- правильное подключение лампочек к потолку, простые схемы монтажа, и полное пошаговое описание установки своими руками к сети 220В
- Принцип работы
- Преимущества и недостатки
- Разновидности
- Правильные схемы подключения к сети
- Как правильно подсоединить
- Как происходит крепление к потолку: монтаж
- Что нужно знать о безопасности при закреплении на потолке?
- Установка диодных светильников на натяжном потолке
- Монтаж светильников на потолке из гипсокартона
- Правила техники безопасности при подключении к сети
- Основные причины поломки
- Полезное видео
- Ничего не найдено для Apple Touch Icon 120X120 Precomposed Png
- Ничего не найдено для Apple Touch Icon 120X120 Precomposed Png
- Ничего не найдено для Apple Touch Icon 120X120 Precomposed Png
- Подробная схема светодиодной лампы на 220В
- Как сделать светодиодную лампу на 220В (схема)
- Подключение светодиодной лампы вместо люминесцентных
- мы собираемся объяснить, как подключить светодиодный светильник к 220 в переменного тока
- 3 лучшие схемы светодиодных ламп, которые вы можете сделать дома
- и параллельных цепей
- Что такое последовательное и параллельное соединение и когда что применять? – служба поддержки клиентов
- Бестрансформаторное светодиодное освещение Схема светодиодной лампы
- LEDs (Light Emitting Diodes) | Electronics Club
- Пайка светодиодов
- Тестирование светодиода
- Цвета светодиодов
- Размеры, форма и углы обзора светодиодов
- Расчет номинала резистора светодиода
- Последовательное подключение светодиодов
- Избегайте параллельного подключения светодиодов!
- Чтение таблицы технических данных для светодиодов
- Мигающие светодиоды
- Светодиодные дисплеи
- Книг по комплектующим:
- Простая схема светодиодной лампы из лома. Использует 5 светодиодов и потребляет только 50 мА
правильное подключение лампочек к потолку, простые схемы монтажа, и полное пошаговое описание установки своими руками к сети 220В
Установка светодиодных точечных светильников не так сложна, как кажется, на первый взгляд. Достаточно заранее продумать места установки приборов. И позаботиться о подборе правильной проводки. Остальная работа займёт не так много времени.
С каждым годом у светодиодных светильников появляется всё больше поклонников. Лампы накаливания, люминисцентные аналоги уходят в прошлое из-за низкой безопасности и экономности. Светодиодные приборы долго служат, эффективно используют имеющиеся ресурсы. Даже после выхода из строя некоторые модели подлежат повторному ремонту. Потребуется знать некоторые особенности схемы, чтобы эксплуатация принесла лучшие результаты.
Принцип работы
Здесь владельцы должны учитывать несколько особенностей:
- Переменное напряжение в 220 В подают к драйверам у светодиодных ламп. Частоты такой энергии составляет 50 Гц.
- Далее сам поток переходит по конденсатору, ограничивающему ток.
- Следующий компонент, где оказывается энергия – выпрямительный мост, собранный на основе четырёх диодов.
На выходе моста на следующем этапе появляется выпрямленная разновидность напряжения. Именно этот вариант энергии нужен, чтобы диоды правильно работали. Но драйвер нужно дополнить электролитическим конденсатором, чтобы устройство начало действовать как надо. Тогда пульсации, возникающие при выпрямлении переменного напряжения, сглаживаются.
В устройстве также присутствуют сопротивления разного вида. Для разрядки конденсатора, дополнительной защиты служит специальный резистор. Другой, с обозначением 1 на схемах – ограничивает ток, который поступает на лампочку при включении.
Устройство светодиодной лампочки 220В
В любой светодиодной лампе выделяют следующие компоненты:
- Световой поток становится равномерным благодаря рассеивателю.
- Резисторы или чипы, защищающие от резких изменениях в показателях.
- Печатная плата, для впаивания светодиодов.
- Радиатор, отводящий тепло.
- Драйвер. Он основа для сбора схемы, преобразующей переменный ток напряжения в постоянный. Главное – получить на выходе необходимую величину.
- Диэлектрическая прокладка, между корпусом и цоколем.
- Цоколь, в который вкручивают люстру и бра, светильник.
Отличие светодиодной от люминесцентной: краткое описание
С конструкцией связаны главные отличия. Основа люминесцентных ламп – колба из стекла. Ртутные пары и инертные газы наполняют часть этого устройства внутри. Запайка обеспечивает герметичность. Сфера применения шире благодаря комплектам с цоколями различных габаритов.
На электронных матрицах построены светодиодные лампы. Это электронное соединение нескольких диодов друг с другом. В изделиях присутствуют и другие вспомогательные элементы, для обеспечения стабильной работы механизма. Низкое энергопотребление – главное преимущество светодиодных ламп по сравнению с другими.
Преимущества и недостатки
Среди главных положительных качеств выделяют:
- Низкий уровень энергопотребления.
- Колоссальная светоотдача.
- Экологичность.
- Продолжительный срок службы.
Высокая стоимость – главный недостаток, который мешает сделать такие лампочки распространёнными и доступными для каждого. Стоит выделить и другие отрицательные качества, которые могут стать значимыми для покупателей:
- Понижающие преобразователи с функцией стабилизации тока. Из-за этого изделие тоже становится дороже.
- Нейтральные и холодные белые цвета снижают выработку мелотонина. Это гормон, отвечающий за регулирование сна.
- Потеря яркости кристаллом и его деградация.
У дешёвых китайских аналогов часто страдают показатели яркости и светового потока.
Разновидности
Свечевидная форма или так называемая «кукуруза» подходит для большинства декоративных разновидностей приборов. Особенно удачными называют варианты с патронами, направленными вверх. Шарообразные, грушевидные изделия неплохо сочетаются с плафонами. Акцентное освещение помогают создать так называемые рефлекторы.
Для светодиодных ламп распространены следующие виды цоколей:
- E40 в случае с крупными изделиями повышенной мощности. Этот вариант актуален при организации уличного освещения.
- E41. Его ещё называют «миньоном». Для маломощных ламп.
- E27. С таким цоколем сталкивался каждый.
Есть и штырьковые модели:
- G13 – вариант похож на линейные люминесцентные лампы. Есть поворотная разновидность.
- GX53. Встраиваемые и накладные типы светильников с плоской широкой формой.
- GU10. С расстоянием между контактами в 10 мм. На кончиках штырьков отличается увеличенным диаметром.
- GU5.3. Оснащают ими популярные лампы с обозначением MR16.
- G4 – для ламп с миниатюрными размерами.
Правильные схемы подключения к сети
Подключение во многом проходит также, как для ламп накаливания, люминисцентных аналогов. Надо просто обесточить цоколь, а затем вкрутить в него лампу. Главное во время установки избегать прикосновения к металлическим частям изделия.
Последовательный
Такой вариант соединения не всегда считается оптимальным. Количество проводов нужно минимальное, но в бытовых условиях эту схему практически не используют. Это связано с двумя серьёзными недостатками:
- При перегорании одной лампочки работать перестают все. Только последовательная замена приборов на всей цепи способна справиться с поиском неисправностей.
- На лампы подают пониженное напряжение, потому сила свечения у них – не полная. От количества соединённых лампочек зависит то, насколько эта энергия неполная.
Соединение такого типа актуально при построении гирлянд на ёлках, при большом количестве световых источников с низким показателем мощности.
Само подключение по последовательной схеме максимально простое:
- От одного светильника к другому обходит фаза.
- У последней лампочки в цепи ноль подают ко второму контакту.
- Фаза проходит к выключателю, от распределительной коробки.
- Далее всё переходит к точечному светильнику.
Нулевой провод или нейтраль подключают ко второму контакту у последнего светильника.
Для домовых подъездов практическое применение схемы тоже допустимо.
Параллельный
Для большинства случаев применяют эту схему. Потребители не пугаются даже проводов в большом количестве. Главное преимущество – в подаче одинакового напряжения ко всем осветительным приборам, участвующим в схеме. Только одна лампочка не работает после перегорания, остальные компоненты остаются нетронутыми. С поиском мест поломки не возникнет никаких проблем.
Параллельное соединение проводят двумя путями:
- Лучевой. Отдельный кабель соединяют с каждым из осветительных приборов. Наличие или отсутствие заземление влияет на то, будет провод трёх- или двухжильным.
- Шлейфная схема.
Фаза с нейтралью от щитка и выключателя переходят на первый светильник от выключателя, когда речь о последнем варианте. От светильника кусок кабеля переходит к следующей части. Потом идёт ко второй, и так далее. Каждый из компонентов соединяют с четырьмя кусками кабеля, последний элемент – исключение.
Лучевой
Вариант подключения отличается надёжностью. При перегорании одной лампочки другие не затрагиваются. Но имеются и отрицательные стороны:
- Кабелей нужно слишком много. Но качественное исполнение проводки позволяет смириться с таким недостатком.
- Одно место используют для соединения большого количества кабелей. Непросто соединить все элементы на достаточно высоком уровне качества, но решить проблему можно.
Обычная клеммная колодка – один из оптимальных вариантов для соединения. Фазу подают с одной стороны, в этом участвуют перемычки. Потом эту часть разводят по другим участкам конструкции. Провода, идущие к лампочкам, подсоединяются с другой стороны.
Такой же способ применения – у клеммников ВАГО на соответствующее число контактов. Главное – правильно выбрать модель, участвующую в параллельном соединении. Внутри всё рекомендуют заполнить пастой, защищающей от окисления.
Ещё один из приемлемых вариантов – применение скрутки всех проводников, с последующей спайкой.
Как правильно подсоединить
Все монтажные работы выполняются до того, как будет закончен сам подвесной потолок. Важно следовать выбранной схеме подключения. Место монтажа, высота установки осветительных приборов – одни из главных факторов, с которыми следует разобраться заранее.
Количество светильников тоже считают заранее. Надо учесть, что в некоторых случаях возникает необходимость в трансформаторе. Провода к местам монтажа подключают заранее. Чтобы не было контакта с каркасными подвесными конструкциями – для проводов берут гофрированные трубки. Для каждой ситуации разрабатывают отдельную схему.
Установка по простой схеме
Обычная схема предполагает последовательное подключение всех проводников. Токоограничивающий резистор необходим, если соединение выбрано параллельное. Лучше обратиться к электрикам с достаточно высокой квалификацией для таких работ, как сборка и установка светильников, прокладка электропроводов с достаточным сечением.
Общая схема действий выглядит следующим образом:
- Обесточивание электрической сети.
- Укомплектовать прибор блоком питания. Или использовать обычную деталь, если все характеристики подходят.
- Проверка типа цоколей.
- Проверить наличие термоколец, препятствующих перегреву в системе. Нужно убедиться в том, что для вентиляции хватает пространства.
- Строгое соблюдение полярности.
С дополнительной защитой
Назначение прибора влияет на то, какой класс защиты выбирать для конкретного случая:
- Фильтрация помех с высокими частотами, защита от дифференциальных перенапряжений, от остаточных бросков по этому показателю. Устанавливаются средства защиты рядом с потребителем.
- Для токораспределительной сети у объекта, от коммутационных помех. Элемент играет роль второй ступени, когда ударяет молния. Место монтажа – внутри распределительных щитов.
- Чтобы в защитную систему дома прямо не попадали молнии. Место монтажа – ввод в здание, внутри устройств по распределению. Главный распределительный щит для этого тоже допускается использовать.
Обычно устройства защиты снабжаются специальной разновидностью модуля, легко заменяемому при необходимости. Монтаж таких приспособлений продлевает срок эксплуатации всей системы.
С активным ограничителем тока
Элементом, ограничивающим ток, для этой схемы будет выступать резистор R1. Показатель коэффициента мощности в данном случае приближается к единице. Схема имеет один минус – у резистора тепло рассеивается в больших количествах.
Резистор R2 применяют для разрядки остаточного напряжения.
Как посчитать необходимое количество ламп?
Уровень освещённости подбирают индивидуально у каждой из комнат. Всё зависит от назначения помещения. Максимальная яркость нужна там, где постоянно читают или пишут. Для коридора этот показатель будет на порядок ниже.
Для измерения светового потока одной лампы уровень освещённости перемножают с площадью комнаты, а потом делят на количество ламп.
Расчёт на квадратный метр выглядит несколько иначе. Количество ламп перемножают со световым потоком, результат делят на площадь освещения. От типа монтажа зависит, сколько оборудования нужно в том или ином случае. При установке в обычную люстру опираются на уровень интенсивности света.
Эффективный угол света для светодиодов составит примерно 120 градусов. Главное – так рассчитать количество светильников, чтобы свет в итоге оказался равномерным.
Как происходит крепление к потолку: монтаж
Во время монтажа пользуются такими инструментами:
- Клеммники.
- Пассатижи.
- Строительный нож.
- Отвёртка.
- Кабель с достаточной длиной.
- Распределительные коробы.
- Дрель.
Установка ЛЕД ламп: схема включения
Любое количество встроенных светильников с лампами предполагает применение негорючего кабеля ВВГ нг 2*1,5. Допустим вариант 3*1,5. Проводка с заземлением требует применения трёхжильного провода.
При использовании схем важно запомнить, что за чем идёт.
Необходимый инструмент для включения в сеть
Распределительные коробки, провода и гофра – основные приспособления, которые применяются во время монтажа в таких ситуациях. Расположение и конфигурацию каждого светильника продумывают ещё на этапе проектирования.
Выбор провода
Стандартно рекомендуют для всех отрезков выбирать исключительно медную продукцию. Лучше пропаять и изолировать изделия, если на них встречаются скрутки первоначально. К каждому из светильников важно подвести отдельный гибкий провод. Медные гильзы или специальный «клеммник» помогают соединить элементы вместе. В последнем случае потом для изоляции используют ленту.
Разметка и прокладка кабеля
На этом этапе тоже нужно выполнить несколько действий.
- Планирование общего пространства.
Потолки на нескольких уровнях предполагают выделение освещения по отдельным контурам. Для каждого из них управление организуется отдельным выключателем на 220 В. Надо заранее точно проработать монтажную схему.
- Протяжка кабелей, их закрепление.
Для крепления рекомендуют выбирать металлические профили. Конструкция увеличивает надёжность благодаря стяжкам из пластмассы. Специальные петли формируют на местах, где крепятся световые точки. Их легко зацепить, достать через отверстия на потолке. Небольшое провисание таких компонентов вполне допустимо.
После монтажа потолочной поверхности схема крепления должна приобретать окончательный вид. По центру панелей лучше располагать светильники, когда речь идёт об алюминии, пластике. Дрель и специальная насадка под названием «коронка» помогут создать подходящие отверстия.
Что нужно знать о безопасности при закреплении на потолке?
Здесь специалисты дают несколько важных рекомендаций:
- Светодиоды сильно греются. Потому применяют специальные радиаторы, отвечающие за охлаждение.
- Контакт и отвод тепла улучшается благодаря специальной термопасте на месте соединения между двумя важными элементами.
- При установке важно проследить за тем, чтобы вокруг радиаторов было свободное место, не замкнутое. Иначе светодиоды выйдут из строя раньше времени.
Возле нагревающихся приборов монтировать светильники тоже запрещается.
Специальные регуляторы и лампочки с функцией диммирования понадобятся тем, кому интересно регулировать уровень яркости, освещения. Доступность ламп для замены – важный фактор при выборе подходящих моделей.
Где можно повесить светодиодный светильник?
Натяжные и подвесные потолочные конструкции – вот вместе с какими изделиями чаще всего используются точечные светодиодные светильники. Устройства могут располагаться по центру или по бокам. Здесь каждый покупатель выбирает вариант, который лучше всего отвечает текущим условиям эксплуатации.
Установка диодных светильников на натяжном потолке
Протяжка и закрепление отдельного кабеля нужны везде, где будут сами светильники. Монтаж натяжного потолка проводят после подготовительных работ. Работы проводят в таком порядке:
- В местах, намеченных ранее, монтируют профиль с круглой формой.
- Светильник потом вставляют в отверстие, прорезаемое в полотне.
- Выставление крепёжных стоек на одном уровне с полотном.
- Проводники выходят наружу через те же отверстия.
- На корпус светильника одевают термоизоляционное кольцо перед завершением установки.
Предложенный алгоритм подходит и для работы в помещениях вроде ванной комнаты.
Монтаж светильников на потолке из гипсокартона
Чтобы завершить монтаж светильников, достаточно сжать боковые распорочные пружины, завести корпус в отверстие, подготовленное заранее. Светильник без проблем правильно уходит в потолочную нишу при грамотном подборе диаметров. Главное – чтобы провода не оказались перегнутыми.
Для предварительного сжатия пружин запрещено использовать верёвки и куски проводов. Идеальный вариант – когда корпус свободно проходит через отверстие. Тогда потом проще будет демонтировать изделие, если возникнет необходимость.
Правила техники безопасности при подключении к сети
Основные советы уже были перечислены ранее. Главное – проводить любые работы по монтажу и демонтажу при отключенной сети питания. И внимательно проверять работу проводки перед началом эксплуатации.
Основные причины поломки
Гораздо проще исключить негативные факторы, из-за которых невозможна стабильная работа аппарата. Лучше сэкономить сегодня, чем тратить лишние деньги завтра. Но с некоторыми проблемами можно справиться.
Не работают светодиоды
Подпалины или чёрные точки на этих элементах точно говорят о том, что прибор вышел из строя. Тогда достаточно заменить деталь на новую, после чего – проверить работоспособность конструкции.
Вот самые распространённые проблемы:
- Повреждённый элемент.
- Неправильно отключенный свет.
- Кратковременные виды мерцания.
- Периодичное отсутствие освещение.
- Полное отсутствие свечения.
Причина поломок кроется во внутренних, либо внешних факторах. В большинстве случаев проблему решают заменой одного элемента на другой.
Диодный мост
Диодный мост может оказаться неисправным по следующим причинам:
- Внешние воздействия.
- Неправильная эксплуатация.
- Неисправный аккумулятор, низкая плотность электролитов.
Для замены детали лучше обратиться к профессионалу. При возможности покупается новая деталь.
Плохая пайка
Иногда в изделиях некачественно пропаиваются края. Из-за этого отвод тепла происходит недостаточно интенсивно. Со временем это становится причиной перегрева в проводнике. Перегрев, короткие замыкания приводят к выходу устройства из строя. Решение – разбор корпуса. При возможности – сгоревшие элементы заменяются на новые, не обязательно приобретать весь корпус целиком.
Светодиодные лампочки давно признаны одним из самых практичных источников освещения. Высокая цена по сравнению с аналогами – единственный недостаток изделий. Но приборы полностью отрабатывают затраты благодаря высокой надёжности. Потому их выбирает всё большее число покупателей.
Полезное видео
Ничего не найдено для Apple Touch Icon 120X120 Precomposed Png
Выключатели
Правильный подбор расцепителя автоматического выключателя защитит электрооборудование, СБТ и разводку распределительной сети от перегруза
Электрооборудование и безопасность
Теплые полы – это не роскошь, а комфорт. При наличии в семье маленьких детей
Светильники
Виды точечных светильников, их предназначение для ПВХ потолков и ГКЛ конструкций. Правильный монтаж с
Электрооборудование и безопасность
Популярность инфракрасного пола растет за счет его преимуществ над другими вариантами. Благодаря современным технологиям
Светильники
Точечные светильники – споты улучшают яркость освещения, без возникновения теней. Равномерно распределив их по
Розетки
Выбор розетки и выключателя необходимо проводить с учетом специфики использования помещения, репутации производителя соответствующего
Ничего не найдено для Apple Touch Icon 120X120 Precomposed Png
Выключатели
Правильный подбор расцепителя автоматического выключателя защитит электрооборудование, СБТ и разводку распределительной сети от перегруза
Электрооборудование и безопасность
Теплые полы – это не роскошь, а комфорт. При наличии в семье маленьких детей
Светильники
Виды точечных светильников, их предназначение для ПВХ потолков и ГКЛ конструкций. Правильный монтаж с
Электрооборудование и безопасность
Популярность инфракрасного пола растет за счет его преимуществ над другими вариантами. Благодаря современным технологиям
Светильники
Точечные светильники – споты улучшают яркость освещения, без возникновения теней. Равномерно распределив их по
Розетки
Выбор розетки и выключателя необходимо проводить с учетом специфики использования помещения, репутации производителя соответствующего
Ничего не найдено для Apple Touch Icon 120X120 Precomposed Png
Выключатели
Правильный подбор расцепителя автоматического выключателя защитит электрооборудование, СБТ и разводку распределительной сети от перегруза
Электрооборудование и безопасность
Теплые полы – это не роскошь, а комфорт. При наличии в семье маленьких детей
Светильники
Виды точечных светильников, их предназначение для ПВХ потолков и ГКЛ конструкций. Правильный монтаж с
Электрооборудование и безопасность
Популярность инфракрасного пола растет за счет его преимуществ над другими вариантами. Благодаря современным технологиям
Светильники
Точечные светильники – споты улучшают яркость освещения, без возникновения теней. Равномерно распределив их по
Розетки
Выбор розетки и выключателя необходимо проводить с учетом специфики использования помещения, репутации производителя соответствующего
Подробная схема светодиодной лампы на 220В
Устройство светодиодной лампы на 220В значительно сложнее, чем у аналогичной лампы накаливания. Пытаясь сохранить привычную грушевидную форму, инженерам пришлось немало потрудиться. И, как оказалось, не зря! Новые осветительные приборы практически не греются, потребляют малое количество электроэнергии и стали значительно менее хрупкими. Но чего же особенного в светодиодной лампе и в чем сложность ее схемы? Давайте разберемся.
Конструктивная схема
Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла.
К корпусной части светодиодной лампы относится цоколь, оболочка из пластика, внутри которой размещен драйвер, и полупрозрачная крышка в виде полусферы, по совместительству являющаяся рассеивателем света. В дорогих моделях ламп большую часть корпуса занимает ребристый радиатор из алюминия или специального теплопроводящего пластика. В лампочках бюджетного класса радиатор либо вовсе отсутствует, либо расположен внутри, а по окружности корпуса сделаны отверстия. Дешёвая китайская продукция мощностью до 7 Вт вовсе имеет сплошной корпус, без какого-либо отвода тепла.В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла.
В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают. Вывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.Электрическая схема
Касательно электрической части между светодиодными лампами на 220В разных ценовых категорий также много отличий. В этом можно убедиться сразу после демонтажа рассеивателя. Достаточно рассмотреть качество пайки SMD элементов и соединительных проводов.
Недорогой китайской лампы на 220В
В лампочках стоимостью 2-3$ отсутствует какая-либо симметрия на плате со светодиодами, что свидетельствует о ручной пайке, а провода выбраны с минимально возможным сечением. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем. Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами.
При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.Фирменной светодиодной лампы
Фирменная светодиодная продукция отличается не только приятным внешним видом, но и качеством элементной базы. Непосредственно драйвер имеет более сложное устройство и зачастую собирается одним из двух способов. Первый предусматривает наличие импульсного трансформатора, импульсного преобразователя напряжения с последующей стабилизацией тока нагрузки.
Во втором случае обходятся без трансформатора, а основная функциональная нагрузка ложится на специальную микросхему – сердце драйвера. Её универсальность в том, что она стабилизирует входное напряжение, поддерживает выходной ток с заданной частотой (ЧИМ) или шириной импульса (ШИМ), допускает возможность диммирования, имеет систему отрицательной обратной связи. В качестве примера можно назвать, например, CPC9909.
Светодиоды в лампе на 220В с токовым драйвером надёжно защищены от перепадов напряжения и помех в сети, ток через них соответствует номинальному паспортному значению, а радиатор обеспечивает качественный теплоотвод. Такие лампочки прослужат намного дольше дешёвых китайских аналогов, тем самым доказывая преимущество светодиодов на деле.Как сделать светодиодную лампу на 220В (схема)
Схема светодиодной лампы на 220 В позволяет не только понять принцип работы данного устройства, но и изготовить его своими руками. Попытки сделать лампочки типа е27 самостоятельно обусловлены тем, что далеко не всегда удается приобрести осветительный прибор с необходимыми характеристиками. Да и просто те, кто любит возиться с электроникой, не прочь попробовать что-то новое.
Важные нюансы
Существует множество систем, согласно которым светодиодное освещение функционирует от переменного тока номиналом 220 Вольт. Причем все они, вместе со схемой балласта, призваны решать три основные задачи.
- Преобразовать переменный ток сети 220в в пульсирующий ток,
- Выровнять пульсирующий ток, сделав его постоянным,
- Добиться показателей силы тока в 12 Вольт.
Если вы хотите собрать устройство, питающееся от обычной сети, для подключения придется разобраться с некоторыми основными проблемами.
- Где расположить схемы и непосредственно само устройство на основе светодиодов. Ведь для диодов потребуется свое место.
- Как можно изолировать устройство осветительного светодиодного прибора.
- Как обеспечить необходимый теплообмен для подключения лампы.
Конечно, можно спокойно приобрести популярную лампу е27. Это диодное устройство является одним из наиболее востребованных на рынке, отлично работает от обычной бытовой сети.
Схемы
Чтобы собрать схему и получить на ее основе светодиодное устройство для освещения дома от питания 220 Вольт, вам потребуется:
- Выровнять переменный ток,
- Добиться требуемых параметров мощности,
- Обеспечить необходимое сопротивление.
Все это можно сделать двумя способами. Существует две основные вариации:
- Схема на основе диодного моста.
- Резисторная схема, где используется четкое количество светодиодов.
Они достаточно простые, потому устройство собирается без особых проблем.
С диодным мостом
- Конструкция диодного моста включает 4 разнонаправленных светодиода,
- Задача моста сделать пульсирующий ток из синусоидального переменного,
- Полуволны проводят через 2 диода, за счет чего минус теряет полярность,
- В схеме необходимо подсоединить на плюс конденсатор со стороны источника переменного тока перед диодным мостом,
- Перед минусом устанавливается сопротивление с номиналом 100 Ом,
- Параллельному мосту, сзади него, потребуется закрепить еще один конденсатор. Он будет сглаживать перепады напряжения,
- При элементарных навыках работы с паяльником, собрать подобную схему не будет сложно для начинающего мастера.
Светодиоды
- Светодиодную плату можно использовать стандартную, позаимствованную у нефункционирующего светильника,
- Перед сборкой обязательно проверьте каждый элемент на предмет работоспособности. Чтобы сделать это, воспользуйтесь 12 Вольтным аккумулятором,
- Если есть нерабочие компоненты, их контакты нужно отпаять и установить новые,
- Особое внимание уделяйте ножкам катода и анода. Их следует соединять последовательно,
- Если вы просто меняете несколько деталей старого светильника, достаточно нерабочие элементы заменить функционирующими, установив их на старые места,
- Если вы решили собрать устройство самостоятельно, запомните важное правило лампы светодиодов соединяются последовательно по 10 единиц, после чего цепи следует подключить параллельно.
Читайте также:
Хотите спаять светодиодную ленту самостоятельно?
В результате схема у вас должна выглядеть следующим образом.
- 10 светодиодов идут в один ряд. Затем ножки анода и катода спаиваются так, чтобы получилось 9 соединений и по 1 хвостику по краям, которые находятся в свободном положении.
- Все полученные цепи соединяют с проводами. К одному идут концы катода, а к другому концы анода.
- Не забывайте, что катод является положительным и соединяется с минусом. Анод отрицательный, и его необходимо соединять с плюсом.
- Следите за тем, чтобы на схеме спаянные между собой концы не прикасались к другим концам. Если подобная ситуация случится, схема сгорит, возникнет короткое замыкание.
Резисторная
Схема электронного балласта может обеспечивать требуемую мощность работы светодиодных светильников, питающихся от 220в.
Схемы драйверов светодиодных ламп
Создание балласта и подключения здесь не сложное, потому с подобной задачей способен справиться относительно новичок в сфере электроники.
- Резисторная схема для светодиодов состоит из пару резисторов 12 К и пары цепочек,
- Цепочки состоят из одинакового количества светодиодных элементов,
- Светодиодные элементы припаиваются последовательно и имеют разную направленность,
- Со стороны R1 выполняется припаивание одной полосы светодиодных элементов катодом, а вторая полоса анодом,
- Второй отвод, идущий к R2, выполняется наоборот,
- За счет такой схемы свечение светодиодных ламп получается мягким. Это обусловлено тем, что светодиодные элементы начинают гореть по очереди, потому пульсирующие вспышки человеческому глазу практически не видны,
- Подобное светодиодное устройство, питающееся от 220 Вольт, может применяться для освещения рабочего стола, подсветки определенных зон. Потому им можно заменить традиционные светильники, получив аналогичный по эффективности свет или даже свечение более высокого качества,
- Практика показывает, что резисторная схема светодиодного устройства эффективнее всего себя показывает при использовании минимум 20 светодиодов. А еще предпочтительнее задействовать 40 элементов,
- За счет такого количества светодиодов и особенностей схемы, вы получаете высококачественное освещение. Проблем со сборкой схемы совершенно нет, все очень просто,
- Единственными нюансами схемы с 20-40 светодиодами является то, что пайку осуществлять требуется очень аккуратно, дабы не повредить соседние контакты. Плюс собрать все это в единый компактный корпус еще одна задача.
Читайте также:
Схемы подключения светодиодной ленты на 220В
Подключение светодиодной лампы вместо люминесцентных
Заходя в любое производственное помещение, учебное заведение или даже некоторые квартиры, можно увидеть люминесцентные светильники. Они по праву завоевали репутацию лучших приборов освещения прошлых лет. Но время идет, и уже сейчас многие стараются заменить световые приборы на более высокотехнологичные, долговечные и энергосберегающие – светодиодные лампы. И все же, как установить освещение на кристаллах на 220 вольт вместо ЛДС?
Для некоторых такая замена не представляет ничего сложного, но основная масса людей не представляет, как можно подключить светодиодную лампу взамен люминесцентной. Им проще и надежней поменять светильник целиком, и единственное, что их останавливает – это высокая стоимость такого устройства.
А ведь при затрате минимума усилий люминесцентный прибор очень быстро превращается в светодиодный светильник. Нужно лишь понять, как это сделать.
Подключение светодиодной лампы Т8
Самым распространенным корпусом люминесцентных ламп является Т8, обычная и привычная для всех ЛДС. Для большего удобства замены светодиоды выпускаются в том числе и в подобных корпусах. Особенность диодных трубок заключается в том, что для их работы не требуется пускорегулирующий аппарат, все, что нужно, уже встроено в саму светодиодную лампу.
Схема подключения светодиодной трубкиДля того чтобы модернизировать люминесцентный светильник, требуется лишь исключить из схемы стартер и дроссель и изменить подачу напряжения на лампы. Если электричество на ЛДС поступает по принципу «контактный штырь – фаза, контактный штырь – ноль» с каждой стороны, то светодиодные трубки подключаются «фаза на одну сторону лампы, ноль на другую». При этом не имеет значения, на какой из штырьков цоколя будет подходить провод, т. к. каждая сторона закорочена внутри осветительного прибора.
Существование светодиодных светильников, которые нужно подключать лишь с одной стороны (один штырь цоколя – фаза, другой – ноль), также имеет место. Такие лампы сейчас уже отсутствуют в свободной продаже, т. к. производятся они в Украине, но встретить их все-таки возможно. На таком световом приборе указана сторона подключения.
Если замена люминесцентных ламп происходит в арендованном офисе, и нет уверенности, что не придется со временем переехать в другой, демонтировать дроссели и стартеры будет неправильно. Лучше их просто отключить с возможностью восстановления до исходного состояния. Тогда при необходимости можно вернуть на место люминесцентные лампы, а светодиодные забрать с собой.
Преимущества светодиодов
Люминесцентные светильники потребляют большее количество электроэнергии за счет потерь, связанных с работой пускорегулирующего аппарата. А если установлен более старый образец, работающий посредством электромагнитного балласта, энергопотребление возрастает еще на 20–25%.
Светодиодной трубке не требуется стартера, балласта или ЭПРА. К тому же такой осветительный прибор не содержит опасных тяжелых металлов (таких, как ртуть), а потому не требует особой утилизации, в отличие от люминесцентных.
Также у световых приборов на кристаллах отсутствует мерцание и гудение, что более положительно сказывается на состоянии организма, как физическом, так и психическом. Да и долговечность службы люминесцентных ламп всего около 6 000 часов против 50 000 у светодиодной.
Светодиодная трубка Т8
Технические преимущества
Основной особенностью, обеспечивающей большой срок службы светодиодной лампы на 220 вольт, можно назвать грамотно продуманное отведение тепла от световых элементов. Основной радиатор, обеспечивающий теплоотведение, дублирует дополнительное приспособление в виде продольной пластины по всей длине трубки. В результате чего оборудование не перегревается, а значит, дольше не выходит из строя.
К тому же есть и третья точка теплоотведения – это двухсторонняя печатная плата, изготовленная из особого стеклотекстолита с повышенной плотностью.
Строение светодиодной трубкиОсобенности платы
Удивительно, но контакты на плате диодной лампы не паяные. Монтаж производится с помощью инновационных контактных соединений, которые позолочены с целью повышения надежности и увеличения срока службы.
Драйвер выполнен на основе микросхем, минимизирующих габариты и позволяющих обойтись без таких деталей, как высоковольтный электролитический конденсатор. В результате данных инноваций улучшается работа светового прибора, снижаются до нуля скачки напряжения, в частности и при подаче его на лампу, а также не имеется электрических помех.
Стабилизирующее устройство смонтировано с использованием ШИМ (широтно-импульсный модулятор), который поддерживает необходимое напряжение на светодиодах при разнице этих показателей от 175 вольт до 275 вольт.
Максимально допустимая нагрузка на широтно-полюсной модулятор составляет 35 ватт. Поэтому даже при большой нагрузке температура прибора не возрастает.
Светодиодная трубка с модульной системойСхема подключения
Схема подключения светодиодного светильника не представляет собой ничего сложного. Световые элементы на основе кристаллов подключаются к сети с переменным напряжением 220 вольт через диммер или к стабилизирующему трансформатору 12 В или 24 В. При желании стабилизирующее устройство для подключения чипов к общей электрической сети можно собрать своими руками, хотя процесс это непростой и довольно продолжительный по времени.
Что же касается светодиодных трубок Т8 с цоколем G13 и им подобных, равно как и приборов освещения с цоколем Е27, то для их подключения не требуется устанавливать дополнительные устройства. Все, что нужно для их бесперебойной стабильной работы – подать напряжение на контакты. Все необходимые элементы схемы уже включены в устройство.
Вообще при приобретении имеет смысл обратить внимание на упаковку осветительного прибора, точнее на маркировки на ней. В обязательном порядке помимо информации о номинальном напряжении, силе светового потока и цветовой температуры там будет указано, требуются ли дополнительные устройства для подключения лампы.
Схема подключения светодиодной лампыНо обычно приборы со встроенным диммером называются лампами, в то время как требующие дополнительного оборудования – светодиодами или LED-элементами.
Также установка стабилизирующего трансформатора, а иногда и контроллера необходима и при монтаже светодиодной полосы. Контроллер – это своего рода мозг подсветки. Монтируется он при условии того, что световая полоса является многоцветной, и «продумывает» переменное включение разных цветов при помощи пульта дистанционного управления.
Схема светодиодного фонаря
Большое распространение получили в наше время и переносные фонари на основе светодиодов. Небольшие и налобные фонарики могут иметь в своей схеме от трех до двадцати двух элементов на кристаллах. Более мощные, с использованием аккумуляторных батарей и возможностью подзарядки от сети в 220 В – до 64 светодиодов. Их несомненное преимущество перед приборами на основе лампы накаливания – в яркости свечения и в то же время экономичности. Заряд батареи расходуется в 10–20 раз медленнее. При этом сила светового потока в разы сильнее.
Схема светодиодного аккумуляторного фонаряВсе дело в том, что обычные лампы накаливания рассеивают свет вокруг себя, а значит, половина светового потока идет назад. В фонарях установлены отражатели с целью уменьшить потери и направить луч в нужном направлении. Но проблема в том, что лампочка находится очень близко к отражателю, а значит, загораживает часть отраженного светового потока.
Таким образом, лампа теряет около 30 процентов света.
Светодиоды, в отличие от приборов с нитью накаливания, изначально светят вперед, не тратя силу на освещение пространства вокруг и позади себя. Конечно, отражатель здесь тоже присутствует, но служит он больше для коррекции луча светового потока, а не для его усиления.
Схема, по которой происходит подключение светодиодного фонаря, предельно проста и вполне жизнеспособна при ее сборке своими руками.
Вывод
Подключение светодиодной лампы – дело простое и не требующее каких-либо особых знаний и навыков. Главное – делать все правильно и четко по инструкции. Экономичные и имеющие очень большой срок эксплуатации осветительные приборы – хороший вариант для дома, квартиры или дачи.
При ассортименте, присутствующем сейчас на полках магазинов, возможен подбор любого типа подобных ламп в любом корпусе и для любых люстр. Замена любого вида освещения, даже люминесцентных приборов, очень проста. Ну а о лампах накаливания и говорить не приходится. А выгода от такой замены, конечно же, немалая.
мы собираемся объяснить, как подключить светодиодный светильник к 220 в переменного тока
В этой статье мы собираемся объяснить , как подключить светодиодный светильник к 220В переменного тока . В сегодняшней жизни это становится все интереснее и важнее, потому что людям нужны короткие методы и короткие замыкания. Таким образом, преодолевая вызовы современной эпохи, мы показываем простой способ яркого светодиодного светильника на 220 вольт переменного тока . Светодиодный светильник, показанный на следующем рисунке, настолько прост в изготовлении.
Принципиальная схема светодиодной лампы на 220В переменного токаВ этой принципиальной схеме мы использовали один диод, резистор 56 кОм / 1 Вт и светодиод. Анимированный проект светодиодного светильника на 220В переменного тока
как подключить светодиод к 220 ac (компоненты)
1. Светодиод – 5 мм или 10 мм любого цвета любого типа
2. Диод, предпочтительно 1 Н 4007
3. Резистор 1 Вт или выше номиналом 47к .
4. Двухконтактный штекер
Примечание: более низкие значения резистора дают большую яркость, а более высокие значения продлевают срок службы светодиода.
Резисторы меньшей мощности, такие как 1 / 4,1 / 2 Вт или ниже, не подойдут и могут сгореть, поскольку они предназначены для цепей 6 В постоянного тока, а не для сети 220 В переменного тока.
1. Подключите черный анод диода к минусу светодиода 0r как хотите.
2. Подключите резистор к плюсу светодиода или как хотите, но схемы должны по правилам.
3. Подключите свободные концы диода и резистора к штырям, как показано на рис.
Готово. См. Прилагаемый рисунок для ясности.
Еще одна схема с диодом, подключенным «поперек» светодиода, также прилагается. Адаптер цоколя лампы используется вместо штыря.
Он должен работать от сети переменного тока 110 В / 220 В переменного тока.
Так же будет работать на любой батарее !!
После agai n проверьте, правильно ли подключены все компоненты.
После пайки резистора и диода со светодиодом теперь вставьте его в два штекера pic, например,
Для повышения эффективности этой схемы подключите конденсатор 10 мкФ
Смотрите видео для более подробной информации
Теперь наша светодиодная лампа готова к использованию. Протестируйте ее.Работает отлично.
3 лучшие схемы светодиодных ламп, которые вы можете сделать дома
В сообщении подробно объясняется, как построить 3 простых светодиодных лампы, используя несколько светодиодов последовательно и запитав их через цепь емкостного источника питания
ОБНОВЛЕНИЕ :После выполнения Проведя много исследований в области дешевых светодиодных ламп, я наконец смог придумать универсальную дешевую, но надежную схему, которая обеспечивает отказоустойчивую безопасность светодиодной серии без использования дорогостоящей топологии SMPS.Вот окончательный вариант дизайна для всех вас:
Универсальный дизайн, разработанный SwagatamВам просто нужно отрегулировать потенциометр, чтобы установить выход в соответствии с общим прямым падением струны серии светодиодов.
Это означает, что если общее напряжение серии светодиодов составляет, скажем, 3,3 В x 50 шт. = 165 В, то отрегулируйте потенциометр, чтобы получить этот выходной уровень, а затем подключите его к цепочке светодиодов.
Это немедленно включит светодиоды на полную яркость и с полной защитой от перенапряжения и перегрузки по току или импульсных токов.
R2 можно рассчитать по формуле: 0,6 / Максимальный предел тока светодиода
Зачем нужны светодиоды
- Светодиоды внедряются в огромных количествах сегодня для всего, что может включать свет и освещение.
- Белые светодиоды стали особенно популярными благодаря своим миниатюрным размерам, впечатляющим возможностям освещения и высокой эффективности с точки зрения энергопотребления. В одном из своих предыдущих постов я обсуждал, как сделать супер простую схему светодиодной трубки, здесь концепция очень похожа, но продукт немного отличается своими характеристиками.
- Здесь мы обсуждаем создание простой светодиодной лампы. СХЕМА. Под словом «лампочка» мы подразумеваем форму блока, и его фитинги будут похожи на форму обычной лампы накаливания, но на самом деле весь корпус «лампочка» будет включать дискретные светодиоды, расположенные рядами над цилиндрическим корпусом.
- Цилиндрический корпус обеспечивает правильное и равномерное распределение создаваемого освещения по всем 360 градусам, так что все помещение одинаково освещено.На изображении ниже поясняется, как нужно установить светодиоды на предлагаемом корпусе.
Схема светодиодной лампы, описанная здесь, очень проста в сборке, а схема очень надежна и долговечна.
Интеллектуальная функция защиты от перенапряжения, включенная в схему, обеспечивает идеальное экранирование устройства от всех скачков напряжения во включенном состоянии.
Как работает схема
- На схеме показана одна длинная серия светодиодов, соединенных один за другим, чтобы сформировать длинную цепочку светодиодов.
- Если быть точным, мы видим, что в основном было использовано 40 светодиодов, которые соединены последовательно. На самом деле для входа 220 В вы, вероятно, могли бы включить около 90 светодиодов последовательно, а для входа 120 В будет достаточно около 45.
- Эти цифры получены делением выпрямленного 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода.
- Следовательно, 310 / 3,3 = 93 числа, а для входов 120 В рассчитывается как 150 / 3,3 = 45 чисел. Помните, что по мере того, как мы сокращаем количество светодиодов ниже этих цифр, риск выброса при включении увеличивается пропорционально, и наоборот.
- Схема источника питания, используемая для питания этого массива, основана на высоковольтном конденсаторе, значение реактивного сопротивления которого оптимизировано для понижения входного высокого тока до более низкого тока, подходящего для схемы.
- Два резистора и конденсатор на плюсовом источнике питания расположены для подавления начального скачка мощности при включении и других колебаний во время колебаний напряжения. Фактически, реальная коррекция помпажа выполняется C2, введенным после моста (между R2 и R3).
- Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе цепи.
ВНИМАНИЕ: ЦЕПЬ, ПОКАЗАННАЯ НИЖЕ, НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.
Принципиальная схема # 1
Список деталей
- R1 = 1M 1/4 Вт
- R2, R3 = 100 Ом 1 Вт,
- C1 = 474/400 В или 0.5 мкФ / 400 В PPC
- C2, C3 = 4,7 мкФ / 250 В
- D1 — D4 = 1N4007
- Все светодиоды = белый 5-миллиметровый вход типа соломенной шляпы = сеть 220/120 В …
Вышеупомянутый дизайн отсутствует подлинная функция защиты от перенапряжения и, следовательно, может быть серьезно подвержена повреждению в долгосрочной перспективе …. для защиты и гарантии конструкции от всех видов перенапряжения и переходных процессов
Светодиоды в вышеупомянутой схеме светодиодной лампы также могут быть защищены и их срок службы увеличен за счет добавления стабилитрона к линиям питания, как показано на следующем рисунке.
Показанное значение стабилитрона составляет 310 В / 2 Вт и подходит, если светодиодная лампа включает от 93 до 96 В. Для другого меньшего количества светодиодных цепочек просто уменьшите значение стабилитрона в соответствии с расчетом общего прямого напряжения цепочки светодиодов.
Например, если используется цепочка из 50 светодиодов, умножьте 50 на прямое падение каждого светодиода, которое составляет 3,3 В, что дает 50 x 3,3 = 165 В, поэтому стабилитрон 170 В будет хорошо защищать светодиод от любого вида скачков напряжения или колебания …. и т. д.
Видеоклип, показывающий схему светодиодной схемы с использованием 108 светодиодов (две последовательные цепочки из 54 светодиодов, соединенные параллельно)
Светодиодная лампа высокой мощности с использованием светодиодов мощностью 1 Вт и конденсатора
Простая светодиодная лампа высокой мощности может быть построена с использованием 3 или 4 светодиодов мощностью 1 Вт последовательно, хотя светодиоды будут работать только с 30% -ной мощностью, тем не менее, освещение будет удивительно высоким по сравнению с обычными светодиодами 20 мА / 5 мм, как показано ниже. .
Более того, вам не потребуется радиатор для светодиодов, так как они работают только на 30% своей фактической мощности.
Аналогичным образом, объединив 90 шт. Светодиодов мощностью 1 Вт в вышеуказанной конструкции, вы можете получить яркую и высокоэффективную лампу мощностью 25 Вт.
Вы можете подумать, что получение 25 Вт от 90 светодиодов «неэффективно», но на самом деле это не так.
Потому что эти 90nos светодиодов мощностью 1 Вт будут работать при меньшем токе на 70% и, следовательно, при нулевом уровне нагрузки, что позволит им прослужить почти вечно.
Далее, они могли бы комфортно работать без радиатора, так что вся конструкция могла быть сконфигурирована в очень компактный блок.
Отсутствие радиатора также означает минимум усилий и времени, затрачиваемых на строительство. Таким образом, все эти преимущества в конечном итоге делают этот 25-ваттный светодиод более эффективным и экономичным, чем традиционный подход.
Принципиальная схема № 2
Регулирование импульсного напряжения
Если вам требуется улучшенный или подтвержденный контроль перенапряжения и регулирование напряжения для светодиодной лампы, то с указанной выше 3-ваттной светодиодной конструкцией можно применить следующий шунтирующий стабилизатор: Видеоклип:
youtube.com/embed/YKUpugsmxZk” frameborder=”0″ allowfullscreen=”allowfullscreen”/>В приведенных выше видеороликах я намеренно мигал светодиодами, подергивая провод питания, просто чтобы убедиться, что цепь на 100% защищена от перенапряжения.
Цепь полупроводниковой светодиодной лампы с регулятором яркости с использованием микросхемы IRS2530D
Здесь объясняется простая, но эффективная схема бестрансформаторного твердотельного контроллера светодиода с использованием единственной полной мостовой схемы драйвера IRS2530D.
Настоятельно рекомендуется: простой высоконадежный неизолированный светодиодный драйвер – не пропустите, полностью протестирован
Введение
Обычно схемы управления светодиодами основаны на принципах понижающего повышения или обратного хода, где схема сконфигурирован для создания постоянного постоянного тока для освещения серии светодиодов.
Вышеупомянутые системы управления светодиодами имеют свои недостатки и положительные стороны, в которых диапазон рабочего напряжения и количество светодиодов на выходе определяют эффективность схемы.
Другие факторы, например, включены ли светодиоды в параллельном или последовательном соединении, а также должны ли они быть затемнены или нет, также влияют на приведенные выше типологии.
Эти соображения делают эти схемы управления светодиодами довольно рискованными и сложными. Схема, описанная здесь, использует другой подход и полагается на резонансный режим применения.
Хотя схема не обеспечивает прямой развязки от входного переменного тока, она позволяет управлять многими светодиодами с уровнем тока до 750 мА. Процесс мягкого переключения, включенный в схему, обеспечивает большую эффективность устройства.
Как работает контроллер светодиодов
В основном бестрансформаторная схема управления светодиодами построена на основе ИС управления диммером люминесцентных ламп IRS2530D. На принципиальной схеме показано, как была подключена ИС и как ее выход был изменен для управления светодиодами вместо обычной люминесцентной лампы.
Обычный этап предварительного нагрева, необходимый для лампового освещения, использовал резонансный резервуар, который теперь эффективно заменен LC-схемой, подходящей для управления светодиодами. Поскольку ток на выходе является переменным, необходимость в мостовом выпрямителе на выходе стала настоятельной. ; это гарантирует, что ток непрерывно проходит через светодиоды во время каждого цикла переключения частоты.
Измерение переменного тока осуществляется резистором RCS, установленным поперек общего провода и нижней части выпрямителя.Это обеспечивает мгновенное измерение переменного тока амплитуды выпрямленного тока светодиода. Вывод DIM ИС получает указанное выше измерение переменного тока через резистор RFB и конденсатор CFB.
Это позволяет контуру управления диммером ИС отслеживать амплитуду тока светодиода и регулировать ее, мгновенно изменяя частоту схемы переключения полумоста, так что напряжение на светодиодах поддерживает правильное среднеквадратичное значение.
Петля диммера также помогает поддерживать постоянный ток светодиода независимо от напряжения в сети, тока нагрузки и изменений температуры.Независимо от того, подключен ли один светодиод или группа последовательно, параметры светодиодов всегда правильно поддерживаются IC.
В качестве альтернативы конфигурация может также использоваться в качестве сильноточной бестрансформаторной цепи питания.
Схема № 3
Оригинал статьи можно найти здесь
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: // www.homemade-circuits.com/, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете общаться с ними через комментарии, я буду очень рад помочь!
и параллельных цепей
Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство. Вполне вероятно, что вы уже читали здесь в Википедии страницу о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этой теме, но все еще неясны или желаете получить более конкретную информацию о светодиодах.За годы обучения, обучения и объяснения концепции электронных схем клиентам мы собрали и подготовили всю важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.
Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или запутанными – правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…
Какой тип цепи мне следует использовать?
Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?
Требования к освещению часто диктуют, какой тип схемы можно использовать, но если есть выбор, наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.
Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.
Для начала давайте рассмотрим схему серии :
Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее подключение светодиода идет от отрицательного вывода светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывный цикл или гирляндную цепь.
Вот несколько пунктов для справки о последовательной цепи:
- Одинаковый ток течет через каждый светодиод
- Полное напряжение цепи – это сумма напряжений на каждом светодиоде
- При выходе из строя одного светодиода вся схема не будет работать. Цепи серии
- проще подключать и устранять неисправности
- Различное напряжение на каждом светодиодах – это нормально
Питание последовательной цепи:
Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.
Второй маркер выше гласит: «Общее напряжение цепи – это сумма напряжений на каждом светодиоде». Это означает, что вы должны подать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих светодиодов прямого напряжения равна 8,85 В постоянного тока . Таким образом, теоретически 8,85 В – это минимально необходимое входное напряжение для управления этой схемой.
В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.
Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких светодиодов последовательно, или, может быть, слишком много светодиодов для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.
Параллельная цепь:
Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.
Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.
В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.
В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).
Вот несколько пунктов для справки о параллельной цепи:
- Напряжение на каждом светодиоде одинаковое
- Полный ток – это сумма токов, протекающих через каждый светодиод.
- Общий выходной ток распределяется через каждую параллельную цепочку
- Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току
А теперь давайте немного повеселимся, объединим их вместе и наметим серию / параллельную цепь :
Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L при 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из пунктов маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательной работы всех 9 светодиодов (9 x 2,98 = 26,82 В постоянного тока ). Тем не менее, 12 В постоянного тока достаточно для работы трех последовательно соединенных (3 x 2,98 = 8,94 В постоянного тока ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.
Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько различных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.
Падение нескольких светодиодных цепочек:
При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую настройку, которая не испортит все ваши светодиоды, если один из них перегорит.
Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение будет изменяться сильнее, что приведет к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.
Что такое последовательное и параллельное соединение и когда что применять? – служба поддержки клиентов
Возможны два различных метода подключения: последовательное соединение и параллельное соединение. Вы должны знать разницу в проводке светодиодного освещения. Светодиод должен быть подключен либо последовательно, либо параллельно. Как они должны быть связаны, зависит от источника света.Неправильное соединение со светодиодами приведет к выходу из строя светодиодных фонарей.
Последовательный порт на 350 мА, 500 мА, 700 мА и 1050 мАТребуется последовательное соединение со светодиодной подсветкой на 350 мА, 500 мА, 700 мА и 1050 мА. В этом случае вы используете источник питания с регулируемым током.
При последовательном подключении только один поток. Ток входит в первую точку через +, а затем уходит через -, чтобы перейти к следующей точке и сделать то же самое с третьей точкой.Ток течет таким образом в одном направлении, пока все точки не будут снабжены током. Всякий раз, когда хотя бы одна точка нарушена, цепь разрывается. Дефектное пятно больше не может проводить ток, поэтому все виды спорта в цепи выходят из строя.
Однако самые современные светодиодные прожекторы защищены от этого. Эти защищенные точки имеют встроенный мост, который позволяет току течь к другим точкам цепи в случае пробоя.
Параллельно с 12 В, 24 В и 230 ВТребуется параллельное подключение со светодиодной подсветкой на 12 В, 24 В и 230 В.В этом случае вы используете подачу напряжения.
При параллельном подключении начальные (+) и конечные (-) точки (-) разных точек соединяются друг с другом. В отличие от последовательного соединения, питание при параллельном соединении может проходить через несколько цепей. Всякий раз, когда одна точка выходит из строя, все остальные точки не выходят из строя. Электроэнергия все еще может достигать других точек в цепи.
На рисунке ниже показано, что происходит с силовой цепью при выходе из строя одной точки.При параллельном подключении силовая цепь остается неизменной, а все остальные точки продолжают работать. Однако при последовательном подключении, когда одна точка выходит из строя, питание больше не может циркулировать, поэтому другие точки выходят из строя.
При параллельном подключении цепь питания продолжается. При последовательном подключении цепь питания не может продолжаться.
Чтобы продлить срок службы светодиодных фонарей, мы советуем подключать их к источнику постоянного тока.
Бестрансформаторное светодиодное освещение Схема светодиодной лампы
Бестрансформаторная схема со светодиодной лампой 220 В переменного тока работает.Вместо полуполярных светодиодов используется конденсатор емкостью 1 мкФ для запуска трансформатора. Высоковольтные бестрансформаторные все светодиоды соединены последовательно для изучения печатного чертежа … Проекты электроники, Бестрансформаторное светодиодное освещение Схема светодиодной лампы «Светодиодные проекты, проекты силовой электроники, проекты простых схем», Дата 2019/08/03
Бестрансформаторная схема со светодиодной лампой 220В переменного тока работает. Вместо полуполярных светодиодов используется конденсатор емкостью 1 мкФ для запуска трансформатора.Высоковольтные бестрансформаторные все светодиоды соединены последовательно для изучения чертежей печатных плат, подготовленных соответствующим образом во время установки светодиодов + – не перепутайте концы.
Количество световых фонарей можно использовать, так как ночная работа неплохая. Раковина, маленькие комнаты, освещения в прихожей местами вроде хватает. Использование светодиодов, имеющих McD (мощность света) не менее 2000 .. В схеме светодиодного освещения используется бестрансформаторное около 55 штук белых светодиодов.
ВНИМАНИЕ! Схема бестрансформаторной светодиодной лампы работает с подключением высоковольтного конденсатора. Соблюдайте осторожность. просто ;
Материалы, которые будут использоваться на некоторых, позвольте мне сказать вам первый чертеж печатной платы на отсутствие страховки, при желании не использовать ее, но страховка предложит использовать шнур питания не менее 220 В переменного тока, который можно подключить к стеклянным предохранителям небольшого типа на рынке.. .1 мкФ 400 В емкость конденсатора на материале 1 мкФ, как обычно можно написать «105» автор также может написать рабочее напряжение 250 В переменного тока или 275 В переменного тока, вы можете использовать их + резистор 20 Ом, расположенный только на выезде, будет не менее 1 Вт
Proteus ARES печатная плата светодиодного освещения:
СПИСОК СКАЧИВАНИЯ ФАЙЛОВ (в формате TXT): LINKS-19961.zip
LEDs (Light Emitting Diodes) | Electronics Club
Светодиоды (светодиоды) | Клуб электроникиТестирование | Цвет | Размеры и формы | Резистор | Светодиоды последовательно | Светодиодные данные | Мигает | Подставки
Смотрите также: Лампы | Диоды
LED = светоизлучающий диод
светодиода излучают свет, когда через них проходит электрический ток.
Электрические характеристики светодиода сильно отличаются от поведения лампы, и он должен быть защищен от пропускание чрезмерного тока, обычно это достигается подключением резистора последовательно со светодиодом. Никогда не подключайте светодиод напрямую к батарее или источнику питания.
светодиода должны быть подключены правильно, на схеме может быть обозначено , или + для анода и k или – для катода (да, это действительно k, а не c, для катода).Катод – это короткий вывод, и на корпусе может быть небольшое сглаживание. круглых светодиодов. Если вы видите внутри светодиода, катод – это электрод большего размера, но это не официальный метод идентификации.
Пайка светодиодов
Светодиодымогут быть повреждены нагреванием при пайке, но риск невелик, если вы не будете очень медленными. При пайке большинства светодиодов особых мер предосторожности не требуется.
Rapid Electronics: светодиоды
Тестирование светодиода
Никогда не подключайте светодиод напрямую к батарее или источнику питания , потому что светодиод может быть разрушенным чрезмерным током, проходящим через него.
Светодиодыдолжны иметь последовательно включенный резистор для ограничения тока до безопасного значения, для в целях тестирования 1к резистор подходит для большинства светодиодов, если напряжение питания составляет 12 В или меньше. Не забудьте правильно подключить светодиод.
Пожалуйста, смотрите ниже объяснение того, как разработать подходящий резистор. значение для светодиода.
Цвета светодиодов
Цвет светодиода определяется его полупроводниковым материалом, а не цветом. «упаковки» (пластиковый корпус).Светодиоды всех цветов доступны в неокрашенном виде. упаковки, которые могут быть рассеянными (молочными) или прозрачными (часто называемыми «прозрачными от воды»). Цветные упаковки также доступны в диффузных (стандартный тип) или прозрачных.
Синие и белые светодиоды могут быть дороже других цветов.
Двухцветные светодиоды
Двухцветный светодиод имеет два светодиода, подключенных «обратно параллельно» (один вперед, один назад). объединены в один корпус с двумя выводами. Одновременно может гореть только один из светодиодов и они менее полезны, чем трехцветные светодиоды и светодиоды RGB, описанные ниже.
Трехцветные светодиоды
Самый популярный тип трехцветного светодиода, в котором красный и зеленый светодиоды объединены в один. пакет с тремя выводами. Их называют трехцветными, потому что смешанные красный и зеленый свет кажется желтым, и он появляется, когда горят и красный, и зеленый светодиоды.
На схеме показана конструкция трехцветного светодиода. Обратите внимание на разные длины трех выводов. Центральный вывод (k) является общим катодом для оба светодиода, внешние выводы (a1 и a2) являются анодами для светодиодов, что позволяет каждый должен быть освещен отдельно, или оба вместе, чтобы дать третий цвет.
Rapid Electronics: красный / зеленый светодиод
RGB светодиоды
светодиодов RGB содержат красный, зеленый и синий светодиоды в одном корпусе. Каждый внутренний светодиод можно переключить включается и выключается по отдельности, позволяя производить диапазон цветов:
- Красный + зеленый дает желтый
- Красный + синий дает пурпурный
- Зеленый + синий дает голубой
- Красный + зеленый + синий дает белый
Можно получить более широкий диапазон цветов, изменяя яркость каждого внутреннего светодиода.
Rapid Electronics: RGB LED
Размеры, форма и углы обзора светодиодов
Светодиодыдоступны в самых разных размерах и формах. «Стандартный» светодиод имеет круглое поперечное сечение диаметром 5 мм, и это, вероятно, лучший тип для общего использования, но также популярны круглые светодиоды диаметром 3 мм.
Светодиоды круглого сечения используются часто и их очень легко установить на коробки, просверлив отверстие под диаметр светодиода, добавив пятно клея, поможет удержать светодиод, если необходимо.Также доступны зажимы для светодиодов (изображенные на рисунке) для фиксации светодиодов в отверстиях. Другие формы поперечного сечения включают квадрат, прямоугольник и треугольник.
Фотография © Rapid Electronics
Светодиоды различаются не только цветами, размерами и формами, но и углом обзора. Это говорит вам, насколько распространяется луч света. Стандартные светодиоды имеют обзорный угол 60 °, но другие имеют узкий луч 30 ° или меньше.
Склад Rapid Electronics особенно широкий выбор светодиодов и их веб-сайт является хорошим руководством к широкому ассортименту доступных включая новейшие светодиоды высокой мощности.
Расчет номинала резистора светодиода
Светодиод должен иметь последовательно подключенный резистор для ограничения тока через светодиод. иначе он перегорит практически мгновенно.
Номинал резистора R определяется по формуле:
. R = номинал резистора в омах ().
В S = напряжение питания.
В L = напряжение светодиода (2 В или 4 В для синих и белых светодиодов).
I = ток светодиода в амперах (A)
Ток светодиода должен быть меньше максимально допустимого для вашего светодиода.Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей. Для расчета ток должен быть в амперах (А). Чтобы преобразовать мА в А, разделите ток в мА на 1000.
Если расчетное значение недоступно, выберите ближайшее стандартное значение резистора. что на больше , так что ток будет немного меньше, чем вы выбрали. На самом деле вы можете выбрать резистор большего номинала, чтобы уменьшить ток. (например, для увеличения срока службы батареи), но это сделает светодиод менее ярким.
Например
Если напряжение питания V S = 9V, и у вас красный светодиод (V L = 2V),
требующий тока I = 20 мА = 0,020 А,
R = (9В – 2В) / 0,02А = 350,
так что выберите 390
(ближайшее стандартное значение, которое больше).
Напряжение светодиода
Напряжение светодиода V L определяется цветом светодиода. Красные светодиоды имеют самое низкое напряжение, желтые и зеленые немного выше. Наибольшее напряжение имеют синий и белый светодиоды.
Для большинства целей точное значение не критично, и вы можете использовать 2 В для красных, желтых и зеленых светодиодов или 4 В для синих и белых светодиодов.
Расчет формулы светодиодного резистора по закону Ома
Закон Ома гласит, что сопротивление резистора R = V / I, где:
В = напряжение на резисторе (в данном случае = V S – V L )
I = ток через резистор
Итак, R = (V S – V L ) / I
Для получения дополнительной информации о расчетах см. Страницу Закона Ома.
Последовательное подключение светодиодов
Если вы хотите, чтобы несколько светодиодов горели одновременно, их можно соединить последовательно. Это продлевает срок службы батареи за счет освещения нескольких светодиодов таким же током, как и только один светодиод.
Все светодиоды, подключенные последовательно, пропускают одинаковый ток , поэтому лучше, если они все того же типа. Источник питания должен иметь достаточное напряжение, чтобы обеспечить около 2 В для каждого светодиода. (4 В для синего и белого) плюс еще минимум 2 В для резистора.Чтобы выработать ценность для резистора вы должны сложить все напряжения светодиодов и использовать это для V L .
Пример расчетов:
Для последовательного красного, желтого и зеленого светодиода требуется напряжение питания не менее
3 × 2 В + 2 В = 8 В, поэтому батарея будет идеальной.
В L = 2 В + 2 В + 2 В = 6 В (три напряжения светодиодов суммируются).
Если напряжение питания V S составляет 9 В, а ток I должен быть 15 мА = 0,015 А,
Резистор R = (V S – V L ) / I = (9-6) / 0.015 = 3 / 0,015
= 200,
, поэтому выберите R = 220
(ближайшее стандартное значение, которое больше).
Избегайте параллельного подключения светодиодов!
Соединение нескольких светодиодов параллельно с одним общим резистором, как правило, является плохой идеей.
Если для светодиодов требуется немного другое напряжение, загорится только светодиод с самым низким напряжением, и он может быть разрушен более сильным током, протекающим через него. Хотя идентичные светодиоды могут быть успешно подключены параллельно с одним резистором, что редко дает какую-либо полезную пользу потому что резисторы очень дешевые, а ток такой же, как при подключении светодиодов по отдельности.
Если светодиоды включены параллельно, у каждого из них должен быть свой резистор.
Чтение таблицы технических данных для светодиодов
Веб-сайты и каталоги поставщиков обычно содержат таблицы технических данных для таких компонентов, как светодиоды. Эти таблицы содержат много полезной информации в компактной форме, но они могут быть трудным для понимания, если вы не знакомы с используемыми сокращениями. Вот важные свойства светодиодов:
- Максимальный прямой ток, I F макс.
«Вперед» означает, что светодиод правильно подключен. - Типичное прямое напряжение, В F тип.
Это V L в расчете светодиодного резистора, около 2В или 4В для синих и белых светодиодов. - Сила света
Яркость при заданном токе, например 32 мкд при 10 мА (мкд = милликандела). - Угол обзора
60 ° для стандартных светодиодов, другие излучают более узкий луч около 30 °. - Длина волны
Пиковая длина волны излучаемого света, она определяет цвет светодиода, е.грамм. красный 660 нм, синий 430 нм (нм = нанометр).
Следующие два свойства можно игнорировать для большинства цепей:
- Максимальное прямое напряжение, В F max.
Этим можно пренебречь, если у вас есть подходящий резистор, включенный последовательно. - Максимальное обратное напряжение, В R max.
Этим можно пренебречь, если светодиоды подключены правильно.
Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, но содержат ИС (интегральную схему) а также сам светодиод.Микросхема мигает светодиодом с низкой частотой, например 3 Гц (3 вспышки в секунду). Мигающие светодиоды предназначены для прямого подключения к определенному напряжению питания, например, 5 В или 12 В. без последовательного резистора. Обратитесь к поставщику, чтобы узнать безопасный диапазон напряжения питания для конкретный мигающий светодиод. Частота вспышек фиксированная, поэтому их использование ограничено, и вы можете предпочесть построить свою собственную схему для мигания обычного светодиода, например Проект мигающего светодиода, в котором используется 555 нестабильная схема.
Rapid Electronics: мигающие светодиоды
Светодиодные дисплеи
Светодиодные экраныпредставляют собой пакеты из множества светодиодов, расположенных по схеме, наиболее знакомой схеме. является 7-сегментным дисплеем для отображения чисел (цифры 0–9).Картинки ниже проиллюстрировать некоторые из популярных дизайнов.
Гистограмма, 7-сегментные, звездообразные и матричные светодиодные дисплеи
Фотографии © Rapid Electronics
Rapid Electronics: светодиодные дисплеи
Разъемы выводов светодиодных дисплеев
Существует много типов светодиодных дисплеев, поэтому для получения дополнительной информации см. Каталог или веб-сайт поставщика. штыревые соединения. На диаграмме справа показан пример из Быстрая электроника. Как и многие 7-сегментные дисплеи, этот пример доступен в двух версиях: Общий анод (SA) со всеми анодами светодиодов, соединенными вместе, и общий катод (SC) со всеми катодами, соединенными вместе.Буквы a-g относятся к 7 сегментам, A / C является общим анодом или катодом, в зависимости от ситуации (на 2 штыря). Обратите внимание, что некоторые контакты нет (NP), но их позиция все еще пронумерована.
См. Также: Драйверы дисплея.
Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент светодиодов, других компонентов и инструментов для электроники, и я рад рекомендую их как поставщика.
Книг по комплектующим:
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно никому не будет передано. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Простая схема светодиодной лампы из лома. Использует 5 светодиодов и потребляет только 50 мА
Энергосберегающая светодиодная лампа из мусорного ящика.Эта схема разработана г-ном Ситараманом Субраманианом, и мы очень рады опубликовать ее здесь.В этой статье он показывает метод преобразования сломанной / неработающей КЛЛ в энергосберегающую светодиодную лампу.
Это просто схема светодиодной лампы, которая может работать от сетевого напряжения. Цепочка из пяти светодиодов управляется емкостным источником питания без трансформатора. В цепи 0,47 мкФ / 400 В полиэфирный конденсатор С1 снижает сетевое напряжение. R1 – это спускной резистор, который выводит накопленный заряд из C1, когда вход переменного тока выключен. Резисторы R2 и R3 ограничивают бросок тока при включении цепи.Диоды D1 – D4 образуют мостовой выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает регулировку, а светодиоды возбуждаются.
Фото.
Принципиальная схема.
Слова Ситхарамана о схеме : Я посылаю вам настольную лампу, сделанную из неработающей энергосберегающей лампы с разбитыми трубками. КЛЛ переделали в светодиодную лампу. Большинство компонентов будет доступно в одной коробке для лома.Также можно использовать несколько компонентов, имеющихся в печатной плате CFL.
Процедура
1. Осторожно снимите разбитые очки
2. Осторожно откройте сборку
3. Снять и утилизировать электронику
4. Соберите схему в матричном ПК или на листе ламината толщиной 1 мм.
5. Вырежьте круглый лист ламината (ножницами)
6. Отметьте положение 6 круглых отверстий на листе
7.Просверлите отверстия, подходящие для светодиодов, чтобы вставить их заподлицо в шесть отверстий
8. Нанесите немного клея, чтобы удерживать светодиодный узел в положении
9. Закройте сборку
10. Убедитесь, что внутренние провода не касаются друг друга.
11. Теперь проверьте на 230 В переменного тока
Ваша красивая компактная настольная лампа / комнатная лампа для пуджи / проходная лампа готова к использованию.