитарных требований к надежному разделению воздушных потоков.
В этом случае используется промежуточный теплоноситель, циркулирующий между воздуховодами по изолированному трубопроводу.В качестве среды для передачи тепловой энергии используется вода или водно-гликолевый раствор, циркуляция которого обеспечивается работой насоса.
В том случае, если возможно использование рекуператора другого типа, то лучше не использовать систему с промежуточным теплоносителем, так как она имеет следующие существенные недостатки:
- низкий КПД по сравнению с другими типами устройств, поэтому такие устройства не используются для небольших помещений с низким расходом воздуха;
- значительный объем и вес всей системы;
- необходимость в дополнительном электронасосе для циркуляции жидкости;
- повышенный шум от помпы.
Есть модификация данной системы, когда вместо принудительной циркуляции теплоносителя используется среда с низкой температурой кипения, например фреон. В этом случае движение по контуру возможно естественным путем, но только в том случае, если воздуховод приточного воздуха расположен над вытяжкой.
Такая система не требует дополнительных затрат энергии, но работает на обогрев только при значительном перепаде температур. Кроме того, необходимо точно настроить точку изменения агрегатного состояния теплообменной жидкости, что может быть реализовано путем создания необходимого давления или определенного химического состава.
Основные технические параметры
Зная необходимую производительность системы вентиляции и эффективность теплообмена рекуператора, легко подсчитать экономию на нагреве воздуха для помещения в конкретных климатических условиях. Сравнивая потенциальные выгоды с затратами на покупку и обслуживание системы, вы можете обоснованно сделать выбор в пользу рекуператора или стандартного воздухонагревателя.
Эффективность
Под КПД рекуператора понимается КПД теплоотдачи, который рассчитывается по следующей формуле:
- T p – температура приточного воздуха внутри помещения;
- Тн – температура наружного воздуха;
- Т в – температура воздуха в помещении.
Максимальное значение КПД при стандартном расходе воздуха и определенном температурном режиме указано в технической документации на устройство. Его реальная цифра будет несколько меньше. В случае самостоятельного изготовления пластинчатого или трубчатого рекуператора для достижения максимальной эффективности теплопередачи необходимо соблюдать следующие правила:
- Наилучшую теплоотдачу обеспечивают противоточные устройства, затем перекрестно-проточные и наименьшую – при однонаправленном движении обоих потоков.
- Интенсивность теплопередачи зависит от материала и толщины перегородок, разделяющих потоки, а также от продолжительности нахождения воздуха внутри устройства.
где P (м 3 / час) – расход воздуха.
Стоимость рекуператоров с высоким КПД достаточно высока, они имеют сложную конструкцию и значительные габариты. Иногда эти проблемы можно обойти, установив несколько более простых устройств, чтобы поступающий воздух проходил через них последовательно.
Производительность системы вентиляции
Объем проходящего воздуха определяется статическим давлением, которое зависит от мощности вентилятора и основных компонентов, создающих аэродинамическое сопротивление. Как правило, его точный расчет невозможен из-за сложности математической модели, поэтому экспериментальные исследования проводятся для типовых моноблочных конструкций, а комплектующие подбираются для отдельных устройств.
Мощность вентилятора необходимо подбирать с учетом производительности установленных рекуператоров любого типа, которая указывается в технической документации как рекомендуемый расход или объем воздуха, пропущенного устройством за единицу времени.Как правило, допустимая скорость воздуха внутри устройства не превышает 2 м / с.
В противном случае на высоких скоростях в узких элементах рекуператора происходит резкое увеличение аэродинамического сопротивления. Это приводит к ненужному расходу энергии, неэффективному нагреву наружного воздуха и сокращению срока службы вентиляторов.
Изменение направления воздушного потока создает дополнительное аэродинамическое сопротивление. Поэтому при моделировании геометрии воздуховода в помещении желательно минимизировать количество поворотов трубы на 90 градусов.Воздухораспределители также увеличивают сопротивление, поэтому желательно не использовать элементы со сложным рисунком.
Загрязненные фильтры и решетки создают значительные препятствия для потока, и их необходимо периодически очищать или заменять. Один из наиболее эффективных способов оценки засорения – установка датчиков, отслеживающих падение давления в секциях до и после фильтра.
Принцип работы роторно-пластинчатого рекуператора:
Измерение КПД пластинчатого рекуператора:
Бытовые и промышленные системы вентиляции со встроенным рекуператором доказали свою энергоэффективность при сохранении тепла в помещении.Сейчас много предложений по продаже и установке подобных устройств, как в виде готовых и проверенных моделей, так и по индивидуальному заказу. Вы можете рассчитать требуемые параметры и выполнить монтаж самостоятельно.
Приточно-вытяжная вентиляция с рекуперацией тепла: устройство и работа
Приточно-вытяжная вентиляция с рекуперацией тепла. Виды рекуператоров, их достоинства и недостатки. Расчет эффективности и нюансы обеспечения требуемой производительности.
В процессе вентиляции используется не только вытяжной воздух из помещения, но и часть тепловой энергии. Зимой это приводит к увеличению счетов за электроэнергию.
Рекуперация тепла в системах вентиляции централизованного и местного типа позволит снизить неоправданные затраты, не в ущерб воздухообмену. Для рекуперации тепловой энергии используются различные типы теплообменников – рекуператоры.
В статье подробно описаны модели агрегатов, их конструктивные особенности, принципы работы, достоинства и недостатки.Предоставленная информация поможет выбрать оптимальный вариант обустройства системы вентиляции.
На латыни восстановление означает возврат или возврат. Что касается реакций теплообмена, рекуперация характеризуется как частичный возврат энергии, затраченной на выполнение технологического действия, с целью использования ее в том же процессе.
Местные рекуператоры имеют вентилятор и пластинчатый теплообменник. «Рукав» воздухозаборника изолирован звукопоглощающим материалом.Блок управления компактными приточно-вытяжными установками расположен на внутренней стене
Особенности децентрализованных систем вентиляции с рекуперацией:
- КПД – 60-96%;
- низкая производительность – устройства предназначены для обеспечения воздухообмена в помещениях площадью до 20-35 кв.м .;
- доступная стоимость и широкий ассортимент агрегатов, начиная от обычных настенных клапанов и заканчивая автоматизированными моделями с многоступенчатой системой фильтрации и возможностью регулировки влажности;
- простота монтажа – при вводе в эксплуатацию прокладка воздуховодов не требуется, можно сделать своими руками.
Важные критерии выбора пристенного воздухозаборника: допустимая толщина стенки, производительность, КПД рекуператора, диаметр воздуховода и температура перекачиваемой среды
Выводы и полезное видео по теме
Сравнение работы естественной вентиляции и принудительной системы с рекуперация:
Принцип работы централизованного рекуператора, расчет КПД:
Устройство и работа децентрализованного теплообменника на примере настенного клапана Prana:
Около 25-35% тепла уходит из помещения через система вентиляции.Для уменьшения потерь и эффективной рекуперации тепла используются рекуператоры. Климатическое оборудование позволяет использовать энергию масс отходов для нагрева поступающего воздуха.
У вас есть что добавить, или у вас есть вопросы по работе различных рекуператоров вентиляции? Пожалуйста, оставляйте комментарии к публикации, поделитесь своим опытом эксплуатации таких установок. Форма обратной связи находится в нижнем блоке.
Теплообменники – типы, конструкции, применение и руководство по выбору
Крупным планом часть теплообменника вода-воздух.Изображение предоставлено: Alaettin YILDIRIM / Shutterstock.com
Теплообменники – это устройства, предназначенные для передачи тепла между двумя или более жидкостями, то есть жидкостями, парами или газами, с разными температурами. В зависимости от типа используемого теплообменника процесс теплопередачи может быть газ-газ, жидкость-газ или жидкость-жидкость и происходить через твердый сепаратор, который предотвращает смешивание текучих сред, или прямой поток жидкости. контакт. Другие характеристики конструкции, включая конструкционные материалы и компоненты, механизмы теплопередачи и конфигурации потока, также помогают классифицировать и классифицировать типы доступных теплообменников.Эти теплообменные устройства находят применение в самых разных отраслях промышленности, они спроектированы и изготовлены для использования в процессах как нагрева, так и охлаждения.
Эта статья посвящена теплообменникам, исследует их различные конструкции и типы и объясняет их соответствующие функции и механизмы. Кроме того, в этой статье приводятся рекомендации по выбору и общие области применения для каждого типа теплообменного устройства.
Термодинамика теплообменника
Конструкция теплообменника – это упражнение в термодинамике, науке, изучающей поток тепловой энергии, температуру и взаимосвязь с другими формами энергии.Чтобы понять термодинамику теплообменника, хорошей отправной точкой является изучение трех способов передачи тепла – теплопроводности, конвекции и излучения. В следующих разделах представлен обзор каждого из этих режимов теплопередачи.
Проводимость
Проводимость – это передача тепловой энергии между материалами, находящимися в контакте друг с другом. Температура – это мера средней кинетической энергии молекул в материале – более теплые объекты (которые имеют более высокую температуру) демонстрируют большее молекулярное движение.Когда более теплый объект соприкасается с более холодным объектом (тем, который имеет более низкую температуру), происходит передача тепловой энергии между двумя материалами, при этом более холодный объект получает больше энергии, а более теплый объект становится менее энергичным. Этот процесс будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие.
Скорость, с которой тепловая энергия передается в материале за счет теплопроводности, определяется следующим выражением:
В этом выражении Q представляет количество тепла, передаваемого через материал за время t , ΔT – это разница температур между одной стороной материала и другой (температурный градиент), A – это площадь поперечного сечения материала, а d – толщина материала.Константа k известна как теплопроводность материала и является функцией внутренних свойств материала и его структуры. Воздух и другие газы обычно имеют низкую теплопроводность, в то время как неметаллические твердые вещества показывают более высокие значения, а металлические твердые тела обычно показывают самые высокие значения.
Конвекция
Конвекция – это передача тепловой энергии от поверхности за счет движения нагретой жидкости, такой как воздух или вода.Большинство жидкостей расширяются при нагревании и, следовательно, становятся менее плотными и поднимаются по сравнению с другими более холодными частями жидкости. Таким образом, когда воздух в комнате нагревается, он поднимается к потолку, потому что он теплее и менее плотный, и передает тепловую энергию, когда сталкивается с более холодным воздухом в комнате, затем становится более плотным и снова падает на пол. Этот процесс создает поток естественной или свободной конвекции. Конвекция также может происходить за счет так называемой принудительной или вспомогательной конвекции, например, когда нагретая вода перекачивается по трубе, например, в системе водяного отопления.
Для свободной конвекции скорость передачи тепла выражается законом охлаждения Ньютона:
Где Q-точка – скорость передачи тепла, h c – коэффициент конвективной теплопередачи, A – площадь поверхности, на которой происходит процесс конвекции, а ΔT – разница температур между поверхность и жидкость. Коэффициент конвективной теплопередачи h c является функцией свойств жидкости, подобно теплопроводности материала, упомянутого ранее в отношении проводимости.
Радиация
Тепловое излучение – это механизм передачи тепловой энергии, который включает в себя излучение электромагнитных волн от нагретой поверхности или объекта. В отличие от теплопроводности и конвекции, тепловому излучению не требуется промежуточная среда для переноса энергии волны. Все объекты, температура которых выше абсолютного нуля (-273,15 90 · 103 o 90 · 104 C), излучают тепловое излучение в обычно широком спектральном диапазоне.
Чистая скорость радиационных потерь тепла может быть выражена с помощью закона Стефана-Больцмана следующим образом:
, где Q – теплоотдача в единицу времени, T ч – температура горячего объекта (в абсолютных единицах, o K), T c – температура более холодной окружающей среды. (также в абсолютных единицах, o K), σ – постоянная Стефана-Больцмана (значение которой равно 5.6703 x 10 -8 Вт / м 2 K 4 ). Термин, представленный как ε , является коэффициентом излучения материала и может иметь значение от 0 до 1, в зависимости от характеристик материала и его способности отражать, поглощать или передавать излучение. Это также функция температуры материала.
Основные принципы, лежащие в основе теплообменников
Независимо от типа и конструкции, все теплообменники работают в соответствии с одними и теми же фундаментальными принципами, а именно нулевым, первым и вторым законами термодинамики, которые описывают и диктуют перенос или «обмен» тепла от одной жидкости к другой.
- Нулевой закон термодинамики гласит, что термодинамические системы, находящиеся в тепловом равновесии, имеют одинаковую температуру. Кроме того, если каждая из двух систем находится в тепловом равновесии с третьей системой, то две первые системы должны быть в равновесии друг с другом; таким образом, все три системы имеют одинаковую температуру. Этот закон, предшествующий трем другим законам термодинамики по порядку, но не в развитии, не только выражает тепловое равновесие как переходное свойство, но также определяет понятие температуры и устанавливает ее как измеримое свойство термодинамических систем.
- Первый закон термодинамики основан на нулевом законе, устанавливая внутреннюю энергию ( U ) как еще одно свойство термодинамических систем и указывая влияние тепла и работы на внутреннюю энергию системы и энергию окружающей среды. Кроме того, первый закон – также называемый законом обмена энергией – по существу гласит, что энергия не может быть создана или уничтожена, а только передана другой термодинамической системе или преобразована в другую форму (например,г., обогревать или работать).
Например, если тепло поступает в систему из окружающей среды, происходит соответствующее увеличение внутренней энергии системы и уменьшение энергии окружающей среды. Этот принцип можно проиллюстрировать следующим уравнением, где ΔU система представляет внутреннюю энергию системы, а ΔU окружающей среды представляет внутреннюю энергию окружающей среды:
- Второй закон термодинамики устанавливает энтропию ( S ) как дополнительное свойство термодинамических систем и описывает естественную и неизменную тенденцию Вселенной и любой другой замкнутой термодинамической системы к увеличению энтропии с течением времени.Этот принцип можно проиллюстрировать следующим уравнением, где ΔS представляет собой изменение энтропии, ΔQ представляет собой изменение тепла, добавляемого к системе, а T представляет собой абсолютную температуру: Он также используется для объяснения тенденции двух изолированных систем – когда они могут взаимодействовать и свободны от всех других влияний – двигаться к термодинамическому равновесию. Как установлено вторым законом, энтропия может только увеличиваться, но не уменьшаться; следовательно, каждая система по мере увеличения энтропии неизменно движется к наивысшему значению, достижимому для указанной системы.При этом значении система достигает состояния равновесия, при котором энтропия больше не может увеличиваться (поскольку она максимальна) или уменьшаться, поскольку это действие нарушит Второй закон. Следовательно, единственные возможные изменения системы – это те, в которых энтропия не претерпевает изменений (то есть отношение тепла, добавленного или отведенного к системе, к абсолютной температуре остается постоянным).
В целом эти принципы определяют основные механизмы и операции теплообменников; Нулевой закон устанавливает температуру как измеримое свойство термодинамических систем, Первый закон описывает обратную зависимость между внутренней энергией системы (и ее преобразованными формами) и энергией окружающей среды, а Второй закон выражает тенденцию двух взаимодействующих систем к двигаться к тепловому равновесию.Таким образом, теплообменники функционируют, позволяя жидкости более высокой температуры ( F 1 ) взаимодействовать – прямо или косвенно – с жидкостью более низкой температуры ( F 2 ), что позволяет тепло для передачи от F 1 к F 2 для движения к равновесию. Эта передача тепла приводит к снижению температуры для F 1 и увеличению температуры для F 2 .В зависимости от того, нацелено ли приложение на нагрев или охлаждение жидкости, этот процесс (и устройства, которые его используют) можно использовать для направления тепла к системе или от нее, соответственно.
Расчетные характеристики теплообменника
Как указано выше, все теплообменники работают по одним и тем же основным принципам. Однако эти устройства можно классифицировать и классифицировать по-разному в зависимости от их конструктивных характеристик. К основным характеристикам, по которым можно отнести теплообменники, относятся:
- Конфигурация потока
- Способ строительства
- Механизм теплопередачи
Конфигурация потока
Конфигурация потока, также называемая устройством потока, теплообменника относится к направлению движения текучих сред внутри теплообменника по отношению друг к другу.В теплообменниках используются четыре основные конфигурации потока:
- Попутный поток
- Противоток
- Поперечный поток
- Гибридный поток
Попутный поток
Теплообменники с прямоточным потоком , также называемые теплообменниками с параллельным потоком, представляют собой теплообменные устройства, в которых жидкости движутся параллельно и в одном направлении друг с другом. Хотя такая конфигурация обычно приводит к более низкой эффективности, чем устройство противотока, она также обеспечивает максимальную тепловую однородность по стенкам теплообменника.
Противоток
Противоточные теплообменники , также известные как противоточные теплообменники, спроектированы таким образом, что жидкости движутся антипараллельно (т. Е. Параллельно, но в противоположных направлениях) друг другу внутри теплообменника. Наиболее часто используемая из конфигураций потока, устройство противотока обычно демонстрирует наивысший КПД, поскольку оно обеспечивает наибольшую теплопередачу между жидкостями и, следовательно, наибольшее изменение температуры.
Поперечный поток
В теплообменниках перекрестного тока жидкости текут перпендикулярно друг другу. Эффективность теплообменников, в которых используется такая конфигурация потока, находится между противоточными и прямоточными теплообменниками.
Гибридный поток
Теплообменники с гибридным потоком демонстрируют некоторую комбинацию характеристик ранее упомянутых конфигураций потока. Например, конструкции теплообменников могут использовать несколько потоков и устройств (например,g., устройства как противотока, так и с поперечным потоком) в одном теплообменнике. Эти типы теплообменников обычно используются с учетом ограничений приложения, таких как пространство, бюджетные затраты или требования к температуре и давлению.
На рисунке 1 ниже показаны различные доступные конфигурации потока, включая конфигурацию с перекрестным / противотоком, которая является примером конфигурации гибридного потока.
Рисунок 1 – Конфигурации потока теплообменникаМетод строительства
В то время как в предыдущем разделе теплообменники были классифицированы на основе типа используемой конфигурации потока, в этом разделе они классифицируются на основе их конструкции.Конструктивные характеристики, по которым можно классифицировать эти устройства, включают:
- Рекуперативная и регенеративная
- Прямое и косвенное
- Статическая и динамическая
- Типы используемых компонентов и материалов
Рекуперативная vs. регенеративная
Теплообменники можно разделить на рекуперативные теплообменники и рекуперативные теплообменники.
Разница между рекуперативными и регенеративными системами теплообменников заключается в том, что в рекуперативных теплообменниках (обычно называемых рекуператорами) каждая жидкость одновременно протекает через свой собственный канал внутри теплообменника.С другой стороны, регенеративные теплообменники , также называемые емкостными теплообменниками или регенераторами, поочередно позволяют более теплым и более холодным жидкостям проходить через один и тот же канал. И рекуператоры, и регенераторы могут быть далее разделены на различные категории теплообменников, такие как прямые или косвенные, статические или динамические, соответственно. Из двух указанных типов рекуперативные теплообменники чаще используются в промышленности.
Прямая и косвенная
Рекуперативные теплообменники используют процессы прямого или косвенного контакта для обмена теплом между жидкостями.
В теплообменниках прямого контакта жидкости не разделяются внутри устройства, а тепло передается от одной жидкости к другой посредством прямого контакта. С другой стороны, в косвенных теплообменниках жидкости остаются отделенными друг от друга теплопроводными компонентами, такими как трубы или пластины, на протяжении всего процесса теплопередачи. Компоненты сначала получают тепло от более теплой жидкости, когда она течет через теплообменник, а затем передают тепло более холодной жидкости, когда она течет через теплообменник.Некоторые из устройств, в которых используются процессы прямой контактной передачи, включают в себя градирни и паровые инжекторы, в то время как устройства, в которых используются процессы косвенной контактной передачи, включают трубчатые или пластинчатые теплообменники.
Статическая и динамическая
Существует два основных типа регенеративных теплообменников – статические теплообменники и динамические теплообменники. В статических регенераторах (также известных как регенераторы с неподвижным слоем) материал и компоненты теплообменника остаются неподвижными при прохождении жидкости через устройство, в то время как в динамических регенераторах материал и компоненты перемещаются на протяжении всего процесса теплопередачи.Оба типа подвержены риску перекрестного загрязнения между потоками текучей среды, что требует тщательного проектирования во время производства.
В одном из примеров статического типа более теплая жидкость проходит через один канал, в то время как более холодная жидкость проходит через другой в течение фиксированного периода времени, в конце которого с помощью быстродействующих клапанов происходит реверсирование потока, так что два жидкости переключают каналы. В примере динамического типа обычно используется вращающийся теплопроводный компонент (например,g., барабан), через который непрерывно протекают более теплые и более холодные жидкости, хотя и отдельными, изолированными секциями. По мере вращения компонента любая заданная секция поочередно проходит через потоки более теплого пара и более холодного пара, позволяя компоненту поглощать тепло от более теплой жидкости и передавать тепло более холодной жидкости, когда она проходит. На рисунке 2 ниже изображен процесс теплопередачи в регенераторе роторного типа с противоточной конфигурацией.
Рисунок 2 – Теплообмен в регенераторе роторного типаКомпоненты и материалы теплообменника
Есть несколько типов компонентов, которые могут использоваться в теплообменниках, а также широкий спектр материалов, используемых для их изготовления.Используемые компоненты и материалы зависят от типа теплообменника и его предполагаемого применения.
Некоторые из наиболее распространенных компонентов, используемых для создания теплообменников, включают кожухи, трубки, спиральные трубки (змеевики), пластины, ребра и адиабатические колеса. Более подробная информация о том, как эти компоненты работают в теплообменнике, будет предоставлена в следующем разделе (см. Типы теплообменников).
В то время как металлы очень подходят – и широко используются – для изготовления теплообменников из-за их высокой теплопроводности, как в случае теплообменников из меди, титана и нержавеющей стали, другие материалы, такие как графит, керамика, композиты или пластмассы , может дать большие преимущества в зависимости от требований приложения теплопередачи.
Рисунок 3 – Классификация теплообменников по конструкции Примечания: * Теплообменные устройства, перечисленные под строительной классификацией, являются лишь небольшой частью из имеющихся.** Представленная классификация соответствует информации, опубликованной на сайте Thermopedia.com.
Механизм теплопередачи
В теплообменниках используются два типа механизмов теплопередачи – однофазный или двухфазный.
В однофазных теплообменниках текучие среды не претерпевают никаких фазовых изменений в процессе теплопередачи, что означает, что как более теплые, так и более холодные жидкости остаются в том же состоянии вещества, в котором они попали в теплообменник.Например, в приложениях теплопередачи вода-вода более теплая вода теряет тепло, которое затем передается более холодной воде и не превращается в газ или твердое тело.
С другой стороны, в двухфазных теплообменниках текучие среды действительно испытывают фазовый переход во время процесса теплопередачи. Фазовое изменение может происходить в одной или обеих участвующих текучих средах, приводя к переходу из жидкости в газ или из газа в жидкость. Обычно устройства, в которых используется двухфазный механизм теплопередачи, требуют более сложных конструктивных решений, чем устройства, в которых используется однофазный механизм теплопередачи.Некоторые из доступных типов двухфазных теплообменников включают бойлеры, конденсаторы и испарители.
Типы теплообменников
Исходя из указанных выше конструктивных характеристик, доступно несколько различных вариантов теплообменников. Некоторые из наиболее распространенных вариантов, используемых в промышленности, включают:
- Кожухотрубные теплообменники
- Теплообменники двухтрубные
- Пластинчатые теплообменники
- Конденсаторы, испарители и котлы
Кожухотрубные теплообменники
Наиболее распространенный тип теплообменников, кожухотрубных теплообменников состоит из одной трубы или ряда параллельных трубок (т.е. пучок труб), заключенный в герметичный цилиндрический сосуд высокого давления (т.е. оболочку). Конструкция этих устройств такова, что одна жидкость протекает через меньшую трубку (и), а другая жидкость течет вокруг ее / их внешней (их) стороны и между ними / ими внутри герметичной оболочки. К другим конструктивным характеристикам, доступным для этого типа теплообменника, относятся оребренные трубы, одно- или двухфазная теплопередача, противоточный, прямоточный или перекрестный поток, а также одно-, двух- или многопроходные конфигурации.
Некоторые из типов кожухотрубных теплообменников включают спиральные теплообменники и двухтрубные теплообменники, а некоторые из применений включают предварительный нагрев, охлаждение масла и производство пара.
Трубчатый пучок трубчатого теплообменника крупным планом.Изображение предоставлено: Антон Москвитин / Shutterstock.com
Двухтрубный теплообменник
Кожухотрубный теплообменник, двухтрубные теплообменники используют простейшую конструкцию и конфигурацию теплообменника, состоящую из двух или более концентрических цилиндрических труб или трубок (одна большая труба и одна или несколько меньших трубок).Согласно конструкции кожухотрубного теплообменника, одна жидкость протекает через меньшую трубу (и), а другая жидкость течет вокруг меньшей (ых) трубы (ов) внутри большей трубы.
Требования к конструкции двухтрубных теплообменников включают характеристики рекуперативного и косвенного типов, упомянутых ранее, поскольку жидкости остаются разделенными и текут по своим собственным каналам на протяжении всего процесса теплопередачи. Тем не менее, существует некоторая гибкость в конструкции двухтрубных теплообменников, поскольку они могут быть спроектированы с прямоточными или противоточными устройствами и могут использоваться модульно в последовательной, параллельной или последовательно-параллельной конфигурациях внутри системы.Например, на рисунке 4 ниже показан перенос тепла в изолированном двухтрубном теплообменнике с прямоточной конфигурацией.
Рисунок 4 – Теплообмен в двухтрубном теплообменникеПластинчатые теплообменники
Пластинчатые теплообменники, также называемые пластинчатыми теплообменниками, состоят из нескольких тонких гофрированных пластин, связанных вместе. Каждая пара пластин создает канал, по которому может течь одна жидкость, и пары уложены друг на друга и прикреплены – с помощью болтов, пайки или сварки – так, что между парами создается второй канал, через который может течь другая жидкость.
Стандартная пластинчатая конструкция также доступна с некоторыми вариациями, например пластинчато-ребристыми или пластинчатыми теплообменниками. Пластинчато-ребристые теплообменники используют ребра или распорки между пластинами и позволяют использовать несколько конфигураций потока и более двух потоков жидкости, проходящих через устройство. Пластинчатые теплообменники с подушками оказывают давление на пластины, чтобы повысить эффективность теплопередачи по поверхности пластины. Некоторые из других доступных типов включают пластинчатые и рамные, пластинчатые и кожуховые и спирально-пластинчатые теплообменники.
Пластинчатый теплообменник крупным планом.Кредит изображения: withGod / Shutterstock.com
Конденсаторы, испарители и котлы
Котлы, конденсаторы и испарители – это теплообменники, в которых используется двухфазный механизм теплопередачи. Как упоминалось ранее, в двухфазных теплообменниках одна или несколько текучих сред претерпевают фазовое изменение во время процесса теплопередачи, переходя либо из жидкости в газ, либо из газа в жидкость.
Конденсаторы – это теплообменные устройства, которые забирают нагретый газ или пар и охлаждают их до точки конденсации, превращая газ или пар в жидкость.С другой стороны, в испарителях и котлах процесс теплопередачи переводит жидкости из жидкой формы в газообразную или парообразную.
Другие варианты теплообменников
Теплообменники используются во множестве областей применения в самых разных отраслях промышленности. Следовательно, существует несколько вариантов теплообменников, каждый из которых соответствует требованиям и спецификациям конкретного применения. Помимо упомянутых выше вариантов, доступны другие типы, включая теплообменники с воздушным охлаждением, теплообменники с вентиляторным охлаждением и теплообменники с адиабатическим колесом.
Рекомендации по выбору теплообменника
Несмотря на то, что существует широкий спектр теплообменников, пригодность каждого типа (и его конструкции) для передачи тепла между жидкостями зависит от технических характеристик и требований приложения. Эти факторы в значительной степени определяют оптимальную конструкцию желаемого теплообменника и влияют на соответствующие расчеты номинальных характеристик и размеров.
Некоторые из факторов, которые профессионалы отрасли должны учитывать при проектировании и выборе теплообменника, включают:
- Тип жидкостей, поток жидкости и их свойства
- Требуемая тепловая мощность
- Ограничения по размеру
- Стоимость
Тип жидкости, поток и свойства
Конкретный тип жидкостей – e.г., воздух, вода, масло и т. д. – задействованные, а также их физические, химические и термические свойства – например, фаза, температура, кислотность или щелочность, давление и скорость потока и т. д. – помогают определить конфигурацию потока и наиболее подходящую конструкцию. для этого конкретного приложения теплопередачи.
Например, если речь идет о коррозионных жидкостях, жидкостях с высокой температурой или под высоким давлением, конструкция теплообменника должна выдерживать условия высокого напряжения в процессе нагрева или охлаждения. Одним из методов выполнения этих требований является выбор конструкционных материалов, обладающих желаемыми свойствами: графитовые теплообменники демонстрируют высокую теплопроводность и коррозионную стойкость, керамические теплообменники могут выдерживать температуры, превышающие точки плавления многих обычно используемых металлов, а пластиковые теплообменники обеспечивают высокую теплопроводность и устойчивость к коррозии. недорогая альтернатива, которая сохраняет умеренную степень коррозионной стойкости и теплопроводности.
Керамический теплообменникИзображение предоставлено: CG Thermal
Другой метод заключается в выборе конструкции, подходящей для свойств жидкости: пластинчатые теплообменники могут работать с жидкостями от низкого до среднего давления, но с более высокими расходами, чем другие типы теплообменников, а двухфазные теплообменники необходимы при работе с жидкостями, которые требуют фазового перехода в процессе теплопередачи. Другие свойства текучей среды и потока текучей среды, которые специалисты отрасли могут учитывать при выборе теплообменника, включают вязкость текучей среды, характеристики загрязнения, содержание твердых частиц и присутствие водорастворимых соединений.
Тепловые выходы
Тепловая мощность теплообменника относится к количеству тепла, передаваемому между жидкостями, и соответствующему изменению температуры в конце процесса теплопередачи. Передача тепла внутри теплообменника приводит к изменению температуры в обеих жидкостях, понижая температуру одной жидкости при отводе тепла и повышая температуру другой жидкости при добавлении тепла. Желаемая тепловая мощность и скорость теплопередачи помогают определить оптимальный тип и конструкцию теплообменника, поскольку некоторые конструкции теплообменников предлагают более высокие скорости теплопередачи через нагреватель и могут выдерживать более высокие температуры, чем другие конструкции, хотя и с более высокой стоимостью.
Ограничения размера
После выбора оптимального типа и конструкции теплообменника распространенной ошибкой является покупка слишком большого для данного физического пространства. Часто более разумно приобрести теплообменное устройство такого размера, который оставляет место для дальнейшего расширения или добавления, чем выбирать устройство, которое полностью охватывает пространство. Для применений с ограниченным пространством, например, в самолетах или автомобилях, компактные теплообменники обеспечивают высокую эффективность теплопередачи в меньших и более легких решениях.Эти теплообменные устройства характеризуются высоким отношением площади поверхности теплообмена к объему, поэтому доступны несколько вариантов этих теплообменных устройств, в том числе компактные пластинчатые теплообменники. Как правило, эти устройства имеют отношение ≥700 м 2 / м 3 для приложений газ-газ и ≥400 м 2 / м 3 для жидкости-к- газовые приложения.
Стоимость
Стоимость теплообменника включает не только начальную цену оборудования, но также затраты на установку, эксплуатацию и техническое обслуживание в течение всего срока службы устройства.Несмотря на то, что необходимо выбрать теплообменник, который эффективно удовлетворяет требованиям приложений, также важно учитывать общие затраты на выбранный теплообменник, чтобы лучше определить, стоит ли оно вложенных средств. Например, изначально дорогой, но более прочный теплообменник может привести к снижению затрат на техническое обслуживание и, следовательно, к меньшим общим расходам в течение нескольких лет, в то время как более дешевый теплообменник может быть изначально менее дорогим, но потребует нескольких ремонтов и замен. в те же сроки.
Оптимизация дизайна
Проектирование оптимального теплообменника для конкретного применения (с конкретными спецификациями и требованиями, указанными выше) включает определение изменения температуры жидкостей, коэффициента теплопередачи и конструкции теплообменника и их соотнесение со скоростью теплопередачи. . Две основные проблемы, которые возникают при достижении этой цели, – это расчет номинальных характеристик и размеров устройства.
Рейтинг относится к расчету тепловой эффективности (т.е. эффективность) теплообменника заданной конструкции и размера, включая скорость теплопередачи, количество тепла, передаваемого между жидкостями и соответствующее изменение температуры, а также общее падение давления на устройстве. Определение размеров относится к расчету требуемых общих размеров теплообменника (т. Е. Площади поверхности, доступной для использования в процессе теплопередачи), включая длину, ширину, высоту, толщину, количество компонентов, геометрию компонентов и их расположение, и т.п., для приложения с заданными техническими характеристиками и требованиями. Конструктивные характеристики теплообменника – например, конфигурация потока, материал, компоненты конструкции, геометрия и т. Д. – влияют как на номинальные характеристики, так и на расчет размеров. В идеале, оптимальная конструкция теплообменника для конкретного применения находит баланс (с факторами, оптимизированными в соответствии с указаниями разработчика) между номинальной мощностью и размером, который удовлетворяет технологическим спецификациям и требованиям при минимально необходимых затратах.
Области применения теплообменников
Теплообменники – это устройства, используемые в промышленности как для нагрева, так и для охлаждения.Доступны несколько вариантов теплообменников, которые находят применение в самых разных отраслях промышленности, в том числе:
В таблице 1 ниже указаны некоторые из общих отраслей промышленности и применения ранее упомянутых типов теплообменников.
Таблица 1 – Отрасли и области применения теплообменников по типамТип теплообменника | Общие отрасли промышленности и приложения |
Кожух и трубка |
|
Двойная труба |
|
Пластина |
|
Конденсаторы |
|
Испарители / Котлы |
|
с воздушным охлаждением / вентиляторным охлаждением |
|
Адиабатическое колесо |
|
Компактный |
|
Резюме
Это руководство дает общее представление о теплообменниках, доступных конструкциях и типах, их применениях и особенностях использования. Дополнительная информация о покупке теплообменников доступна в Руководстве по покупке теплообменников Thomas.
Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим руководствам и официальным документам Thomas или посетите платформу Thomas Supplier Discovery Platform, где вы найдете информацию о более чем 500 000 коммерческих и промышленных поставщиков.
Источники
- https://www.engr.mun.ca/~yuri/Courses/MechanicalSystems/HeatExchangers.pdf
- http://sky.kiau.ac.ir
- http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node131.html
- http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node30.html
- https://www.thomasnet.com/knowledge/white-paper/speciality-heat-exchangers-101
- https://www.livescience.com/50833-zeroth-law-thermodynamics.html
- https: // курсы.lumenlearning.com/introchem/chapter/the-three-laws-of-thermodynamics/
- https://chem.libretexts.org
- http://physicalworld.org
- https://link.springer.com
- https://thefreeanswer.com/question/regenerative-heat-exchanger-static-type-regenerative-heat-exchanger-differ-dynamic-type/
- http://hedhme.com
- https://www.kau.edu.sa/Files/0052880/Subjects/GuideLinesAndPracticeForThermalDesignOfHeatExchangersN2.pdf
- https: // www.scribd.com/doc/132/Boilers-Evaporators-Condensers-Kakac
Прочие изделия из теплообменников
Больше из Process Equipment
Анализ методом конечных элементов напряжения в рекуператоре с поперечно-волнистой поверхностью первичного контура на основе модели тепло-структурной связи
Для изучения напряжений, деформаций и деформации рекуператора используется модель анализа методом конечных элементов термоструктурной связи первичного теплообменника с поперечно-волнистой структурой. установлен поверхностный рекуператор газовой микротурбины.Напряжение рекуператора первичной поверхности с поперечной волной после работы в проектных условиях было проанализировано методом конечных элементов. Была проверена надежность материала, выбранного для рекуператора, и проанализировано влияние степени давления и температуры газа на входе на напряжение и смещение рекуператора. Результаты исследования показывают, что максимальное напряжение и деформация на стороне выхода газа из рекуператора выше, чем максимальное напряжение и деформация на стороне входа газа, когда учитывается только давление, и результат противоположен, когда учитываются давление и термическое напряжение. .Воздушный канал рекуператора деформируется в сторону газового канала, воздушный канал становится больше, а газовый канал сжимается. С увеличением перепада давлений между стороной воздуха и стороной газа максимальное напряжение в канале рекуператора также увеличивается. Когда степень сжатия увеличивается до 8,4, достигается предел прочности материала теплообменных ребер. Когда температуры газа и воздуха на выходе остаются неизменными, а тепловое соотношение уменьшается, по мере увеличения температуры газа на входе увеличивается максимальное напряжение.На каждые 50 К повышения температуры газа на входе максимальное напряжение рекуператора увеличивается примерно на 2,3 МПа. Результаты исследования могут быть использованы при проектировании и оптимизации рекуператора.
1. Введение
Микротурбина – это двигатель нового типа. В последние годы он быстро развился в области распределенных систем генерации / энергетики. Внедрение эффективных и компактных теплообменников – один из ключей к их успешному применению.Основываясь на компактности газовой турбины, разработчик должен спроектировать компактный рекуператор с наименьшим объемом и массой, наименьшей стоимостью и легко поддающимся автоматизации массового производства. На рисунке 1 показана принципиальная схема микротурбины с рекуператором, которая в основном состоит из центробежного компрессора, центростремительной турбины, камеры сгорания и рекуператора. После того, как воздух сжимается компрессором, он поступает в рекуператор, повышает температуру, затем входит в камеру сгорания, смешивается с топливом и сгорает, поступает в турбину, выпускается в турбину и выпускает дымовой газ с более высокой температурой, а затем поступает в рекуператор.Он используется для нагрева холодного воздуха от компрессора для дальнейшего повышения эффективности системы. Следовательно, роль рекуператора заключается в использовании отходящего тепла в выхлопе газовой турбины для нагрева сжатого воздуха с целью экономии части топлива, так что температура выхлопных газов снижается для рекуперации отходящего тепла, тем самым повышая эффективность всей системы. машина.
Для экономии топлива и повышения эффективности цикла газовой турбины рекуператор используется для подогрева воздуха, поступающего в систему сгорания газовой турбины, путем поглощения тепла выхлопных газов в цикле рекуперации.Это увеличивает КПД цикла на 10% и даже больше за счет использования цикла с рекуперацией. Рекуператор, как ключевая часть цикла рекуперации, играет важную роль в повышении эффективности газовой турбины. Это должен быть своего рода рекуператор, который имеет небольшой объем, легкий вес, высокую эффективность рекуперации и высокую надежность для использования в газовой микротурбине. Исследования показывают, что рекуператор с поперечно-волнистой первичной поверхностью (CWPSR) может удовлетворить эти требования, поэтому он является предпочтительной конструкцией рекуператора микротурбины.
При условии толщины полустенки и многопериодных граничных условий Xi et al. В [1] была создана трехмерная модель теплопередачи на основе муфты «жидкость-твердое тело», учитывающая взаимодействие между высокотемпературным горячим газом и сжатым холодным воздухом, и предсказаны поток и теплоперенос в канале поперечной волны. Путем сравнения теплопередачи и потери давления пяти конфигураций выявлен закон действия геометрических параметров.
Cai et al. [2] представила вычислительную модель теплопередачи и падения давления, установленную для оптимизации конструкции рекуператора первичной поверхности с поперечно-волнистой поверхностью (CWPSR) с эвольвентным профилем в микротурбине.Метод генетического алгоритма применяется для решения задачи оптимизации кольцевого рекуператора CWPS с несколькими проектными переменными.
Wu et al. [3] провели численное моделирование для исследования течения и теплообмена в канале первичной поверхности КС. Каналы первичной поверхности CW настроены в трехмерной модели численного моделирования для различных конфигураций и создания сетки. Затем в этих моделях моделируются поток и теплопередача, когда число Рейнольдса низкое (Re = 50 ~ 600), а для границы используется периодическое граничное условие.Численное исследование характеристик потока жидкости и теплопередачи для двух различных конфигураций показывает, что среднее число Нуссельта увеличивается с увеличением числа Рейнольдса, в то время как коэффициент трения уменьшается с увеличением числа Рейнольдса. Прямоугольное поперечное сечение обладает лучшими характеристиками среди двух конфигураций.
Ma et al. [4] провели эксперименты по сублимации нафталина для поперечно-волнистых каналов в аэродинамической трубе. Результаты экспериментов показывают, что входная область мало влияет на усредненный за единицу коэффициент теплопередачи для целых поперечно-волнистых каналов.Получены корреляции числа Нуссельта и коэффициента трения в поперечно-волнистом канале. Основываясь на правилах подобия, пять поперечно-волнистых каналов с аналогичной структурой, но с разными эквивалентными диаметрами далее исследуются с помощью численного моделирования. Численные результаты показывают, что поперечно-волнистые каналы с аналогичной структурой, но с разными эквивалентными диаметрами имеют схожие теплогидравлические характеристики в исследованном диапазоне чисел Рейнольдса.
Maghsoudi et al. [5] направлена на выполнение всестороннего термоэкономического анализа, оптимизации и ранжирования пластинчато-ребристых рекуператоров с поперечным и противотоком, использующих прямоугольные, треугольные, смещенные ленточные и жалюзийные ребра.Анализ в основном проводится для двух конструкций рекуператоров: (i) конфигурации ребер на горячей и холодной сторонах одинаковы; (ii) ребра на горячей и холодной сторонах различаются по конфигурации. Принимая во внимание эффективные практические ограничения оптимизации и параметры конструкции, используется генетический алгоритм недоминируемой сортировки (NSGA-II), чтобы одновременно максимизировать эффективность рекуператора и минимизировать его общую стоимость. Представлены оптимальные по Парето фронты для определения желательных конструкций рекуператоров, удовлетворяющих ограничениям.После этого для точного и надежного ранжирования оптимальных конструкций на основе значимых факторов, включая эффективность рекуператора, общую стоимость, объем, массу и перепад давления, используется модель анализа охвата данных (DEA).
Xiao et al. [6] призван дать исчерпывающее представление о рекуператорах, охватывая фундаментальные принципы (типы, выбор материалов и производство), рабочие характеристики (теплопередача и потеря давления), методы оптимизации, а также горячие точки и предложения для исследований.Выявлено, что рекуператор первичной поверхности предшествует пластинчато-ребристым и трубчатым. Керамические рекуператоры превосходят металлические рекуператоры с точки зрения высокотемпературных механических и коррозионных свойств, ожидается, что общий КПД достигнет 40%. Характеристики теплопередачи и перепада давления имеют решающее значение для проектирования желаемого рекуператора, и необходимы дополнительные экспериментальные исследования и моделирование для получения точных эмпирических корреляций для оптимизации конфигураций поверхностей теплопередачи с высокими отношениями числа Нуссельта к коэффициенту трения.Обобщены и обсуждены методы оптимизации с учетом сложных соотношений между потерями давления, эффективностью теплопередачи, компактностью и стоимостью, и отмечено, что методы многокритериальной оптимизации заслуживают внимания. Как правило, металлический рентабельный рекуператор с первичной поверхностью с высокой эффективностью и низким перепадом давления в настоящее время является оптимальным вариантом для газовой микротурбины с КПД, близким к 30%, в то время как керамический рекуператор предлагается для газовой микротурбины с высоким КПД (например.г., 40%).
Распределенное газотурбинное устройство для выработки электроэнергии отличается простотой и гибкостью. Он может не только обеспечивать разные уровни мощности, но и обеспечивать хорошее аварийное оборудование для выработки электроэнергии. За счет утилизации отработанного тепла газа можно еще больше повысить коэффициент использования топлива, а его совокупная выгода не ниже или даже выше, чем потребление электроэнергии в единой сети [7]. Появление микротурбины обеспечивает безопасную и надежную мощность и энергию для децентрализации офиса и миниатюризации производства, чтобы избежать дефектов единой энергосистемы и удовлетворить потребности углубляющейся реформы электроэнергетики.Некоторые называют это иллюзией власти 21 века, и у этого есть широкие рыночные перспективы.
Чтобы повысить КПД газовой микротурбины до 30%, необходимо использовать цикл регенерации. Рекуператор отличается высокой эффективностью теплопередачи, низкими потерями давления, небольшими размерами и малым весом. При этом он также должен обладать высокой эксплуатационной надежностью и долговечностью. В рабочей среде с высокой температурой и высоким давлением в канале рекуператора будут возникать большие напряжения и деформации, а канал для газа будет деформирован, что повлияет на поток воздуха и даже приведет к разрыву листа теплообменника и отказ от рекуператора.Следовательно, необходимо проанализировать напряжения, деформации и деформации рекуператора.
2. Конечноэлементный анализ напряжений, деформаций и деформаций микротурбинного рекуператора [8–10]
2.1. Физическая модель и граничные условия
Рекуператор состоит из нескольких теплообменных блоков, каждый из которых включает теплообменную пластину на поперечно-волнистой первичной поверхности, сваренную вместе для образования воздушного канала, между которым находится газовый канал, как показано на рисунке. на рисунке 2.Форма каждого поперечного сечения элемента одинакова, а каналы для воздуха и газа расположены попеременно. Таким образом, двумерная модель может быть создана для расчета напряжения и деформации [11].
Материал теплообменника – 0Cr17Ni12Mo2. Геометрические параметры: шаг P = 1,8 мм, высота H = 1,8 мм, диаметр газового канала W газ = 1,1 мм, диаметр воздушного канала W воздух = 0.7 мм, толщина стенки 0,1 мм.
Некоторые предположения сделаны следующим образом: (1) Поле потока внутри рекуператора устойчиво; то есть температура рекуператора не меняется со временем. На практике, поскольку рекуператор работает при высокой температуре в течение длительного периода времени, он является долговременной рабочей частью, поэтому температура рекуператора будет колебаться во время работы. (2) Термическое напряжение не влияет на ползучесть. Фактически, когда рекуператор работает при высокой температуре в течение длительного времени, тепловое напряжение, создаваемое нагревом, будет продолжать уменьшаться в процессе ползучести.Когда ползучесть достигает стабильной стадии, термическое напряжение приближается к нулю.
Газовый и воздушный каналы рекуператора имеют противоточное расположение. По результатам моделирования нашей группы [12], давление воздуха на входе в рекуператор составляет 382428 Па, температура воздуха на входе – 463 К, давление воздуха на выходе – 374779 Па, температура воздуха на выходе – 873 К, температура на входе газа – давление рекуператора 105547 Па, температура газа на входе 928 K, давление газа на выходе 101325 Па, температура газа на выходе 529 K.Поскольку рекуператор работает при высокой температуре в течение длительного времени и является долговременным рабочим компонентом, колебания температуры во время работы рекуператора не учитываются в расчетах, а поле потока внутри рекуператора рассматривается как установившееся состояние; то есть температура рекуператора не меняется со временем.
Периодические граничные условия применяются к левой и правой секциям во время расчета. Модель конечных элементов и ограничивающие нагрузки показаны на рисунке 2.
2.2. Математическая модель [13]
Проблема теплового напряжения на самом деле является проблемой связи между двумя физическими полями тепла и напряжения. Существует два аналитических метода: прямой и косвенный. Прямой метод относится к прямому использованию связанных элементов со степенями свободы по температуре и смещению. Прямой метод означает, что результаты термического анализа и анализа структурных напряжений получены с использованием соединительного элемента с температурой и степенями свободы смещения.Косвенный принцип относится к выполнению сначала термического анализа, затем применения расчетной температуры узла в качестве температурной нагрузки к анализу структурных напряжений и получения результатов анализа напряжений.
Прямой и непрямой методы имеют свои достоинства и недостатки. Что касается прямого метода, он имеет два преимущества: (1) он использует один тип элемента для решения двух физических задач и может обеспечить реальную связь между тепловыми проблемами и структурными явлениями; (2) поскольку взаимодействие связанных полей сильно нелинейно, прямой метод является предпочтительным и лучшим методом, когда формула связи используется для одного решения.Однако у него также есть некоторые недостатки: (1) анализ прямой связи обычно нелинейный, потому что состояние равновесия должно соответствовать нескольким критериям; (2) чем больше степеней свободы в каждом узле, тем больше матричное уравнение, тем больше вычислительные затраты и тем больше времени требуется. У косвенного метода есть три преимущества: (1) он может использовать все функции термического анализа и структурного анализа и не требует специального типа ячейки, а также более эффективен, чем прямое связывание; (2) в практических задачах этот подход более удобен, чем прямая связь, потому что анализ использует один элемент поля и не требует многократных итераций; (3) для случаев связи, которые не являются сильно нелинейными, косвенный метод более эффективен и гибок, поскольку два анализа могут выполняться независимо друг от друга.Кроме того, косвенный метод также имеет недостатки. То есть этапы косвенного метода более сложны, чем этапы прямого метода. В этом исследовании для повышения эффективности и экономии времени расчетов принят косвенный метод.
2.2.1. Уравнение теплопроводности сердечника рекуператора
Поскольку рекуператор является частью длительной эксплуатации (расчетное время работы составляет 40000 часов), теплопередача быстро достигает стабильного состояния во время работы, которое может быть решено как установившееся состояние. государственная проблема.Дифференциальное уравнение теплопроводности:
Конвективные граничные условия выполнены:
Адиабатические граничные условия выполнены:
В приведенной выше формуле – температура стенки, К; – температура жидкости, К; – теплопроводность материала, Вт / м · К.
2.2.2. Уравнение плоского напряжения термоупругой механики
Для задачи термоупругого плоского напряжения в этой точке уравнения равновесия, определяющие уравнения и уравнения координации деформации могут быть упрощены следующим образом: (1) Уравнение баланса выглядит следующим образом: (2) Материальное уравнение выглядит следующим образом: (3) Уравнение координации деформации выглядит следующим образом: где
Статические граничные условия также упрощаются до
В соответствии с вышеупомянутыми уравнениями и в сочетании с граничными условиями смещения можно получить смещение и , и тогда решение напряжений можно получить, подставив их в (5).
2.3. Grid Division
Как правило, в анализе методом конечных элементов существует несколько типов сеток, таких как треугольная сетка, четырехугольная сетка и шестигранная сетка. Треугольная и четырехугольная сетки используются для 2D-модели, а шестигранная сетка используется для 3D-модели. Точность расчета четырехугольной сетки выше, чем треугольной, поэтому рекомендуется четырехугольная сетка. В этом исследовании вычислительная модель является двумерной. Поэтому принята четырехугольная сетка с 9444 ячейками и 10317 узлами.Два набора сеток используются для проверки независимости сетки. Сетка 1 состоит из 5490 элементов и 5997 узлов, а максимальное напряжение составляет 78,9 МПа. Максимальное напряжение составляет 78,2 МПа при 9444 элементах и 19493 узлах в сетке 2. Погрешность напряжения двух наборов сеток составляет менее 0,89%. Сетка 2 выбрана в качестве расчетной сетки.
2.4. Дискретность
Уравнения с частными производными (PDE) являются основой математического моделирования для физических и инженерных задач. Чтобы проанализировать PDE реальной системы до приемлемого уровня, необходима дискретизация.При решении инженерных задач метод конечных элементов (МКЭ) является одним из наиболее часто используемых методов дискретизации, который может использоваться для вычисления приближенного значения реального решения дифференциальных уравнений в частных производных. Однако для дискретизации могут использоваться и другие методы, например, методы без сетки и изогеометрический анализ (IGA), основная идея которых состоит в приближении решения уравнения в частных производных с использованием функций с желаемыми свойствами. Samaniego et al. [14] изучали глубокие нейронные сети (DNN) как альтернативу приближениям и обнаружили, что они дают хорошие результаты в таких областях, как визуальное распознавание.Анитеску и др. [15] предложил метод искусственной нейронной сети и адаптивную стратегию согласования для решения уравнений в частных производных (PDE). Этот метод использует только разбросанные наборы точек в обучающих и оценочных наборах и полностью не содержит сетки. Это может повысить надежность аппроксимации нейронной сети и сэкономить много вычислительных ресурсов, особенно когда решение не является гладким.
3. Результаты расчетов и анализ
3.1. Сравнение и анализ напряжений, деформаций и деформаций между входом и выходом в канале рекуператора без учета теплового напряжения
На рисунке 3 показано распределение напряжения на стороне входа воздуха и выхода газа, когда термическое напряжение не учитывается, но измеряется давление. в учетную запись.Максимальное напряжение 60,8 МПа. На рис. 4 показано распределение напряжений на стороне выхода воздуха и входа газа с максимальным напряжением 58,3 МПа. На рис. 5 показано распределение деформации со стороны входа воздуха и выхода газа, максимальная деформация которых составляет 0,292e-3. На рис. 6 показано распределение поперечной деформации выпускного отверстия для воздуха и впускного отверстия для газа, максимальная деформация которых составляет 0,279e-3; На рис. 7 показано распределение деформации на стороне входа воздуха и выхода газа с максимальной деформацией 0,550e-3 мм. На рис.8 показано распределение деформации на стороне выхода воздуха и входа газа с максимальной деформацией 0.526e-3 мм. Можно видеть, что максимальное напряжение, деформация и деформация на стороне выхода газа и входа воздуха в рекуператоре больше, чем у стороны входа газа и стороны выхода воздуха, когда термическое напряжение не учитывается, а учитывается только давление. Причина в том, что давление воздуха на входе и давление газа на выходе из рекуператора составляет 382428 Па и 101325 Па соответственно. Соотношение давлений составляет 3,77: 1. Давление воздуха на выходе и давление газа на входе в рекуператор составляют 374779 Па и 105547 Па соответственно.С увеличением перепада давлений между стороной воздуха и стороной газа максимальное напряжение, деформация и деформация увеличиваются. Рекуператор установлен противотоком, поэтому максимальное напряжение, деформация и деформация возникают на стороне входа воздуха и выхода газа. Кроме того, из рисунка видно, что канал для воздуха деформируется в сторону канала для газа, канал для воздуха становится больше, канал для газа уменьшается, а максимальная деформация меньше, что составляет порядка 10 90 · 103 – 7 г.
3.2. Сравнение и анализ напряжений, деформаций и деформаций между входом и выходом в канале рекуператора с учетом теплового напряжения
На рисунке 9 показано распределение напряжений на стороне входа воздуха и выхода газа с учетом термического напряжения. Максимальное напряжение 66,4 МПа. На рисунке 10 показано распределение напряжений
на стороне выхода воздуха и входа газа, максимальное напряжение составляет 78.2 МПа. На рис. 11 показано распределение деформации со стороны входа воздуха и выхода газа, максимальная деформация которых составляет 0,336e-3; На рис. 12 показано распределение поперечной деформации выпускного отверстия для воздуха и впускного отверстия для газа, максимальная деформация которого составляет 0,478e-3; На рисунке 13 показано распределение деформации на стороне входа воздуха и выхода газа, максимальная деформация составляет 0,562e-3 мм. На рисунке 14 показано распределение деформации на стороне выхода воздуха и входа газа, максимальная деформация составляет 0,656e-3 мм. Можно видеть, что с учетом теплового напряжения максимальные напряжения, деформации и деформации на стороне впуска воздуха и выпуска газа рекуператора меньше, чем на стороне выпуска воздуха и впуска газа.Причина в том, что в рекуператоре используется противоточная схема. Температура газа на входе в рекуператор составляет 928 K, температура воздуха на выходе составляет 873 K, температура газа на выходе составляет 529 K, а температура воздуха на входе составляет 463 K. Температура газа на входе намного выше, чем температура газа на выходе, и температура воздуха на выходе намного выше, чем температура воздуха на входе. Хотя соотношение давлений между выпускным отверстием для воздуха и впуском газа в рекуператоре меньше, чем между впускным отверстием для воздуха и выпускным отверстием для газа в рекуператоре, максимальное напряжение, деформация и деформация на выпускном отверстии для воздуха и впускном отверстии для газа, очевидно, увеличиваются под действием сочетания давления и температуры. .Видно, что термическое напряжение, вызванное тепловым расширением, вызванным повышением температуры, является значительным, и ему следует уделять достаточно внимания. Сравнивая рис. 3 с рис. 9, сравнивая рис. 4 с рис. 10, сравнивая рис. 5 с рис. 11, сравнивая рис. 6 с рис. 12, сравнивая рис. 7 с рис. 13, сравнивая рис. 8 с рис. 14, можно увидеть, что при нагревании При учете напряжений напряжение, деформация и деформация на входе и выходе рекуперативного канала, очевидно, возрастают под действием давления и температуры.Поскольку материалом теплообменника является 0Cr17Ni12Mo2, предел прочности 0Cr17Ni12Mo2 составляет 170 МПа, что превышает значение напряжения 78,2 МПа. По литературным данным [16] видно, что предел прочности 0Cr17Ni12Mo2 составляет 170 МПа, что превышает значение термического напряжения 78,2 МПа. Следовательно, сконструированный рекуператор безопасен и надежен по прочности.
3.3. Влияние соотношения давлений на напряжение и деформацию рекуператора
На рисунке 15 показано, что максимальное напряжение и деформация на входе и выходе газа изменяются в зависимости от соотношения давлений на стороне воздуха и стороне газа, в то время как температура и давление на входе газа и выходе температура выходящего воздуха остается неизменной.Видно, что с увеличением перепада давлений между стороной воздуха и стороной газа максимальное напряжение и максимальная деформация рекуператора также увеличиваются. Когда степень сжатия увеличивается до 8,4, максимальное напряжение рекуператора достигает 170 МПа и достигает предела прочности материала теплообменника 0Cr17Ni12Mo2. Когда степень сжатия увеличивается до 8,5, максимальное напряжение рекуператора увеличивается до 172 МПа, что превышает предел прочности материала теплообменника 0Cr17Ni12Mo2.Поэтому при проектировании рекуператора для обеспечения его безопасности и надежности перепад давлений между воздушной и газовой сторонами не должен превышать 8,4.
3.4. Влияние температуры газа на входе на напряжение и деформацию рекуператора
Согласно литературным данным [17], с повышением температуры газа на входе, температура газа на выходе немного изменяется, и тепловой коэффициент постепенно уменьшается. В соответствии с этой идеей выполняется анализ методом конечных элементов напряжений на входе и выходе газа в рекуператор; то есть изменяется только температура газа на входе, в то время как температура газа на выходе и температура воздуха на выходе остаются неизменными.На рисунке 16 показано, что максимальное напряжение, возникающее в желобе воздушного канала, и максимальная деформация рекуператора зависят от температуры на входе газа, в то время как тепловой коэффициент остается неизменным. Видно, что с увеличением температуры газа на входе максимальное напряжение увеличивается. На каждые 50 К повышения температуры газа на входе максимальное напряжение рекуператора увеличивается на 2,3 МПа, а максимальная деформация увеличивается примерно на 0,025 мкм м. В этой статье 0Cr17Ni12Mo2 выбран в качестве изотропного материала для листа теплообменника, который удовлетворяет теореме Гука, т.е.е., зависимость между напряжением и деформацией линейна. Из рисунка также видно, что существует линейная зависимость между максимальным напряжением и максимальной деформацией.
На рисунке 17 показан тренд изменения максимального напряжения, рассчитанного с температурой газа на входе в [13]. Можно видеть, что максимальное напряжение, которое возникает в желобе воздушного канала, увеличивается с увеличением температуры газа на входе и имеет линейную тенденцию изменения. При повышении температуры на 50 К максимальное напряжение увеличивается на 6 МПа, что выше результатов, рассчитанных в этой статье.Причина в том, что установлен такой же тепловой коэффициент. С увеличением температуры газа на входе, температура газа на выходе и температура воздуха на выходе также увеличиваются, и максимальное напряжение быстро увеличивается. Фактически, согласно экспериментальным исследованиям в литературе [17], с повышением температуры газа на входе, температура газа на выходе не сильно меняется, а тепловой коэффициент постепенно уменьшается. С помощью вышеупомянутого сравнения далее объясняется, что увеличение термического напряжения, вызванного повышением температуры, является значительным и требует достаточного внимания.
4. Выводы
(1) Максимальное напряжение, деформация и деформация стороны входа воздуха и выхода газа в рекуператоре больше, чем у стороны выхода воздуха и стороны входа газа, когда термическое напряжение не принимается во внимание и только учитывается давление. Результат обратный, если учесть давление и термическое напряжение. Хотя соотношение давлений между выпускным отверстием для воздуха и впуском газа рекуператора меньше, чем соотношение давлений между впускным отверстием для воздуха и выпускным отверстием для газа рекуператора, максимальное напряжение, деформация и деформация выпускного отверстия для воздуха и впускного отверстия для газа равны очевидно, увеличивается под действием давления и температуры.Следовательно, увеличение теплового напряжения, вызванного повышением температуры, является значительным, и на него следует обращать достаточно внимания. (2) Сторона газового канала деформируется по отношению к воздушному каналу рекуператора, воздушный канал становится больше, а газ проход уменьшается. Максимальная деформация меньше и составляет порядка 10 90 · 103 −7 90 · 104 м. (3) С увеличением перепада давлений между стороной воздуха и стороной газа максимальное напряжение и максимальная деформация рекуператора также увеличиваются. Когда степень сжатия увеличивается до 8.4, максимальное напряжение рекуператора достигает 170 МПа и достигает предела прочности материала теплообменника 0Cr17Ni12Mo2. Следовательно, чтобы обеспечить его безопасность и надежность при проектировании теплообменника, перепад давлений между стороной воздуха и стороной газа не должен превышать 8,4. (4) Когда температура газа на выходе и температура воздуха на выходе остаются неизменными, а тепловое соотношение уменьшается. , при увеличении температуры газа на входе максимальное напряжение увеличивается. На каждые 50 К повышения температуры газа на входе максимальное напряжение рекуператора увеличивается в 2 раза.3 МПа и максимальная деформация увеличивается примерно на 0,025 мкм м.Доступность данных
Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Благодарности
Авторы выражают признательность за финансовую поддержку, предоставленную Фондами фундаментальных исследований для центральных университетов (грант №2018YZ02) и Китайского горно-технологического университета (Пекин) Программа инноваций и предпринимательства для студентов (№ C202012154).