- Расчет радиаторов отопления. Расчет количества радиаторов на комнату
- Как рассчитать радиаторы отопления на площадь квартиры
- Алюминиевые радиаторы отопления расчет количества секций
- Расчет секций алюминиевых радиаторов на квадратный метр
- Расчет секций алюминиевых радиаторов на квадратный метр
- Пример расчета
- Вычисление по объему
- Тепловая мощность 1 секции
- Чтобы не было жарко или холодно: как произвести расчет количества секций у алюминиевого радиатора отопления
- Мощность одной секции алюминиевого радиатора
- Методы расчёта мощности
- Особенности расчёта в частном доме
- Полезное видео
- Калькулятор расчета количества секций радиаторов
- Информация по назначению калькулятора
- Общие сведения по результатам расчетов
- Как рассчитать количество секций радиатора
- Расчет по площади
- Считаем батареи по объему
- Теплоотдача одной секции
- Расчет секций радиаторов в зависимости от реальных условий
- Как рассчитать количество радиаторов отопления?
- Расчет количества батарей на 1 кв. м
- Выбор точного количества секций биметаллических батарей
- Расчет количества радиаторов в частном доме
- Расчет отдачи тепла одного алюминиевого радиатора (видео)
- Расчет радиаторов отопления по площади
- Расчет радиаторов отопления. Расчет количества секций радиатора
- Расчет секций биметаллических радиаторов отопления по площади
- Расчет секций алюминиевых радиаторов на квадратный метр
- Как рассчитать количество секций радиаторов отопления
- Пример расчета
- «Расчет с учетом» особенностей комнаты
- Вычисление по объему
- Видео: Советы специалистов по расчету количества радиаторов отопления в квартире
- Тепловая мощность 1 секции
- Альтернативный метод расчета мощности радиаторов отопления
- Расчет секций радиаторов в зависимости от реальных условий
- На сколько квадратов идет одна секция радиатора
- Зарядка аккумуляторов с помощью солнечной энергии или ветряной турбины
- Падение затрат в производстве аккумуляторов
- N ovel для превосходной гибкости в помещении
- Термины и определения батарей
- (PDF) Анализ чувствительности капитальных затрат для полностью ванадиевой окислительно-восстановительной батареи
- Сколько стоит отключение от сети с солнечной батареей?
- Карты солнечной инсоляции США | Северная Аризона Wind & Sun
- На этой первой карте показано среднегодовое значение в
- На этой карте показано среднегодовое значение для среднего июньского (в лучшем случае) дня.
- На этой карте показано среднегодовое значение для среднего декабрьского (наихудшего) дня.
- На этой карте показано среднегодовое значение для среднего январского дня (наихудший случай), но с установкой
Расчет радиаторов отопления. Расчет количества радиаторов на комнату
Трехшаговая инструкция по расчету радиаторов
Для расчета количества радиаторов в квартире нам понадобится 5 минут
Продавец в магазине «Сантехника и отопление» огорошил: «Вам для комнаты нужно 26 ребер». К этому времени у меня стояло 10 чугунных ребер, и, хоть и грели они недостаточно, я понимал, что 26 ребер алюминиевого радиатора для комнаты площадью 18 квадратных метров — это слишком. Продавец либо ошибся, либо хотел, чтобы мне было очень-очень тепло. Проверять расчеты продавца не стал, а перерыл справочную литературу и нашел простую и эффективную методику расчета количества радиаторов не зависимо от того, какого они типа: медные конвекторы, алюминиевые или же металлические панели.
Расчет радиаторов проведем на примере:
Имеется помещение площадью 12 квадратных метров 4 (м) * 3 (м) и высотой 2,7 метра (стандартная комната в многоэтажке советской постройки):
Первое, что нужно узнать для расчета, — объем вашего помещения. Множим длину и ширину на высоту (в метрах) (4*3*2,7) — и получаем цифру 32,4. Это и есть объем помещения в кубических метрах.
Второе: для обогрева одного кубического метра в доме стандартной постройки (без металлопластиковых окон, утепления пенопластом и т. п. энергосберегающих мер) в климатических условиях Украины, Беларуси, Молдавии и европейской части России включительно с Москвой и Нижним Новгородом, необходим 41 Ватт тепловой мощности.
Узнаем, сколько тепла нам потребуется, для этого умножим наш (ваш) объем V на цифру 41:
V* 41=32,4 *41 Вт = 1328,4 Вт.
Полученная цифра — то количество тепла, которое должны отдать радиаторы, чтобы нагреть вашу комнату. Округлим ее до 1300.
Но как из этой цифры «выцарапать» количество радиаторов?Очень просто: у любого радиатора на упаковке либо в комплектном вкладыше есть информация о тепловой мощности. Тепловая мощность — это количество тепла, которое способен отдать радиатор при охлаждении с температуры нагрева до комнатной — 20 градусов по Цельсию. Мощность батарей и ребер обязан знать каждый продавец специализированного магазина, либо же ее можно легко найти в интернете для интересующей вас модели.
Производители обычно завышают тепловую мощность своих изделий, об уточненном расчете я расскажу в следующем посте. Пока же нас интересует ориентировочное количество радиаторов.
В нашем случае мы можем ограничиться стальным панельным радиатором мощностью 1300 Вт. Однако, что делать, если вдруг на улице станет ОЧЕНЬ ХОЛОДНО?
Для надежности стоит увеличить полученную цифру на 20 процентов. Для этого умножим 1300 на коэффициент 1,2 — получим 1560. Радиаторов такой мощности не продают, поэтому округлим цифру в меньшую сторону — до 1500 Вт либо 1,5 киловатта.
Все, это та цифра, которая нам нужна. Радиатор любого типа: биметаллический, алюминиевый, чугунный, стальной, беленький в крапинку и черненький в полосочку обеспечит нам обогрев комнаты в любой возможный в наших широтах мороз, если он выдает 1500 ватт тепла.
К примеру, типичная мощность ребра алюминиевого или биметаллического радиатора высотой около 60 сантиметров — 150 Ватт. Таким образом, нам понадобится 10 ребер. Аналогично — для стандартных чугунных радиаторов типа МС-140
Чтобы узнать количество отопительных приборов для всей квартиры, расчет проводим для каждой комнаты отдельно.
Если квартира «холодная», с большим количеством окон, тонкими стенами, на первом либо последнем этаже и т. п., для обогрева необходимо будет 47 Ватт на метр кубический, следовательно, в расчетах подставляем эту цифру вместо 41.
Если «теплая», с металлопластиковыми окнами, утеплением полов, стен, в доме, построенном с использованием современных утепляющих материалов — берем 30 Вт.
И, наконец, самый простой способ расчета радиаторов:
Если у вас в комнате перед заменой стояли стандартные чугунные радиаторы высотой около 60 сантиметров, и вам было с ними тепло, смело посчитайте их количество и умножьте на 150 Вт — узнаете необходимую мощность новых. Если же планируете выбрать алюминиевые ребра или биметалл — можете покупать их в расчете — на одно ребро «чугунины» — одно ребро «галюминия».
Пока все. Про то, какой тип радиатора лучше для разных домов и условий, поговорим в следующий раз.
Как рассчитать радиаторы отопления на площадь квартиры
Как рассчитать радиаторы отопления так, чтобы температура в квартире была предельно комфортной — вопрос, который возникает у каждого, кто решился на ремонт. Слишком малое количество секций не будет полностью прогревать помещение, а излишек только повлечёт за собой слишком большие траты на коммунальные услуги. Итак, что необходимо учитывать, чтобы правильно подсчитать размеры батарей?
Как рассчитать радиаторы отопления на площадь квартиры
Предварительная подготовка
Что необходимо учитывать для рассчета мощности радиатора отопления на комнату:
- определить температурный режим и потенциальные термопотери;
- разработать оптимальные технические решения;
- определить тип теплового оборудования;
- установить финансовые и тепловые критерии;
- учесть надёжность и технические параметры обогревательных приборов;
- составить схемы теплопровода и расположение батарей для каждого помещения;
Без помощи специалистов и дополнительных программ рассчитать количество секций радиаторов отопления достаточно сложно. Чтобы расчёт был наиболее точен, не обойтись без тепловизора или специально установленных для этого программ.
Необходимая мощность радиаторов отопления
Что будет, если провести вычисления неправильно? Основное последствие — более низкая температура в помещениях, а следовательно, и эксплуатационные условия не будут соответствовать желаемому. Слишком мощные отопительные приборы приведут к избыточным тратам как на сами приборы и их монтаж, так и на коммунальные услуги.
Самостоятельные подсчёты
Можно приблизительно подсчитать, какой должна быть мощность батарей, использовав только рулетку для измерения длины и ширины стен и калькулятор. Но точность таких вычислений крайне мала. Погрешность будет составлять 15-20%, но такое вполне допустимо.
Формула для расчета
Вычисления в зависимости от типа отопительных приборов
При выборе модели учитывайте, что тепловая мощность зависит от материала, из которого они сделана. Методы вычисления размеров секционных батарей не отличаются, а вот итоги выйдут разными. Есть среднестатистические значения. На них и стоит ориентироваться, выбирая оптимальное число отопительных приборов. Мощности отопительных приборов с секциями в 50 см:
- батареи из алюминия — 190 Вт;
- биметаллические — 185 Вт;
- чугунные приборы обогрева — 145 Вт;
Таблица для расчета количества секций батареи
Чтобы правильно рассчитать радиаторы отопления по площади комнаты, важно знать не только мощность, но и сколько квадратов обогревает одна секция, значение этого параметра зависит от металла:
- алюминий — 1,9-2 м кв.;
- алюминий и сталь — 1,8 м кв.;
- чугун — 1,4-1,5 м кв;
Вот пример вычисления количества секций алюминиевых радиаторов отопления. Допустим, что размеры комнаты 16 м. кв. Выходит, что на помещение такого размера нужно 16м2/2м2 = 8 шт. По такому же принципу считайте для чугунных или биметаллических приборов. Важно только точно знать норму — приведённые выше параметры верны для моделей высотой в 0,5 метра.
Виды радиаторов отопления
На данный момент выпускаются модели от 20 до 60 см. Соответственно площадь, которую способна обогреть секция, будет отличаться. Самые маломощные модели — бордюрные, высотой в 20 см. Если вы решили приобрести тепловой агрегат нестандартных размеров, то в вычислительную формулу придётся вносить корректировку. Ищите необходимые данные в техпаспорте.
При внесении корректировок стоит учитывать, что размер батарей напрямую влияет на теплоотдачу. Следовательно, чем меньше высота при той же ширине, тем меньше площадь, а вместе с ними и мощность. Для верных подсчётов найдите соотношение высот выбранной модели и стандартной, а уже с помощью полученных данных подкорректируйте результат.
Расчитываем, насколько сильно должна греть батарея
Допустим, вы выбрали модели высотой 40 см. В этом случае расчёт количества секций алюминиевых радиаторов отопления на площадь комнаты будет выглядеть следующим образом:
- воспользуемся предыдущими подсчётами: 16м2/2м2 = 8штук;
- посчитайте коэффициент 50см/40см = 1,25;
- подкорректируйте вычисления по основной формуле — 8шт*1,25 = 10 шт.
Расчёт количества радиаторов отопления по объёму начинается в первую очередь со сбора необходимой информации. Какие параметры нужно учесть:
- Площадь жилья.
- Высота потолков.
- Число и площадь дверных и оконных проёмов.
- Температурные условия за окном в период отопительного сезона.
Теплопотери
Нормы и правила, установленные для мощности отопительных проборов, регламентируют минимально допустимый показатель на кв. метр квартиры — 100 Вт. Расчёт радиаторов отопления по объему помещения будет более точен, чем тот, в котором за основу берётся только длина и ширина. Итоговые результаты корректируются в зависимости от индивидуальных характеристик конкретного помещения. Делается это посредством умножения на коэффициент корректировки.
При вычислении мощности отопительных приборов берётся среднестатистическая высота потолков — 3 м. Для квартир с потолком 2,5 метра этот коэффициент составит 2,5м/3м = 0,83, для квартир с высокими потолками 3,85 метров — 3,85м/3м = 1,28. Угловые комнаты потребуют внесения дополнительных корректировок. Итоговые данные умножаются на 1,8.
Расчёт количества секций радиатора отопления по объему помещения должен проводиться с корректировкой, если в комнате одно окно большого размера или сразу несколько окон (коэффициент 1,8).
Радиаторы отопления с нижним подключением
Нижнее подключение также потребует внести свои корректировки. Для такого случая коэффициент составит 1,1.
В районах с экстремальными погодными условиями, где зимние температуры достигают рекордно низких показателей, мощность должна быть увеличена в 2 раза.
Пластиковые стеклопакеты, наоборот, потребуют корректировку в сторону уменьшения, за основу берётся коэффициент 0,8.
В выше приведённых данных приведены усреднённые значения, поскольку не были дополнительно учтены:
- толщина и материал стен и перекрытий;
- площадь остекления;
- материал напольного покрытия;
- наличие или отсутствие утеплителя на полу;
- занавески и гардины в оконных проёмах.
Дополнительные параметры для более точных вычислений
Работа с тепловизором
Точный расчёт количества радиаторов отопления на площадь не обойдётся без данных из технических документов. Это важно, чтобы точнее определить значение теплопотерь. Лучше всего определить уровень потери тепла с помощью тепловизора. Прибор быстро определит самые холодные области в помещении.
Всё было бы в разы легче, если каждая квартира была построена по стандартной планировке, но это далеко не так. В каждом доме или городской квартире свои особенности. С учётом множества характеристик (числа оконных и дверных проёмов, высоты стен, площади жилья и пр.) резонно возникает вопрос: как же рассчитать количество радиаторов отопления?
Расчет радиаторов отопления по площади
Особенности точной методики в том, что для вычислений необходимо больше коэффициентов. Одно из важных значений, которое нужно вычислить — это количество тепла. Формула отлична от предыдущих и выглядит следующим образом: КТ = 100 Вт/м2*П*К1*К2*К3*К4*К5*К6*К7.
Подробнее о каждом значении:
- КТ — количество тепла, которое нужно для обогрева.
- П — размеры комнаты м2.
- К1 — значение этого коэффициента учитывает качество остекления окон: двойное — 1,27; пластиковые окна с двойным стеклопакетом — 1,0; с тройным — 0,85.
- К2 — коэффициент, учитывающий уровень теплоизоляционных характеристик стен: низкая — 1,27; хорошая (например двухслойная кирпичная кладка) — 1,0; высокая — 0,85.
- К3 — это значение учитывает соотношение площадей оконных проёмов и полов: 50% — 1,2; 40% — 1,1; 30% — 1,0; 20% — 0,9; 10% — 0,8.
- К4 — коэффициент, зависящий от среднестатистических температурных показателей воздуха в зимнее время года: — 35 °С — 1,5; — 25 °С — 1,3; — 20 °С — 1,1; — 15 °С — 0,9; -10 °С — 0,7.
- К5 зависит от числа внешних стен здания, данные этого коэффициента таковы: одна — 1,1; две — 1,2; три — 1,3; четыре — 1,4.
- К6 рассчитывается, исходя из типа помещения, находящегося этажом выше: чердак — 1,0; чердачное отапливаемое помещение — 0,9; отапливаемая квартира — 0,8.
- К7 — последний из корректировочных значений и зависит от высоты потолка: 2,5 м — 1,0; 3,0 м — 1,05; 3,5 м — 1,1; 4,0 м — 1,15; 4,5 м — 1,2.
Описанный расчёт секций батарей отопления по площади — наиболее точный, поскольку учитывает значительно больше нюансов. Полученное в ходе этих подсчётов число делится на значение теплоотдачи. Итоговый результат округляется до целого числа.
Корректировка с учётом температурного режима
В техпаспорте отопительного прибора указана максимальная мощность. Например, при температуре воды в теплопроводе 90°С во время подачи и 70°С в обратном режиме в квартире будет +20°С. Такие параметры обычно обозначают так: 90/70/20, но самые распространённые мощности в современных квартирах — 75/65/20 и 55/45/20.
Параметры теплоносителя системы отопления.
Для правильного расчёта необходимо для начала высчитать температурный напор — это разница между температурой самой батареи и воздуха в квартире. Учтите, что для вычислений берётся усреднённое значение между температурами подачи и обратки.
Как рассчитать количество секций алюминиевых радиаторов с учётом выше перечисленных параметров? Для лучшего понимания вопроса будут произведены вычисления для батарей из алюминия в двух режимах: высокотемпературном и низкотемпературном (расчёт для стандартных моделей высотой 50 см). Размеры комнаты те же — 16 м кв.
Одна секция алюминиевого радиатора в режиме 90/70/20 обогревает 2 кв метра., следовательно, для полноценного обогрева помещения понадобится 16м2/2м2 = 8 шт. При вычислении размера батарей для режима 55/45/20 нужно для начала подсчитать температурный напор. Итак, формулы для обеих систем:
- 90/70/20 — (90+70)/2-20 = 60°С;
- 55/45/20 — (55+45)/2-20 = 30°С.
Расчитываем количество секций в радиаторе отопления
Следовательно, при низкотемпературном режиме нужно увеличить размеры отопительных приборов в 2 раза. С учётом данного примера на помещении 16 кв. метров нужно 16 алюминиевых секций. Учтите, что для чугунных приборов понадобится 22 секции при той же площади помещения и при таких же температурных системах. Подобная батарея получится слишком большой и массивной, поэтому чугун меньше всего подходит для низкотемпературных контструкций.
С помощью этой формулы можно легко вычислить, сколько необходимо секций радиаторов на комнату с учётом желаемого температурного режима. Чтобы зимой в квартире было +25°С, просто поменяйте температурные данные в формуле теплового напора, а полученный коэффициент подставьте в формулу вычисления размера батарей. Допустим, при параметрах 90/70/25 коэффициент будет таким: (90+70)/2 — 25 = 55°С.
Далее нужно подсчитать соотношение 60°С/55°С = 1,1. В итоге, чтобы добиться температуры в +25 °С для помещения с высокотемпературным режимом понадобится 8шт*1,1 = 8,8. С округлением получится 9 штук.
Если не хочется тратить время на расчёт радиаторов отопления, можно воспользоваться онлайн-калькуляторами или специальными программами, установленными на компьютер.
Как пользоваться онлайн-калькулятором
Он-лайн калькулятор для расчета мощности радиаторов
Посчитать, сколько секций радиаторов отопления на кв. метр понадобится, можно с помощью специальных калькуляторов, которые всё посчитают в мгновение ока. Такие программы можно найти на официальных сайтах некоторых производителей. Воспользоваться этими калькуляторами легко. Просто введите в поля все соответствующие данные и вам моментально будет выведен точный результат. Чтобы вычислить, сколько секций радиаторов отопления нужно на квадратный метр, надо вводить данные (мощность, температурный режим и т.д.) для каждой комнаты отдельно. Если же помещения не разделены дверями, сложите их общие размеры, а тепло будет распространяться по обоим помещениям.
Интерфейс калькулятора отопления.
Во избежание неточностей при вычислениях, внимательно вводите все параметры и проверьте, насколько точные данные вы указали в соответствующих полях. Лучше несколько раз перепроверить, чем потом испытывать на себе последствия своих ошибок в виде слишком низкой или высокой температуры в доме.
Подведение итогов
Итак, из выше приведённых формул понятно, как правильно сделать расчёт алюминиевых (чугунных, биметаллических и др.) радиаторов для квартиры. Как видите, дело это не такое уж и сложное. Главное, внимательность и точность. Чтобы получить максимально правильные данные, используйте специальное оборудование.
Алюминиевые радиаторы отопления расчет количества секций
Расчет секций алюминиевых радиаторов на квадратный метр
Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.
Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.
Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.
Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.
Расчет секций алюминиевых радиаторов на квадратный метр
Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.
Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.
Кроме них:
- Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
- Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
- В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
- если потолок равен 3 м, то параметры умножаются на 1.05;
- при высоте 3.5 м он составляет 1.1;
- при показателе 4 м – это 1.15;
- высота стены 4.5 м – коэффициент равен 1.2.
- Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.
Сколько нужно секций алюминиевого радиатора?
Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:
В данном случае:
- S – площадь помещения, где требуется установка батареи;
- k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
- P – мощность одного элемента радиатора.
При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.
Q = 20 х 100 / 0.138 = 14.49
В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.
Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:
- если они закреплены под подоконником, то потери составят до 4%;
- установка в нише моментально увеличивает этот показатель до 7%;
- если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
- закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.
Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.
Пример расчета
Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:
- каждое окно добавляет к показателю 0.2 кВт;
- дверь «обходится» в 0.1 кВт.
Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:
Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56
Где:
- первый показатель – это площадь комнаты;
- второй – стандартное количество Вт на м2;
- третий и четвертый указывают на то, что в комнате по одному окну и двери;
- следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
- шестой – корректирующий коэффициент касаемо расположения батареи.
Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.
Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.
Вычисление по объему
Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.
Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.
Например:
- Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
- Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
- Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.
Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.
Тепловая мощность 1 секции
Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.
Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.
Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.
Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.
Формула, необходимая для этого выглядит следующим образом:
КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7
- КТ – это то количество тепла, которое требуется данному помещению.
- S – площадь.
- К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
- К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
- К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
- 50% — коэффициент составляет 1.2;
- 40% — 1.1;
- 30% — 1.0;
- 20% — 0.9;
- 10% — 0.8.
- К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
- +35 = 1.5;
- +25 = 1.2;
- +20 = 1.1;
- +15 = 0.9;
- +10 = 0.7.
- К5 указывает на корректировку при наличии наружных стен.Например:
- когда она одна, показатель равен 1.1;
- две наружные стены – 1.2;
- 3 стены – 1.3;
- все четыре стены – 1.4.
- К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
- неотапливаемого чердака – коэффициент 1.0;
- чердак с обогревом – 0.9;
- жилая комната – 0.8.
- К7 – это коэффициент, который указывает на высоту потолка в комнате:
- 2.5 м = 1.0;
- 3.0 м = 1.05;
- 3.5 м = 1.1;
- 4.0 м = 1.15;
- 4.5 м = 1.2.
Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.
Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.
Чтобы не было жарко или холодно: как произвести расчет количества секций у алюминиевого радиатора отопления
Правильный расчёт — залог успешного создания системы отопления.
Он важен при использовании любых батарей, но особенно — алюминиевых.
Для расчета мощности радиатора используется несколько методов.
Мощность одной секции алюминиевого радиатора
Заявленные в паспорте изделия параметры не всегда верно отображаются в реальности. Это связано со множеством внешних условий, мешающих идеальной работе прибора.
Фото 1. Алюминиевый радиатор отопления. Прибор состоит из нескольких секций, количество которых можно изменить.
Теплоотдача алюминиевых батарей соответствует заявленным в документах цифрам, если между температурами воздуха и воды составляет 70 °C. Расчёт выглядит следующим образом:
- To — температура обратки.
- Tp— подачи.
- TB— воздуха в комнате.
Последнее значение выбирают по ГОСТ. В большинстве случаев это 22 °C. Для определения нагрева теплоносителя формулу разворачивают:
Tp = (70 + 22) + 10.
Разница в 70 верна при теплоотдаче одной секции радиатора 500 мм в 200 Вт. При использовании 350 мм батарей значение составит 140 Вт.
Внимание! Оба показателя колеблются в пределах 20 Вт.
Методы расчёта мощности
Для определения значений используют 4 формулы:
- По линейным габаритам комнаты. Для этого нужно измерить её длину и ширину. По строительным нормам и правилам на каждые 10 квадратных метров необходим 1 кВт, поэтому площадь делят на 10. Этот вариант менее точен, поскольку не учитывает один важный показатель, учтённый в следующем вычислении.
- По полным габаритам, для расчёта которых также нужно измерить высоту помещения. СНиП предлагает умножить объём квартиры на 41 Вт. Так, для помещения 60 квадратов мощность равна: 60 * 2,7 * 41 = 6642 Вт.
- По конструкционным особенностям. Этот расчёт аналогичен предыдущему, но учитывает детали:
- за каждое окно добавляют 0,2 кВт;
- за двери — по 0,1 кВт;
- сумму умножают на 1,3, когда квартира находится в углу;
- на 1,5 если считают мощность для частного дома;
- вспоминают «поправку», которая зависит от географического расположения объекта.
- Комплексный расчёт учитывает то же, что и конструкционный, а также:
- толщину и материал утеплителя;
- из чего сделаны пол, стены, потолок;
- вентиляцию помещения, если есть.
Последний метод расчёта сложен, но даёт наиболее точный результат. Для вычислений рекомендуется пригласить специалиста. Он самостоятельно определит вид труб и радиаторов, которые следует разместить в определённой отопительной системе.
Справка. Лишь определив необходимую мощность, переходят к подсчёту количества секций батареи для обеспечения устойчивой работы и комфортных условий.
Как рассчитать количество секций радиатора по площади помещения
Усреднённые значения представлены в следующей таблице.
При использовании моделей за буквами Л необходимо добавить соответственно по 3 и 2 части к аналогичным значениям таблицы.
Принцип расчёта заключается в простой формуле:
K = Q/N, где
- Q — общая теплоотдача системы отопления.
- N — одной секции.
Например, при использовании А500 и общем значении мощности в 3515 Вт, количество секций составит: 3515/185 = 19. Несмотря на простоту расчёта, он не идеально точен. Желательно учитывать несколько тонкостей:
- Полученные дробные числа округляют вверх: лучше иметь избыток, чем недостаток.
- Следующее замечание касается исключительно частных домов. В паспорте алюминиевого радиатора значение напора рассчитаны для 70, реже 60 °C, что указано в документе. Нужно учитывать, что рабочая температура будет на 20 °C выше. В зданиях монтируют систему отопления, непригодную для подобных значений, поэтому эффективную теплоотдачу обязательно пересчитывают. Рекомендуется обратиться к специалисту, который учтёт все факторы.
- В многоквартирных домах воду нагревают до меньших показателей, из-за чего требуется большее количество секций.
- Рабочая мощность также зависит от способа включения радиатора в обвязку. Для батарей от 12 частей рекомендуется диагональная, а для остальных — боковая.
Расчёт необходимого числа секций радиатора — один из важнейших шагов в подготовке к созданию отопления. Это особенно сильно касается многоквартирных строений, в которых вычисления проводят для каждого помещения отдельно.
Особенности расчёта в частном доме
Заключаются в учёте различных факторов, из-за которых появляются теплопотери. Недостаточно просто вычислить мощность нагревателя, радиаторов, размер труб и прочие показатели, нужно также учитывать:
- Способ монтажа устройства к системе. Коэффициент полезного действия двухтрубной обвязки составляет:
- 98% при диагональном;
- 87% при боковом;
- 80% при нижнем подключении.
- КПД однотрубного отопления составляет 80%, иногда меньше.
- Регион проживания определяет мощность, которую требуется развивать поздней осенью, зимой и ранней весной. Чем севернее, тем больше показатель.
- Расчёт радиатора должен включать потери, которые образуются из-за наличия некоторых устройств:
- через дымоход уходит до 10% тепла;
- неотапливаемый чердак теряет до 20%, а подвал — 10%;
- стены и окна могут выпускать суммарно до 30% мощности.
Фото 2. Потери тепла в частном доме через разные части здания. Теплопотери необходимо учитывать при установке радиаторов.
Значения можно уменьшить, если выполнить несколько действий, касающихся стен, пола и потолка:
- Когда окна смотрят на север, то их потери больше на 10%, в сравнении с другими.
- Расположение радиатора относительно сторон света не влияет на мощность, но если они греются на солнце, то немного медленнее остывают.
- Следует увеличить количество секций после расчётов по паспортным данным, поскольку действительная мощность изделий ниже. Это связано не только с потерями, описанными выше, но также небольшим завышением показателей производителем.
Лишь учтя все факторы, получится составить и смонтировать качественную обвязку с алюминиевыми радиаторами. Расчёты помогут точно посчитать достаточное количество секций батареи, учесть все потери.
Важно! При использовании дополнительных устройств, возможно увеличение необходимой мощности. Если включить термостат, нужно повысить показатель на 20—25%, поскольку прибор сможет вручную проконтролировать обогрев.
Полезное видео
Посмотрите видео, в котором рассказывается, как рассчитать мощность батарей отопления.
Тщательный расчёт поможет избежать возникновения разнообразных проблем. При сомнениях в правильности следует пригласить специалиста.
Калькулятор расчета количества секций радиаторов
Информация по назначению калькулятора
К алькулятор радиаторов отопления предназначен для расчета количества секций радиатора, обеспечивающих необходимый тепловой поток, возмещающий теплопотери рассчитываемого помещения и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса. Расчет производится с учетом теплопотерь ограждающих конструкций, а также особенностей системы отопления.
В опросы отопления являются основополагающими как для частного хозяйства, так и квартир в многоэтажном доме. Особенно они актуальны для РФ, большая часть территории которой находится в зоне пониженных температур. Для создания оптимальных и благоприятных температурных условий в помещениях разрабатывается множество материалов с усиленными теплоизоляционными свойствами.
К аждый год на рынках появляются высокотехнологичные и эффективные системы теплоснабжения. Но особое внимание всегда уделяется радиаторам, поскольку они являются конечным звеном в отопительной цепи. Отдаваемое ими тепло служит главным критерием работы всей системы теплоснабжения.
Н есмотря на важность роли, которая отведена радиаторам отопления, они остаются самыми консервативными элементами в строительной индустрии. Инновационные нововведения в этой сфере появляются редко, хотя исследователи постоянно работают над совершенствованием конструкций изделий. В современном тепловом обеспечении зданий и сооружений используется 4 основных типов, и данный калькулятор подскажет как рассчитать сколько необходимо радиаторов отопления на 1 м2.
И х классификация предопределяется материалами изготовления, в соответствии с которыми они подразделяются на:
- Стальные
- Чугунные
- Алюминиевые
- Биметаллические
С тальные радиаторы подразделяются на панельные и трубчатые. Панельные, именуемые также конвекторами, обладают КПД, достигающим 75%. Это высокий показатель эффективной работы всей системы. Другое их достоинство – дешевизна. Панели обладают малой энергетической емкостью, что позволяет снижать расходы теплового носителя. К недостаткам относится низкая стойкость против коррозии после слива воды.
И зделия просты в эксплуатации. По мере необходимости нагревательные панели могут легко наращиваться до 33 штук. Относительно низкая стоимость делает их самыми распространенными продуктами в модельном ряду.
Р оссийские бренды сейчас занимают лидирующие позиции на внутреннем рынке. Импорт зарубежной продукции достаточно дорогой, а российские производители уже наладили выпуск панельных систем радиаторов, которые по качеству не уступают зарубежным аналогам.
Т рубчатые системы радиаторов по конструкции состоят из стальных труб, в которых циркулирует теплоноситель. Данные приборы достаточно технологически сложны для промышленного производства. Это сказывается на цене конечной продукции.
Т рубчатые радиаторы полностью сохраняют все преимущества панельных, но по сравнению с ними имеют более высокое рабочее давление 9-16 бар против 7-10 бар. По показателям тепловой мощности (120 – 1600 Вт) и максимальной температуре нагрева воды (120 градусов) обе модели сопоставимы друг с другом. Если вы не знаете как правильно рассчитать количество радиаторов, воспользуйтесь онлайн калькулятором.
А люминиевые отопительные приборы изготовлены из одноименного материала или его сплавов. Подразделяются они на литые и экструзионные. Эта разновидность чаще всего применяется в системах автономного теплоснабжения в индивидуальных хозяйствах. Для централизованного отопления данный вид не подходит, так как чувствителен к качеству теплоносителя. Они могут быстро выйти из строя, если в воде есть агрессивные примеси и не выдерживают сильных давлений.
Р адиаторы, изготовленные путем литья, отличаются широкими каналами для теплоносителя и упрочненными стенками увеличенной толщины. Имеют несколько секций, число которых можно увеличивать или снижать.
Э кструзионный метод изготовления приборов основан на механическом выдавливании элементов из алюминиевого сплава. Весь процесс относительно дешевый, но конечный продукт имеет цельный вид. Количество секций не подлежит изменению.
А люминиевые радиаторы обладают очень высокой теплоотдачей, быстро нагревают помещение и просты при монтаже, так как имеют небольшой вес. Но алюминий вступает в химические реакции с теплоносителем, поэтому ему требуется хорошо очищенная вода. Слабое место – стыковки секций с трубными соединениями. Со временем возможны протечки. Они не ударопрочные. По давлению, температурному режиму и другим характеристикам коррелируют со стальными радиаторами.
Ч угунные радиаторы являются самым традиционным элементом теплоснабжения. За долгие годы они практически не видоизменялись, но сохранили свою популярность и просты по форме и дизайну. Долговечны, надежны, хорошо держат тепло. Могут долго сопротивляться коррозии и воздействию химических реагентов. По температурному режиму не уступают другим приборам аналогичной комплектации. По давлению и мощности – превосходят, но сложны в установке и транспортировке.
Б иметаллические устройства обычно имеют трубчатый стальной сердечник и алюминиевый корпус. Такие отопительные устройства выдерживают высокое давление. В целом, они отличаются повышенной надежностью и прочностью. При низкой инерционности обладают высокой теплоотдачей и низким расходом воды, не боятся гидравлических ударов. По базовым показателям в 1,5-2 раза превосходят аналогичные устройства. Главный недостаток – высокая цена.
Общие сведения по результатам расчетов
- К оличество секций радиатора — Расчетное кол-во секций радиатора, с обеспечением необходимого теплового потока для достаточного обогрева помещения при заданных параметрах.
- К ол-во тепла, необходимое для обогрева — Общие теплопотери помещения с учетом особенностей данного помещения и особенностей функционирования системы отопления.
- К ол-во тепла, выделяемое радиатором — Общий тепловой поток от всех секций радиатора, выделяемый в помещение при заданной температуре теплоносителя.
- К ол-во тепла, выделяемое одной секцией — Фактический тепловой поток, выделяемый одной секцией радиатора с учетом особенностей системы отопления.
Калькулятор работает в тестовом режиме.
Как рассчитать количество секций радиатора
При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.
В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.
Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления
Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).
Расчет по площади
Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:
- для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
- для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.
Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.
Как рассчитать количество секций радиатора: формула
Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.
Пример расчета количества секций радиаторов по площади помещения
Угловое помещение 16 м 2 , в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.
Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.
Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.
Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.
Считаем батареи по объему
Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:
- для кирпичных на 1 м 3 требуется 34 Вт тепла;
- для панельных — 41 Вт
Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).
Формула расчета количества секций по объему
Пример расчета по объему
Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:
- Находим объем. 16 м 2 * 3 м = 48 м 3
- Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
- Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.
Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.
Теплоотдача одной секции
Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.
Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.
Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу
Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):
- Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
- Алюминиевый — 190 Вт (0,19 кВт).
- Чугунные — 120 Вт (0,120 кВт).
Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.
Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше
Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :
- биметаллическая секция обогреет 1,8 м 2 ;
- алюминиевая — 1,9-2,0 м 2 ;
- чугунная — 1,4-1,5 м 2 ;
Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2 , для ее отопления примерно понадобится:
- биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
- алюминиевых 16 м 2 / 2 м 2 = 8 шт.
- чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.
Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.
Расчет секций радиаторов в зависимости от реальных условий
Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.
Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.
Формула расчета температурного напора системы отопления
Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.
Таблица коэффициентов для систем отопления с разной дельтой температур
При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.
Как рассчитать количество радиаторов отопления?
Расчет радиаторов нужно выполнять правильно, иначе малое их количество не сможет достаточно прогреть помещение, а большое, наоборот, создаст некомфортные условия пребывания, и придется постоянно открывать окна. Известны разные методики расчета. На их выбор влияет материал батарей, климатические условия, обустройство дома.
Расчет количества батарей на 1 кв. м
Площадь каждой комнаты, где будут установлены радиаторы, можно посмотреть в документах на недвижимость или измерить самостоятельно. Потребность тепла для каждой комнаты можно узнать в строительных нормах, где приведено, что для отопления 1м2 в определенной зоне проживания потребуется:
- для суровых климатических условий (температура достигает ниже -60 град.) – 150-200 Вт;
- для средней полосы – 60-100 Вт.
Чтобы рассчитать, нужно умножить площадь (P) на значение потребности тепла. Учитывая эти данные, в качестве примера, приведем расчет для климата средней полосы. Чтобы достаточно отопить комнату в 16 кв. м, нужно применить расчет:
16 х 100 = 1600 Вт
Далее рассчитывается количество секций батарей (N) – полученное значение делиться на тепло, которое выделяет одна секция. Принимается, что одна секция выделяет 170 Вт, исходя из этого, проводится расчет:
Лучше округлить в большую сторону – 10 штук. Но для некоторых комнат целесообразней округлять в меньшую сторону, например, для кухни, в которой есть дополнительные источники тепла. Тогда будет 9 секций.
Расчеты можно провести по другой формуле, которая при этом аналогична выше представленным расчетам:
- N – количество секций;
- S – площадь комнаты;
- P – теплоотдача одной секции.
Так, N = 16 / 170 * 100, отсюда N = 9,4.
Выбор точного количества секций биметаллических батарей
Они бывают нескольких видов, каждый из них имеет свою мощность. Минимальное выделение тепла достигает – 120 Вт, максимальное – 190 Вт. При расчете количества секций нужно учитывать необходимое потребление тепла в зависимости от места расположения дома, а также с учетом теплопотерь:
- Сквозняки, которые происходят из-за некачественно выполненных оконных проемов и профиля окон, щелей в стенах.
- Растраты тепла по пути следования теплоносителя от одной батареи к другой.
- Угловое расположение комнаты.
- Количества окон в помещении: чем их больше, тем больше теплопотери.
- Регулярное проветривание комнат зимой также накладывает отпечаток на количество секций.
Для примера, если нужно обогреть комнату в 10 кв. м, расположенную в доме, находящемся в средней климатической полосе, то нужно приобрести батарею с 10 секциями, мощность каждой из них должна быть равна 120 Вт или ее аналог на 6 секций при теплоотдаче в 190 Вт.
Расчет количества радиаторов в частном доме
Если для квартир можно брать усредненные параметры потребляемого тепла, так как они рассчитаны на стандартные габариты комнаты, то в частном строительстве это неправильно. Ведь многие владельцы строят свои дома с высотой потолков, превышающей 2,8 метра, к тому же практически все помещения частного владения получаются угловыми, поэтому для их обогрева потребуется больше мощности.
В таком случае расчеты, основанные на учете площади помещения, не подходят: нужно применять формулу с учетом объема комнаты и делать корректировку, применяя коэффициенты уменьшения или увеличения теплоотдачи.
Значения коэффициентов следующие:
- 0,2 – на этот показатель умножается полученное конечное число мощности, если в доме установлены многокамерные пластиковые стеклопакеты.
- 1,15 – если установленный в доме котел работает на пределе своей мощности. В этом случае каждые 10 градусов нагреваемого теплоносителя понижают мощность радиаторов на 15%.
- 1,8 – коэффициент увеличения, который нужно применить, если комната угловая, и в ней присутствует более одного окна.
Для расчета мощности радиаторов в частном доме применяется следующая формула:
- V – объем помещения;
- 41– усредненная мощность, необходимая для обогрева 1 кв. м частного дома.
Пример расчета
Если имеется комната в 20 кв. м (4х5 м – длина стен) с высотой потолков 3 метра, то ее объем легко рассчитать:
Полученное значение умножается на принятую по нормам мощность:
60 х 41 = 2460 Вт – столько требуется тепла, чтобы отопить рассматриваемую площадь.
Расчет количества радиаторов сводится к следующему (если учесть, что одна секция радиатора в среднем выделяет 160 Вт, а точные их данные зависят от материала, из которого изготовлены батареи):
2460 / 160 = 15,4 штуки
Примем, что всего нужно 16 секций, то есть нужно приобрести 4 радиатора по 4 секции на каждую стену или 2 по 8 секций. При этом не нужно забывать о коэффициентах корректировки.
Расчет отдачи тепла одного алюминиевого радиатора (видео)
В видео вы узнаете, как рассчитать теплоотдачи одной секции батареи из алюминия при разных параметрах входящего и выходящего теплоносителя.
Одна секция алюминиевого радиатора имеет мощность 199 Ватт, но это при условии, что заявленный перепад температур в 70 град. будет соблюдаться. Это означает, что на входе температура теплоносителя составляет 110 град., а на выходе 70 град. Помещение при таком перепаде должно прогреваться до 20 град. Обозначается эта разница температур DT.
В качестве примера, можно рассчитать этот параметр при следующих данных:
- Температура теплоносителя на входе в радиатор – 85 град.;
- Остывание воды при выходе из радиатора – 63 град.;
- Обогрев помещения – 23 град.
Нужно сложить между собой два первых значения, разделить их на 2 и вычесть температуру помещения, наглядно это происходит так:
(85 + 63) / 2 – 23 = 52
Полученное число равняется DT, по предлагаемой таблице можно установить, что при нем коэффициент равняется 0,68. Учитывая это можно определить теплоотдачу одной секции:
199 х 0,68 = 135 Вт
Затем, зная теплопотери в каждом помещении, можно рассчитать, сколько всего нужно секций радиаторов для установки в определенную комнату. Даже если по расчетам получилась одна секция, нужно устанавливать минимум 3, иначе вся система отопления будет выглядеть нелепо и достаточно не обогреет площадь.
Расчет радиаторов отопления по площади
С помощью данного калькулятора вы можете произвести расчет радиаторов отопления и узнать количество секций для комфортного обогрева указанной площади. Для выполнения подсчета, введите кубатуру комнаты, теплоотдачу одной секции радиатора по паспорту (или см. таблицу ниже), укажите вид подключения и норму обогрева на 1 м3 помещения (приблизительно для кирпичных домов – 37 Вт/м3, для панельных – 41 Вт/м3). При расчете через тепловые потери помещения – необходимо заранее воспользоваться калькулятором теплопотерь. Запас мощности рекомендуется оставлять в районе 10-15%, поскольку в СНиП нет подробного описания методики расчета.
Смежные нормативные документы:
Формулы расчета радиаторов отопления
Количество секций радиатора можно рассчитать двумя способами: с помощью универсального расчета по объему помещения или при известных значениях тепловых потерь.
В первом случае, формула для подсчета количества секций выглядит так:
k = (V × q × z) / P2
- V – объем помещения, м3;
- q – норма обогрева, Вт/м3;
- z – поправка на тип подключения;
- P2 – теплоотдача одной секции батареи, Вт.
Чтобы определить суммарную мощность для обогрева помещения, требуется знать норму на 1 кубический метр и умножить ее на общую кубатуру. Однако значение нормы в справочных материалах не указано, и для приблизительных расчетов используется величина для кирпичных домов – 37 Вт/м3, для панельных – 41 Вт/м3. Соответственно для домов из дерева или пористых блоков, можно принять несколько меньшее значение.
Также в зависимости от типа подключения радиаторов к системе отопления принимают поправки:
- одностороннее (нагрев снизу / возврат сверху) – 1.28;
- одностороннее (нагрев сверху / возврат снизу) – 1.03;
- двустороннее (нагрев-возврат снизу с одной стороны) – 1.28;
- диагональное (нагрев снизу / возврат сверху) – 1.00;
- диагональное (нагрев сверху / возврат снизу) – 1.25.
Второй вариант расчета подразумевает, что мощность приборов определяется на основании тепловых потерь помещения.
- Q – теплопотери помещения, Вт;
- P2 – теплоотдача одной секции батареи, Вт.
Мощность 1 секции радиатора – таблица
Материал радиатора | Теплоотдача одной секции, Вт | |
Межосевое расстояние, 300 мм | Межосевое расстояние, 500 мм | |
Стальные | 85 | 120 |
Чугунные | 100 | 160 |
Алюминиевые | 140 | 185 |
Биметаллические | 150 | 210 |
Расчет радиаторов отопления. Расчет количества секций радиатора
При подготовке к ремонту или строительству дома следует провести грамотный расчет радиаторов отопления. Эти вычисления позволят точно узнать необходимое количество секций для создания комфортной температуры в комнате даже при сильных морозах за окном. От их правильности напрямую зависит не только равномерность обогрева помещения, отсутствие в нем холодных мест, но и экономия энергоресурсов. Необходимую мощность отопительных приборов можно определить различными способами самостоятельно.
Как произвести расчет радиаторов отопления частного дома?
Для правильного проведения расчета площади радиатора учитывают:
- размеры помещения, которое планируется отапливать. Причем следует высчитывать данные для каждой комнаты индивидуально;
- материал, из которого изготовлена батарея;
- мощность одной секции (указывается производителем), их максимально допустимое количество.
Секционными бывают радиаторы:
Очень точный результат дает расчет секций радиаторов отопления по площади помещения. По стандартам считается, что вполне достаточно 100 Вт на 1 м.кв. Исходя из этого, вычисление делается по формуле:
Q=S×100, где Q – нужная теплоотдача, а S – площадь комнаты.
Узнать, сколько секций придется приобрести, поможет следующая формула:
N=Q/Qус, где N – необходимое количество секций батареи, а Qус – мощность одной, указанная производителем в техпаспорте.
Это очень простое вычисление применимо для комнат с высотой потолка 2,7 м. Если имеется индивидуальная высота, то более точные результаты расчета количества радиаторов поможет определить объем помещения. Здесь используется стандартный показатель – 41 Вт на 1 м.куб. (для панельного дома) или 34 Вт (для кирпичного). Исходя из этого, применяется формула:
Q=S×h×40 (34), где h – высота потолка, остальные значения те же, что и в формуле выше.
Еще более достоверный результат дают вычисления, учитывающие особенности комнаты, где планируется установить радиатор. В ее основе – площадь помещения и все те же 100 Вт на м.кв.:
Q= S×100×А×В×С×D×Е×F×G×H×I×J, где:
- А – количество стен, выходящих на улицу: одна – коэффициент 1; две – 1,2; три – 1,3; четыре – 1,4.
- В – расположение комнаты относительно сторон света: север или восток – 1,1; юг или запад – 1.
- С – уровень утепления стен: средний (два кирпича или поверхностное) – 1; без утеплителя – 1,27; высокий – 0,85.
- D – климатические особенности местности по данным самой холодной декады января: -35°С и ниже – 1,5; от -25 до -35 – 1,3; до -20 – 1,1; не ниже -15 – 0,9; не ниже -10 – 0,7.
- Е – высота потолков: до 2,7 м – 1; 2,8-3 – 1,05; 3,1-3,5 – 1,1; 3,6-4 – 1,15; более 4,1 м – 1,2.
- F – наличие помещения сверху, его тип: чердак без отопления – 1; утепленные кровля или чердак – 0,9; отапливаемая комната – 0,8.
- G – тип окон: простые двойные деревянные рамы – 1,27; однокамерный стеклопакет – 1; двойной или однокамерный, заполненный аргоном – 0,85.
- Н рассчитывается из соотношения площади окон к площади помещения: менее 0,1 – 0,8; 0,11-0,2 – 0,9; 0,21-0,3 – 1; 0,31-0,4 – 1,1; 0,41-0,5 – 1,2.
- I – схема, по которой подключается батарея: диагональное, подача сверху, обратка снизу – 1; одностороннее, подача сверху, обратка снизу – 1,03; двустороннее, подача и обратка снизу – 1,13; диагональное, подача снизу, обратка сверху – 1,25; одностороннее, подача снизу, обратка сверху – 1,28; одностороннее, подача и обратка снизу – 1,28.
- J зависит от того, насколько свободно нагретый воздух от батареи циркулирует: радиатор открыт со всех сторон – 0,9; над ним подоконник – 1; сверху стеновая ниша – 1,07; сверху подоконник, а с фронтальной стороны частично декоративный кожух – 1,12; полностью в декоративном кожухе – 1,2.
Благодаря этому, более сложному, вычислению и правильно подставленным в формулу коэффициентам, получится наиболее точный расчет мощности радиатора, когда все нюансы комнаты будут учтены. Чтобы узнать, сколько секций понадобится, останется лишь разделить полученное значение на мощность одной, которую указывает производитель.
Для того чтобы не приходилось производить все вычисления на бумажке, сейчас в интернете можно провести расчет радиаторов калькулятором, позволяющим просто прописать свои значения и получить точный результат.
Расчет радиаторов отопления по площади
Самым простым считается расчет радиаторов отопления по площади комнаты. Если высота ее потолков вписывается в рамки 2,7-3 м, то после вычисления ее площади получившийся результат просто умножается на 100 Вт (стандартный принятый показатель для обогрева 1 м.кв.). Возможные теплопотери компенсируются накидыванием еще 20% сверху. Чтобы узнать, сколько секций радиатора понадобится, итоговое значение делится на теплоотдачу одной. Если в помещении много окон, его стены граничат с улицей, то следует накинуть еще 15% тепловой мощности, а значит увеличить количество секций.
Дополнительные факторы влияющие на расчет
Если вы хотите получить наиболее точные данные по мощности требуемого радиатора для конкретного помещения, то обязательно учитывайте:
- количество окон, их площадь, тип;
- материал стен, их толщину;
- местный климат;
- высоту потолков;
- сколько стен комнаты выходит на улицу, есть ли отапливаемые помещения сверху и снизу;
- материал, из которого изготовлен сам радиатор.
Расчет мощности радиатора и количества его секций желательно проводить, принимая во внимание все эти факторы, влияющие на теплопотерю. Потратив чуть больше времени на сложные расчеты, вы сможете быть уверены в комфортных и уютных условиях проживания в доме или квартире даже самой холодной зимой.
Расчет секций биметаллических радиаторов отопления по площади
Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.
Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.
Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.
Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.
Расчет секций алюминиевых радиаторов на квадратный метр
Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.
Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.
Кроме них:
- Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
- Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
- В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
- если потолок равен 3 м, то параметры умножаются на 1.05;
- при высоте 3.5 м он составляет 1.1;
- при показателе 4 м – это 1.15;
- высота стены 4.5 м – коэффициент равен 1.2.
- Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.
Сколько нужно секций алюминиевого радиатора?
Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:
Q = S х100 х k/P
В данном случае:
- S – площадь помещения, где требуется установка батареи;
- k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
- P – мощность одного элемента радиатора.
При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.
Q = 20 х 100 / 0.138 = 14.49
В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.
Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:
- если они закреплены под подоконником, то потери составят до 4%;
- установка в нише моментально увеличивает этот показатель до 7%;
- если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
- закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.
Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.
Как рассчитать количество секций радиаторов отопления
Базовой величиной для расчетов необходимой мощности радиаторов выступает площадь помещения или его объем. Но простые формулы используются для расчета, когда помещение не имеет особенностей. В остальных случаях формула значительно усложняется.
На квадратный метр
Если помещение имеет стандартную высоту потолка – 2,7 м, а также не отличается архитектурными особенностями – большая площадь остекления, высокие потолки, – можно воспользоваться простой формулой, в которой учитывается только площадь:
Q=S×100.
S в этой формуле – площадь помещения, которая обычно заранее известна из документов. Если таких данных нет, ее легко рассчитать, перемножив длину комнаты на ширину. 100 – количество Вт, которые требуются для обогрева 1 м2 комнаты. Q – теплоотдача – значение, получаемое в результате умножения.
Теплоотдачу одной секции производитель указывает в документах на радиаторы
Мощность неразборного радиатора указывается в документах. Следует подобрать такой прибор, мощность которого немного превышает расчетную. Такая формула подойдет, если рассчитывается мощность радиатора для комнаты в многоэтажном доме с высотой потолков 2,65. Пусть площадь этой комнаты равна 20 м2, тогда мощность батареи равна 20×100 или 2000 Вт. Если в комнате есть балкон, значение увеличивают еще на 20%.
Если требуется узнать, сколько секций батарей нужно на квадратный метр, полученное значение делят на мощность одной секции и получают необходимое число секций для эффективного обогрева конкретного помещения. Используя уже рассчитанное значение для определения количества секций чугунной батареи отопления, получится 2000/160=12,5 секций. Округляют число обычно в большую сторону, значит, необходим 13-секционный чугунный радиатор.
В помещениях, где теплопотери не велики, допустимо выполнять округление в меньшую сторону. На кухне, например, работает плита, которая будет дополнительным средством отопления.
В таблице представлены готовые значения для стандартных помещений различной площади:
Площадь, м2 | 5-6 | 7-9 | 10-12 | 12-14 | 15-17 | 18-19 | 20-23 | 24-27 |
Мощность, Вт | 500 | 750 | 1000 | 1250 | 1500 | 1750 | 2000 | 2500 |
По объёму
Если потолки значительно выше 2,7 м, например 3,5 м, следует использовать в подсчетах формулу, которая учитывает этот показатель помимо площади помещения. Определено, что для отопления 1 м3 в панельном доме требуется 34 Вт, в кирпичном – 41 Вт, поэтому формула приобретает следующий вид:
Q=S×h×41(34)
Вместо h подставляют высоту потолков в метрах, вместо S – площадь, аналогично предыдущей формуле. Q – искомая мощность радиатора отопления. Предположим, что нужно выполнить расчет для комнаты 20 м2 с высотой потолков 3,5 м в панельном доме. Получаем: 20×3,5×34=2380 Вт. Делим мощность 160 Вт, чтобы рассчитать количество секций радиатора отопления: 2380/160=14,875. Необходима 15-секционная батарея.
Помещение нестандартное
При утепленных наружных и внутренних стенах радиаторов может быть меньше
Более сложные расчеты с учетом второстепенных параметров необходимы, если стены помещения контактируют с улицей, окна выходят на северную сторону или стены недостаточно хорошо утеплены. Также множество других параметров учитывает формула вида:
Q = S×100×А×В×С×D×Е×F×G×H×I×J
Основа остается прежней, это S×100. Другие составляющие формулы – повышающие и понижающие поправочные коэффициенты, в зависимости от ряда особенностей помещения.
А позволяет учесть теплопотери при наличии уличных стен:
- если внешняя стена одна (это стена с окном) – k=1;
- две внешних стены (угловая комната) – k=1,2;
- три стены контактируют с улицей – k=1,3;
- четыре стены – k=1,4.
B используется для расчета тепловой энергии, в зависимости от того, на какую сторону света выходят окна комнаты. Когда оконный проем расположен на северной стороне, солнце не заглядывает в окна вообще, восточное помещение недополучает солнечную энергию, потому что лучи на восходе еще недостаточно активны. В этих случаях k=1,1. Для западных и южных комнат этот коэффициент не учитывают или считают его равным единице.
С учитывает способность стен удерживать тепло. За единицу приняты стены в два кирпича с поверхностным утеплителем, в роли которого могут выступать, например, плиты полистирола. Для стен, теплоизолирующие свойства которых, согласно расчетам, выше, используется k=0,85, для стен без утепления k=1,27.
D позволяет рассчитать мощность радиатора с учетом климата. Средняя температура наиболее холодной декады января учитывается при расчете:
- температура опускается ниже -35°C, k=1,5;
- составляет от -35°C до -25°С – k=1,3;
- если опускается до -20°C и не ниже – k=1,1;
- не холоднее -15°C – k=0,9;
- не ниже -10°C – k=0,7.
E – это высота потолков. Для помещений с высотой потолков до 2,7 м k=1, т.е. он совершенно не влияет на результат. Другие значения представлены в таблице:
Высота потолков, м | 2,8-3 | 3,1-3,5 | 3,6-4 | >4,1 |
k(E) | 1,05 | 1,1 | 1,15 | 1,2 |
F – коэффициент, который позволяет учесть в расчетах тип помещения, расположенного сверху:
- неотапливаемый чердак или любое другое помещение без отопления – k=1;
- утепленный чердак или кровля – k=0,9;
- помещение с отоплением – k=0,8.
G изменяет итоговое значение в соответствии с типом остекления:
- стандартные деревянные двойные рамы – k=1,27;
- стандартный стеклопакет – k=1;
- двойной стеклопакет – k=0,85.
H – учитывает площадь остекления. Если окна большие, через них проникает больше солнца, оно интенсивнее нагревает предметы и воздух в комнате. Предварительно необходимо разделить S окон на S комнаты. Полученное значение следует оценить по таблице:
Sокон/Sпомещения | <0,1 | 0,11-0,2 | 0,21-0,3 | 0,41-0,5 |
k(H) | 0,8 | 0,9 | 1 | 1,2 |
I определяют согласно схеме подключения радиаторов.
Подключение по диагонали:
- вход горячего теплоносителя сверху, выход остывшего теплоносителя снизу – k-1;
- вход снизу, а выход сверху – k= 1,25.
С одной стороны:
- горячий теплоноситель сверху, остывший – снизу – k=1,03;
- горячий – снизу, остывший – сверху – k=1,28;
- горячий и остывший снизу – k=1,28.
На две стороны: горячий и остывший теплоноситель снизу – 1,1.
J – нужно использовать, если радиатор частично или полностью скрыт подоконником или экраном:
- полностью открыт – k=0,9;
- сверху подоконник – k=1;
- в бетонной или кирпичной нише – k=1,07;
- сверху располагается подоконник, а с фронтальной части экраном – k=1,12;
- со всех сторон закрыт экраном – k=1,2.
Остается подставить в формулу все числа и рассчитать результат.
Двухкамерные стеклопакеты с аргоновым наполнителем хорошо удерживают тепло
Предположим, что нужно рассчитать мощность радиатора для комнаты:
- на втором этаже двухэтажного дома с утепленным чердаком сверху;
- площадью 23 м2;
- площадью остекления 11,2 м2;
- с двойными стеклопакетами;
- с полностью открытым монтажом радиатора;
- с двумя внешними стенами;
- с окнами, выходящими на восток;
- с высотой потолков 3,5 м;
- со стенами в два кирпича без утепления;
- с односторонним нижним подключением радиаторов;
- средней температурой самой холодной декады января от -25°C до -35°C.
Подставляем значения в формулу 23×100×1,2×1,1×1,27×1,3×1,1×0,9×0,85×1,2×1,28×0,9=5830,91 Вт. Вычислим количество секций 5831/160=36,44. Это количество лучше разбить на две или три батареи, обязательно расположив хотя бы одну на внешней стене, даже если там нет окна.
Пример расчета
Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:
- каждое окно добавляет к показателю 0.2 кВт;
- дверь «обходится» в 0.1 кВт.
Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:
Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56
Где:
- первый показатель – это площадь комнаты;
- второй – стандартное количество Вт на м2;
- третий и четвертый указывают на то, что в комнате по одному окну и двери;
- следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
- шестой – корректирующий коэффициент касаемо расположения батареи.
Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.
Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.
«Расчет с учетом» особенностей комнаты
Это самый сложный метод, но он даст практически точные цифры благодаря большому количеству различных коэффициентов. Они относятся не к системе отопления, а только к особенностям помещения, к способам установки батарей. Формулу используют ту же:
Для получения требуемой теплоотдачи, которую потом придется делить на тепловую мощность одной секции, метраж (не объем!) комнаты сначала умножают на среднюю норму мощности для 1 м2. Она не зависит от региона и составляет 100 Вт. Затем результат по очереди перемножают с коэффициентами А, В, С, D, Е, F, G, H, I и J.
«А» — число внешних стен комнаты
В большей степени, именно от их количества сильно зависят теплопотери:
- внешняя стена — лишь одна: 1,0;
- две внешние стены — 1,2;
- внешних стен — три: 1,3;
- четыре стены — 1,4.
«B» — ориентация помещения
Минимум тепла сохраняется в комнатах, смотрящих окнами туда, где всегда мало солнечного света: на север или восток, где солнечные лучи «отмечаются» только по утрам:
- окна выходят на восток либо на север — 1,1;
- комната расположена на западной или на южной стороне — 1,0.
«С» — степень утепления
Качественная теплоизоляция дает шанс максимально сохранить тепло в помещении:
- кладка в 2 кирпича или утепленные наружные стены — 1,0;
- нет утепления снаружи — 1,27;
- очень высокий уровень утепления (если были проведены теплотехнические расчеты) — 0,85.
«D» — климат в регионе
Эти условия учитывает и СНиП, без их учета невозможно ни одно капитальное строительство. Тут используют средние показатели температуры декабря, его самой холодной декады. Эти данные необходимо узнать в гидрометеорологической службе города (района):
- до -10° — 0,7;
- до -15° — 0,9;
- не ниже -20° — 1,1;
- от -25° до -35° — 1,3;
- от -35° или ниже — 1,5.
«Е» — высота потолков
Как уже было отмечено, и нормы СНиП (от 60 до 200 Вт на 1 м2), и среднее значение (100 Вт), использующееся в этом случае, подразумевают стандартную высоту потолков — 2700 мм. Если они не «дотягивают» до этой цифры, то выбирают коэффициент 1,0. Когда высота ее превосходит, то для умножения берут другой:
- 1,05, если высота находится в пределах 2800-3000 мм;
- 1,1 для 3100-3500 мм;
- 1,15 для 3600-4000 мм;
- 1,2, если высота потолка более 4100 мм.
«F» — помещение, находящееся выше
Так как через потолок помещения с большей охотой уходит поднимающийся вверх теплый воздух, в этом случае большое значение имеет верхний этаж. Эти коэффициенты выглядят так:
- сверху чердак или другое неотапливаемое помещение — 1,0;
- утепленный чердак и кровля — 0,9;
- отапливаемая комната — 0,8.
«G» — качество оконных конструкций
Разные пластиковые окна имеют неодинаковые характеристики. Особняком стоят обычные оконные конструкции, сильно повышающие коэффициент:
- деревянные рамы старого образца с двойным остеклением — 1,27;
- однокамерный стеклопакет с двумя стеклами — 1,0;
- двойной стеклопакет либо однокамерный, но имеющий аргановое покрытие, — 0,85.
«H» — площадь остекления комнаты
Независимо от качества оконных конструкций большее количество теплопотерь происходит из-за впечатляющей площади окон. Этот коэффициент зависит от соотношения площади оконных проемов и общего метража помещения:
- менее 0,1 — 0,8;
- от 0,11 до 0,2 — 0,9;
- 0,31-0,4 — 1,1;
- от 0,41 до 0,5 — 1,2.
«I» — схема подключения радиаторов
Эффективность отопления зависит от того, каким образом батареи подключают к трубам — как к подающим, так и к обратным. Самый лучший вариант — диагональное подключение: первая сверху, вторая снизу. Он (на рисунке обозначен буквой А) соответствует коэффициенту 1,0.
- Б — 1,03;
- В — 1,13;
- Г — 1,25;
- Д, Е — 1,28.
Вычисление по объему
Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.
Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.
Например:
- Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
- Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
- Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.
Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.
Видео: Советы специалистов по расчету количества радиаторов отопления в квартире
Если вам до сих пор не до конца понятно, как производятся эти расчеты и вы не рассчитываете на свои силы, можно обратиться к специалистам, которые произведут точный расчет и сделают анализ с учетом всех параметров:
- особенности погодных условий региона, где расположено строение;
- температурные климатические показатели на начало и окончание отопительного сезона;
- материал, из которого возведено строение и наличие качественного утепления;
- количество окон и материал, из которого изготовлены рамы;
- высота отапливаемых помещений;
- эффективность установленной системы отопления.
Зная все вышеперечисленные параметры, специалисты-теплотехники по имеющейся у них программе расчёта с легкостью высчитают нужное количество батарей. Такой просчет с учетом всех нюансов вашего дома гарантированно сделает его уютным и теплым, а вас и вашу семью — счастливыми!
Тепловая мощность 1 секции
Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.
Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.
Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.
Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.
Формула, необходимая для этого выглядит следующим образом:
КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7
- КТ – это то количество тепла, которое требуется данному помещению.
- S – площадь.
- К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
- К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
- К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
- 50% — коэффициент составляет 1.2;
- 40% — 1.1;
- 30% — 1.0;
- 20% — 0.9;
- 10% — 0.8.
- К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
- +25 = 1.2;
- +20 = 1.1;
- +15 = 0.9;
- +10 = 0.7.
- К5 указывает на корректировку при наличии наружных стен.Например:
- когда она одна, показатель равен 1.1;
- две наружные стены – 1.2;
- 3 стены – 1.3;
- все четыре стены – 1.4.
- К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
- неотапливаемого чердака – коэффициент 1.0;
- чердак с обогревом – 0.9;
- жилая комната – 0.8.
- К7 – это коэффициент, который указывает на высоту потолка в комнате:
- 3.0 м = 1.05;
- 3.5 м = 1.1;
- 4.0 м = 1.15;
- 4.5 м = 1.2.
Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.
Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.
Альтернативный метод расчета мощности радиаторов отопления
Расчет количества секций радиаторов отопления далеко не единственный способ правильной организации обогрева помещения.
Можно рассчитать мощность, необходимую для обогрева помещения и сопоставить ее с предполагаемой мощностью радиаторов отопления.
Посчитаем объем предполагаемой комнаты площадью 30 кв. м и высотой в 2,5 м:
30 х 2,5 = 75 куб.м.
Теперь нужно определиться с климатом.
Для территории европейской части России, а так же Белоруссии и Украины стандартом является 41 ватт тепловой мощности на кубический метр помещения.
Для определения необходимой мощности умножаем объем помещения на норматив:
75 х 41 = 3075 Вт
Округлим полученное значение в большую сторону – 3100 вт. Для тех людей, кто проживает в условиях очень холодных зим, данную цифру можно увеличить на 20%:
3100 х 1,2 = 3720 Вт.
Придя в магазин и уточнив мощность радиатора отопления, можно посчитать, сколько секций радиатора потребуется для поддержания комфортной температуры даже в самую суровую зиму.
Каждый специалист знает, что существует несколько способов подключения радиаторов отопления. Узнайте как выбрать оптимальный.
Как отопить дачу если нет магистрального газа? Есть очень простое решение – об этом можете прочитать по адресу: .
Расчет секций радиаторов в зависимости от реальных условий
Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.
Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.
Формула расчета температурного напора системы отопления
Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.
Таблица коэффициентов для систем отопления с разной дельтой температур
При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.
https://youtu.be/8k7_ZndjIOs
На сколько квадратов идет одна секция радиатора
Расчет радиаторов отопления: количество, секции, мощность
В вопросе поддержания оптимальной температуры в доме главное место занимает радиатор.
Выбор просто поражает: биметаллические, алюминиевые, стальные самых разных размеров.
Важно правильно рассчитать мощность и выбрать радиатор, чтобы впоследствии не было ошибок, которые могут поставить под угрозу не только функционирование радиаторов, но и здоровье Вас и Ваших близких.
Нет ничего хуже, чем неправильно рассчитанная необходимая тепловая мощность в помещении. Зимой такая ошибка может стоить очень дорого.
Тепловой расчет радиаторов отопления подходит для биметаллических, алюминиевых, стальных и чугунных радиаторов. Специалисты выделяют три способа, каждый из которых основан на определенных показателях.
Готовимся к зиме — расчет количества секций радиаторов отопления.
Здесь существует три метода, которые базируются на общих принципах:
- стандартная величина мощности одной секции может варьироваться от 120 до 220 Вт, поэтому берется средняя величина
- для корректировки погрешностей в расчетах при покупке радиатора следует заложить 20% резерв
Теперь обратимся непосредственно к самим методам.
Метод первый — стандартный
Исходя из строительных правил, для качественного отопления одного квадратного метра требуется 100 ватт мощности радиатора. Займемся подсчетами.
Допустим, площадь помещения составляет 30 м², мощность одной секции возьмем равной 180 ватт, тогда 30*100/180 = 16,6. Округлим значение в большую сторону и получим, что для комнаты площадью в 30 квадратных метров необходимо 17 секций радиатора отопления.
Однако, если помещение является угловым, то полученное значение следует умножить на коэффициент 1,2. В таком случае, количество необходимых секций радиаторов будет равно 20
Метод второй — примерный
Данный метод отличается от предыдущего тем, что основан не только на площади помещения, но и на его высоте. Обратите внимание, что метод работает только для приборов средней и большой мощности.
При малой мощности (50 ватт и менее) подобные расчеты будут неэффективны ввиду слишком большой погрешности.
Итак, если принять во внимание, что средняя высота помещения равна 2,5 метра (стандартная высота потолков большинства квартир), то одна секция стандартного радиатора способна обогреть площадь в 1,8 м².
Расчет секций для комнаты в 30 «квадратов» будет следующим: 30/1,8=16. Снова округляем в большую сторону и получим, что для обогрева данной комнаты нужно 17 секций радиатора.
Метод третий — объемный
Как видно из названия, подсчеты в этом методе базируются на объеме комнаты.
Условно принимается, что для обогрева 5 кубических метров помещения нужна 1 секция мощностью 200 ватт. При длине в 6 м, ширине 5 и высоте 2,5 м формула для расчета будет следующей: (6*5*2,5)/5 =15. Следовательно, для комнаты с такими параметрами нужно 15 секций радиатора отопления мощностью 200 ватт каждая.
Если радиатор планируется расположить в глубокой открытой нише, то количество секций нужно увеличить на 5%.
В случае, если радиатор планируется полностью закрыть панелью, то увеличение следует сделать на 15%. В противном случае будет невозможно добиться оптимальной теплоотдачи.
Прочитайте статью и узнайте как построить схему водяного отопления частного дома.
Вот здесь — все про то как выбрать радиатор отопления
Альтернативный метод расчета мощности радиаторов отопления
Расчет количества секций радиаторов отопления далеко не единственный способ правильной организации обогрева помещения.
Можно рассчитать мощность, необходимую для обогрева помещения и сопоставить ее с предполагаемой мощностью радиаторов отопления.
Посчитаем объем предполагаемой комнаты площадью 30 кв. м и высотой в 2,5 м:
30 х 2,5 = 75 куб.м.
Теперь нужно определиться с климатом.
Для территории европейской части России, а так же Белоруссии и Украины стандартом является 41 ватт тепловой мощности на кубический метр помещения.
Для определения необходимой мощности умножаем объем помещения на норматив:
75 х 41 = 3075 Вт
Округлим полученное значение в большую сторону – 3100 вт. Для тех людей, кто проживает в условиях очень холодных зим, данную цифру можно увеличить на 20%:
3100 х 1,2 = 3720 Вт.
Придя в магазин и уточнив мощность радиатора отопления, можно посчитать, сколько секций радиатора потребуется для поддержания комфортной температуры даже в самую суровую зиму.
Каждый специалист знает, что существует несколько способов подключения радиаторов отопления. Узнайте как выбрать оптимальный.
Как отопить дачу если нет магистрального газа? Есть очень простое решение — об этом можете прочитать по адресу: http://obogreem.net/otopitel-ny-e-pribory/obogrevateli/infrakrasny-e-obogrevateli-dlya-dachi.html.
Расчет количества радиаторов
Метод расчета представляет собой выдержки из предыдущих пунктов статьи.
После того, как Вы подсчитаете необходимую мощность для обогрева помещения и количество секций радиатора, Вы приходите в магазин.
Если число секций вышло внушительное (такое бывает в помещениях с большой площадью), то резонно будет приобрести не один, а несколько радиаторов.
Данная схема применима и к тем условиям, когда мощность одного радиатора ниже необходимой.
Но существует еще один быстрый способ посчитать количество радиаторов. Если в Вашей комнате стояли старые чугунные радиаторы с высотой около 60 см, и зимой Вы чувствовали в этом помещении себя комфортно, то посчитайте количество секций.
Полученную цифру умножьте на 150 Вт – это и будет необходимой мощностью новых радиаторов.
В случае выбора биметаллических или алюминиевых радиаторов, можете покупать их из расчета 1 к 1- на одно ребро чугунного радиатора 1 ребро биметаллического.
Разделение на «теплая» и «холодная» квартира давно уже пришло в нашу жизнь.
Многие люди сознательно не хотят заниматься выбором и установкой новых радиаторов, объясняя это тем, что «в этой квартире всегда будет холодно». Но это не так.
Правильный выбор радиаторов вкупе с грамотным расчетом необходимой мощности способен сделать тепло и уют за Вашими окнами даже в самую холодную зиму.
Расчет радиаторов отопления
При планировании капитального ремонта в вашем доме или же квартире, а так же при планировке постройки нового дома необходимо произвести расчет мощности радиаторов отопления. Это позволит вам определить количество радиаторов, способных обеспечить теплом ваш дом в самые лютые морозы. Для проведения расчетов необходимо узнать необходимые параметры, такие как размер помещений и мощность радиатора, заявленной производителем в прилагаемой технической документации. Форма радиатора, материал из которого он выполнен, и уровень теплоотдачи в данных расчетах не учитываются. Зачастую количество радиаторов равно количеству оконных проемов в помещении, поэтому, рассчитываемая мощность разделяется на общее количество оконных проемов, так можно определить величину одного радиатора.
Следует помнить, что не нужно производить расчет для всей квартиры, ведь каждая комната имеет свою отопительную систему и требует к себе индивидуальный подход. Так если у вас угловая комната, то к полученной величине мощности необходимо прибавить еще около двадцати процентов. Такое же количество нужно прибавить, если ваша система отопления работает с перебоями или имеет другие недостатки эффективности.
Расчет мощности радиаторов отопления может осуществляться тремя способами:
Стандартный расчет радиаторов отопления
Согласно строительным нормами и другими правилами необходимо затрачивать 100Вт мощности вашего радиатора на 1метр квадратный жилплощади. В таком случае необходимые расчеты производятся при использовании формулы:
С*100/Р=К, где
К- мощность одной секции вашей радиаторной батареи, согласно заявленной в ее характеристике;
С- площадь помещения. Она равна произведению длины комнаты на ее ширину.
К примеру, комната имеет 4 метра в длину и 3.5 в ширину. В таком случае ее площадь равна:4*3.5=14 метров квадратных.
Мощность, выбранной вами одной секции батареи заявлена производителем в 160 Вт. Получаем:
14*100/160=8.75. полученную цифру необходимо округлить и получается что для такого помещения потребуется 9 секций радиатора отопления. Если же это угловая комната, то 9*1.2=10.8, округляется до 11. А если ваша система теплоснабжения недостаточно эффективна, то еще раз добавляем 20 процентов от первоначального числа: 9*20/100=1.8 округляется до 2.
Итого: 11+2=13. Для угловой комнаты площадью 14 метров квадратных, если система отопления работает с кратковременными перебоями понадобиться приобрести 13 секций батарей.
Примерный расчет – сколько секций батареи на квадратный метр
Он базируется на том, что радиаторы отопления при серийном производстве имеют определенные размеры. Если помещение имеет высоту потолка равную 2.5 метра, то на площадь в 1.8 метров квадратных потребуется лишь одна секция радиатора.
Подсчет количества секций радиатора для комнаты с площадью в 14 метров квадратных равен:
14/1.8=7.8, округляется до 8. Так для помещения с высотой до потолка в 2.5м понадобится восемь секций радиатора. Следует учитывать, что этот способ не подходит, если у отопительного прибора малая мощность (менее 60Вт) ввиду большой погрешности.
Объемный или для нестандартных помещений
Такой расчет применяется для помещений с высокими или очень низкими потолками. Здесь расчет ведется из данных о том, что для обогрева одного метра кубического помещения необходима мощность в 41ВТ. Для этого применяется формула:
К=О*41, где:
К- необходимое количество секций радиатора,
О-объем помещения, он равен произведению высоты на ширину и на длину комнаты.
Если комната имеет высоту-3.0м; длину – 4.0м и ширину – 3.5м, то объем помещения равен:
3.0*4.0*3.5=42 метра кубических.
Расчитывается общая потребность в тепловой энергии данной комнаты:
42*41=1722Вт, учитывая, сто мощность одной секции составляет 160Вт,можно расчитать необходимое их количество путем деления общей потребности в мощности на мощность одной секции: 1722/160=10.8, округляется до 11 секций.
Если выбраны радиаторы, которые не делятся на секции, от общее число нужно поделить на мощность одного радиатора.
Округлять полученные данные лучше в большую сторону, так как производители иногда завышают заявленную мощность.
Расчет секций алюминиевых радиаторов на квадратный метр
Здесь вы узнаете про расчет секций алюминиевых радиаторов на квадратный метр: сколько нужно батарей на комнату и частный дом, пример вычисления максимального количества обогревателей на необходимою площадь.
Мало знать, что алюминиевые батареи обладают высоким уровнем теплоотдачи.
Перед их установкой обязательно нужно произвести расчет, какое именно их количество должно быть в каждом отдельном помещении.
Только зная, сколько алюминиевых радиаторов нужно на 1 м2, можно с уверенностью покупать необходимое количество секций.
Как правило, производителями заранее просчитаны нормы мощности батарей из алюминия, которые зависят от таких параметров, как высота потолков и площадь помещения. Так считается, что на то, чтобы нагреть 1 м2 комнаты с потолком до 3 м высоты потребует тепловая мощность в 100 Вт.
Эти цифры приблизительны, так как расчет алюминиевых радиаторов отопления по площади в данном случае не предусматривает возможных теплопотерь в помещении или более высокие или низкие потолки. Это общепринятые строительные нормы, которые указывают в техпаспорте своей продукции производители.
Кроме них:
- Немалую важность играет параметр тепловой мощности одного ребра радиатора. Для алюминиевого обогревателя она составляет 180-190 Вт.
- Температура носителя так же должна учитываться. Ее можно узнать в управляющем тепловом хозяйстве, если отопление централизованное, либо измерить самостоятельно в автономной системе. Для алюминиевых батарей показатель равен 100-130 градусам. Разделив температуру на тепловую мощность радиатора, получается, что для обогрева 1 м2 потребуется 0.55 секций.
- В том случае, если высота потолков «переросла» классические стандарты, то необходимо применять специальный коэффициент:
- если потолок равен 3 м, то параметры умножаются на 1.05;
- при высоте 3.5 м он составляет 1.1;
- при показателе 4 м – это 1.15;
- высота стены 4.5 м – коэффициент равен 1.2.
- Можно воспользоваться таблицей, которую предоставляют производители к своей продукции.
Сколько нужно секций алюминиевого радиатора?
Расчет количества секций алюминиевого радиатора производится по форме, подходящей для обогревателей любого типа:
Q = S х100 х k/P
В данном случае:
- S – площадь помещения, где требуется установка батареи;
- k – коэффициент корректировки показателя 100 Вт/м2 в зависимости от высоты потолка;
- P – мощность одного элемента радиатора.
При расчете количества секций алюминиевых радиаторов отопления получается, что в помещении площадью 20 м2 при высоте потолка 2.7 м для алюминиевого радиатора с мощностью одной секции 0.138 кВт потребуется 14 секций.
Q = 20 х 100 / 0.138 = 14.49
В данном примере коэффициент не применяется, так как высота потолка менее 3 м. Но даже такой секций алюминиевых радиаторов отопления не будут верными, так как не взяты во внимание возможные теплопотери помещения. Следует учитывать, что в зависимости от того, сколько в комнате окон, является ли она угловой и есть ли в ней балкон: все это указывает на количество источников теплопотерь.
Делая расчет алюминиевых радиаторов по площади помещения, следует в формуле учитывать процент потери тепла в зависимости от того, где они будут установлены:
- если они закреплены под подоконником, то потери составят до 4%;
- установка в нише моментально увеличивает этот показатель до 7%;
- если алюминиевый радиатор для красоты прикрыть с одной стороны экраном, то потери составят до 7-8%;
- закрытый экраном полностью, он будет терять до 25%, что делает его в принципе малорентабельным.
Это далеко не все показатели, которые следует учесть при установке алюминиевых батарей.
Пример расчета
Если рассчитывать, сколько секций алюминиевого радиатора надо на комнату площадью 20 м2 при норме 100 Вт/м2, то так же следует вносить корректировочные коэффициенты потери тепла:
- каждое окно добавляет к показателю 0.2 кВт;
- дверь «обходится» в 0.1 кВт.
Если предполагается, что радиатор будет размещен под подоконником, то корректирующий коэффициент составит 1.04, а сама формула будет выглядеть следующим образом:
Q = (20 х 100 + 0,2 + 0,1) х 1,3 х 1,04 / 72 = 37,56
Где:
- первый показатель – это площадь комнаты;
- второй – стандартное количество Вт на м2;
- третий и четвертый указывают на то, что в комнате по одному окну и двери;
- следующий показатель – это уровень теплоотдачи алюминиевого радиатора в кВт;
- шестой – корректирующий коэффициент касаемо расположения батареи.
Все следует разделить на теплоотдачу одного ребра обогревателя. Его можно определить из таблицы от производителя, где указаны коэффициенты нагрева носителя по отношению к мощности устройства. Средний показатель для одного ребра равен 180 Вт, а корректировка – 0.4. Таким образом, умножив эти цифры, получается, что 72 Вт дает одна секция при нагреве воды до +60 градусов.
Так как округление производится в большую сторону, то максимальное количество секций в алюминиевом радиаторе конкретно для этого помещения составит 38 ребер. Для улучшения работы конструкции, ее следует разделить на 2 части по 19 ребер каждая.
Вычисление по объему
Если производить подобные вычисления, то потребуются обратиться к нормативам, установленным в СНиП. В них учитываются не только показатели радиатора, но и то, из какого материала построено здание.
Например, для дома из кирпича нормой для 1 м2 будет 34 Вт, а для панельных строений – 41 Вт. Чтобы рассчитать количество секций батареи по объему помещения, следует: объем помещения умножить на нормы теплозатрат и разделить на теплоотдачу 1 секции.
Например:
- Чтобы высчитать объем комнаты площадью 16 м2, нужно умножить этот показатель на высоту потолков, например, 3 м (16х3 = 43 м3).
- Норма тепла для кирпичного здания = 34 Вт, чтобы узнать какое требуется количество для данной комнаты, 48 м3 х 34 Вт (для панельного дома на 41 Вт) = 1632 Вт.
- Определяем, сколько требуется секций при мощности радиатора, например, 140 Вт. Для этого 1632 Вт/ 140 Вт =11.66.
Округлив этот показатель, получаем результат, что для комнаты объемом 48 м3 требуется алюминиевый радиатор из 12 секций.
Тепловая мощность 1 секции
Как правило, производители указывают в технических характеристиках обогревателей средние показатели теплоотдачи. Так для обогревателей из алюминия он составляет 1.9-2.0 м2. Чтобы высчитать, какое количество секций потребуется, нужно площадь помещения разделить на этот коэффициент.
Например, для той же комнаты площадью 16 м2 потребуется 8 секций, так как 16/ 2 = 8.
Эти расчеты приблизительные и использовать их без учета теплопотерь и реальных условий размещения батареи нельзя, так как можно получить после монтажа конструкции холодную комнату.
Чтобы получить самые точные показатели, придется рассчитать количество тепла, которое необходимо для обогрева конкретной жилой площади. Для этого придется учитывать многие корректирующие коэффициенты. Особенно важен такой подход, когда требуется расчет алюминиевых радиаторов отопления для частного дома.
Формула, необходимая для этого выглядит следующим образом:
КТ = 100Вт/м2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7
- КТ – это то количество тепла, которое требуется данному помещению.
- S – площадь.
- К1 – обозначение коэффициента для остекленного окна. Для стандартного двойного остекления он равен 1.27, для двойного стеклопакета – 1.0, а для тройного – 0.85.
- К2 – это коэффициент уровня утепления стены. Для неутепленной панели он = 1.27, для кирпичной стены с кладкой в один слой = 1.0, а в два кирпича = 0.85.
- К3 – это соотношение площади, занимаемой окном и полом.Когда между ними:
- 50% — коэффициент составляет 1.2;
- 40% — 1.1;
- 30% — 1.0;
- 20% — 0.9;
- 10% — 0.8.
- К4 – это коэффициент, учитывающий температуру воздуха по СНиП в самые холодные дни года:
- +35 = 1.5;
- +25 = 1.2;
- +20 = 1.1;
- +15 = 0.9;
- +10 = 0.7.
- К5 указывает на корректировку при наличии наружных стен.Например:
- когда она одна, показатель равен 1.1;
- две наружные стены – 1.2;
- 3 стены – 1.3;
- все четыре стены – 1.4.
- К6 учитывает наличие помещения над комнатой, для которой производятся расчеты.При наличии:
- неотапливаемого чердака – коэффициент 1.0;
- чердак с обогревом – 0.9;
- жилая комната – 0.8.
- К7 – это коэффициент, который указывает на высоту потолка в комнате:
- 2.5 м = 1.0;
- 3.0 м = 1.05;
- 3.5 м = 1.1;
- 4.0 м = 1.15;
- 4.5 м = 1.2.
Если применить эту формулу, то можно предусмотреть и учесть практически все нюансы, которые могут повлиять на обогрев жилой площади. Сделав расчет по ней, можно быть точно уверенным, что полученный результат указывает на оптимальное количество секций алюминиевого радиатора для конкретного помещения.
Какой бы принцип расчетов ни был предпринят, важно сделать его в целом, так как правильно подобранные батареи позволяют не только наслаждаться теплом, но и значительно экономят на энергозатратах. Последнее особенно важно в условиях постоянно растущих тарифов.
Полезное видео
Как рассчитать количество секций радиатора
При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.
В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.
Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления
Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).
Расчет по площади
Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:
- для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
- для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.
Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.
Как рассчитать количество секций радиатора: формула
Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.
Пример расчета количества секций радиаторов по площади помещения
Угловое помещение 16 м2, в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.
Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м2 * 95 Вт = 1520 Вт.
Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.
Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.
Считаем батареи по объему
Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:
- для кирпичных на 1 м3 требуется 34 Вт тепла;
- для панельных — 41 Вт
Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).
Формула расчета количества секций по объему
Пример расчета по объему
Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:
- Находим объем. 16 м2 * 3 м = 48 м3
- Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м3 * 34 Вт = 1632 Вт.
- Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.
Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.
Подробнее о расчетах площади комнаты и объема читаем тут.
Теплоотдача одной секции
Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.
Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.
Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу
Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):
- Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
- Алюминиевый — 190 Вт (0,19 кВт).
- Чугунные — 120 Вт (0,120 кВт).
Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.
Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше
Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м2:
- биметаллическая секция обогреет 1,8 м2;
- алюминиевая — 1,9-2,0 м2;
- чугунная — 1,4-1,5 м2;
Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м2, для ее отопления примерно понадобится:
- биметаллических 16 м2 / 1,8 м2 = 8,88 шт, округляем — 9 шт.
- алюминиевых 16 м2 / 2 м2 = 8 шт.
- чугунных 16 м2 / 1,4 м2 = 11,4 шт, округляем — 12 шт.
Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.
Расчет секций радиаторов в зависимости от реальных условий
Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.
Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.
Формула расчета температурного напора системы отопления
Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.
Таблица коэффициентов для систем отопления с разной дельтой температур
При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.
Зарядка аккумуляторов с помощью солнечной энергии или ветряной турбины
Узнайте, как заряжать аккумуляторы от возобновляемых источников и сколько это стоит.
Люди, заботящиеся об окружающей среде, склоняются к использованию возобновляемых источников энергии. Солнце обеспечивает пиковую мощность около 1000 Вт на квадратный метр (93 Вт / квадратный фут), а солнечная панель преобразует эту мощность примерно в 130 Вт на квадратный метр (12 Вт / квадратный фут). Этот сбор энергии соответствует ясному дню с солнечной панелью, обращенной к солнцу.Поверхностная пыль на солнечных батареях и высокая температура снижают общую эффективность.
Производство электричества солнечным светом восходит к 1839 году, когда Эдмон Беккерель (1820–1891) впервые открыл фотоэлектрический эффект. Прошло еще столетие, прежде чем исследователи поняли этот процесс на атомарном уровне, который работает аналогично твердотельному устройству с кремнием n-типа и p-типа, соединенными вместе.
Коммерческие фотоэлектрические системы имеют КПД от 10 до 20 процентов. Из них гибкие панели составляют только 10 процентов, а сплошные панели имеют КПД около 20 процентов.Испытываются технологии многопереходных ячеек, которые достигают эффективности 40 процентов и выше.
Глобальное потепление отрицательно скажется на солнечных батареях. Исследование Массачусетского технологического института (MIT) показывает, что повышение температуры на один градус Цельсия снижает выходную фотоэлектрическую мощность на 0,45%. Как и батарея, тепло также сокращает срок службы солнечных элементов.
При 25 ° C (77 ° F) высококачественная монокристаллическая кремниевая солнечная панель вырабатывает около 0,60 В разомкнутой цепи (OCV).Как и батареи, солнечные элементы можно подключать последовательно и параллельно для получения более высоких напряжений и токов. (См. BU-302: последовательные и параллельные конфигурации батарей). Температура поверхности при полном солнечном свете, вероятно, вырастет до 45 ° C (113 ° F) и выше, что снизит напряжение холостого хода до 0,55 В на элемент из-за более низкой эффективности. Солнечные элементы становятся более эффективными при низких температурах, но при зарядке аккумуляторов при температурах ниже нуля необходимо соблюдать осторожность. (См. BU-410: Зарядка при высоких и низких температурах). Внутреннее сопротивление солнечного элемента относительно велико: последовательное сопротивление обычного элемента обычно составляет один Ом на квадратный сантиметр (1 Ом · см2).
Солнечная зарядная система не обходится без контроллера заряда. Контроллер заряда берет энергию от солнечных панелей или ветряной турбины и преобразует напряжение, чтобы оно подходило для зарядки аккумулятора. Напряжение питания для аккумуляторной батареи на 12 В составляет около 16 В. Это позволяет заряжать свинцово-кислотный до 14,40 В (6 x 2,40 В / элемент) и литий-ионный до 12,60 (3 x 4,20 В / элемент). Обратите внимание, что 2,40 В на элемент для свинцово-кислотных и 4,20 В на элемент для литий-ионных аккумуляторов являются пороговыми значениями напряжения полной зарядки.
Также доступны контроллеры заряда для литий-ионных аккумуляторов 10.Пакеты на 8 В (3 ячейки последовательно). Приобретая контроллер заряда, соблюдайте требования к напряжению. Стандартное семейство литий-ионных аккумуляторов имеет номинальное напряжение 3,6 В на элемент; фосфат лития-железа составляет 3,20 В / элемент. Подключайте только те аккумуляторы, для которых предназначен контроллер заряда. Не подключайте свинцово-кислотный аккумулятор к контроллеру заряда, предназначенному для литий-ионных аккумуляторов, и наоборот. Это может поставить под угрозу безопасность и долговечность аккумуляторов, поскольку алгоритмы зарядки и настройки напряжения отличаются.
Недорогой контроллер заряда выдает выходное напряжение только при наличии достаточного количества света.При уменьшающемся источнике света контроллер заряда просто отключается и возобновляет работу, когда восстанавливается достаточный уровень света. Большинство этих устройств не могут использовать периферийную мощность, присутствующую на рассвете и в сумерках, и это ограничивает их применения с идеальными условиями освещения.
Усовершенствованный контроллер заряда отслеживает мощность, измеряя напряжение и регулируя ток, чтобы получить максимальную передачу мощности при преобладающих условиях освещения. Это стало возможным с помощью слежения за точкой максимальной мощности (MPPT) .На рис. 2-25 показаны источники напряжения и тока от солнечного элемента с переменным солнечным светом. Оптимальная мощность доступна при изломе напряжения, где линия падающего напряжения встречается с вертикальной линией электропередачи. MPPT определяет этот момент.
Рисунок 1: Напряжение и ток от источника солнечного элемента при меняющемся солнечном свете. MPPT находит лучшую точку питания, которая находится в точке пересечения вертикальной линии электропередачи. (V x A = W). Верхняя горизонтальная линия получает больше всего света.Ветровые турбины имеют более низкое внутреннее сопротивление, чем фотоэлектрические, и MPPT отличается. |
Следует отметить, что не все схемы MPPT работают одинаково хорошо. Некоторые из них грубые и не сразу реагируют на изменения освещения, в результате чего изображение падает или выключается, если на панель падает тень. Другие системы отключаются слишком рано и не полностью используют условия низкой освещенности.
Обычным методом MPPT является возмущать и наблюдать (P&O) . Схема немного увеличивает напряжение и измеряет мощность.Если мощность увеличивается на такую же величину, применяется дальнейшее повышение напряжения до тех пор, пока не будет достигнута оптимальная настройка. P&O обеспечивает хороший КПД, но может работать медленно и приводить к колебаниям.
Другой метод – это инкрементная проводимость, при которой точка максимальной мощности вычисляется путем сравнения дельт тока и напряжения. Это требует дополнительных вычислений, но имеет улучшенную отслеживающую способность по сравнению с P&O. Развертка по току – это метод, который наблюдает за характеристиками тока и напряжения фотоэлектрической матрицы для вычисления точки максимальной мощности.
Солнечные панели обычно подключаются последовательно, каждая из которых обеспечивает около 20 В в солнечный день. Контроллер считывает общее напряжение цепи, но если одна панель затемняется, MPPT теряет эффективность. Современные системы обрабатывают каждую панель или группу панелей индивидуально. Это позволяет отслеживать напряжение затемненных панелей до 5 В. Минус – более высокие системные затраты.
Вы можете спросить: «Почему я не могу просто подключить солнечную панель 12 В непосредственно к ноутбуку или мобильному телефону?» В принципе это должно работать, но не рекомендуется.Контроллер заряда преобразует поступающее постоянное напряжение от солнечной панели или ветряной турбины в правильный диапазон напряжения. При ярком солнечном свете напряжение 12 В солнечной панели может доходить до 40 В, и это может повредить ваше устройство.
С 1998 по 2011 год цены на коммерческие фотоэлектрические (PV) системы падали на 5–7 процентов ежегодно, и анализ показывает, что падение цен продолжится. Сейчас она стоит от 4 до 5 долларов за ватт для типичной солнечной установки в жилых домах, способной обеспечить 5 кВт.Более крупные установки стоят от 3 до 4 долларов за ватт с дальнейшим снижением для мегаваттных систем.
Зарядное устройство для обслуживания
Зарядное устройство для обслуживания обычно питается от небольшого солнечного элемента, который обеспечивает постоянный заряд аккумулятора в солнечный день. Эти устройства помогают предотвратить сульфатирование свинцово-кислотных аккумуляторов при хранении. Даже небольшая подзарядка сохранит полную зарядку аккумулятора.
Выберите зарядное устройство для обслуживания, которое переключается на контролируемый плавающий заряд, когда аккумулятор полностью заряжен.Продолжительная зарядка даже при низком токе может вызвать перезарядку аккумулятора и вызвать внутреннюю коррозию. Правильно отрегулированный плавающий заряд восполняет только то, что батарея теряет из-за саморазряда. (См. Также BU-403: Свинцово-кислотный заряд)
Последнее обновление: 2019-09-11
*** Пожалуйста, прочтите комментарии ***
Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме.Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.
Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.
Предыдущий урок Следующий урокИли перейти к другой артикуле
Батареи как источник питанияПадение затрат в производстве аккумуляторов
Отсутствие прогресса в технологии аккумуляторов продолжает ограничивать прогресс в других зависимых областях.Стартап из Массачусетского технологического института пытается заново изобрести литий-ионную батарею с помощью инноваций, ориентированных на производство.
Возможно, есть способ революционизировать аккумуляторные батареи, – говорит он, – но сейчас его нет в лаборатории. Вместо этого он находится в заводском цехе. Гениальное производство, а не гениальный скачок в химии аккумуляторов, могло бы открыть новую электрическую эру. Когда примерно через два года начнутся коммерческие продажи, по словам Чанга, его компания сократит стоимость завода по производству аккумуляторных батарей начального уровня в 10 раз, а также снизит стоимость самих аккумуляторов примерно на 30%.Это благодаря новому производственному процессу, а также новому мощному элементу, который добавляет энергию и снижает затраты. Вместе, по его словам, они позволят литий-ионным батареям начать конкурировать с ископаемым топливом. Но концепция Чанга также касается чего-то большего, чем просто более дешевая и экологически чистая энергия. Это модель инноваций нового типа, ориентированных не на новые научные изобретения, а на новые способы производства. Для таких стран, как США, которые потеряли промышленность в Азии, это открывает возможность заново изобрести технологии производства.Те, кто встанет на этот путь, могут владеть этой интеллектуальной собственностью и, следовательно, следующим производственным будущим.
* * * * *
Производители скрытны, но аналитики говорят, что литий-ионная аккумуляторная батарея стоит в среднем примерно 500 долларов за киловатт-час – это мера энергии, которую аккумулятор может хранить. Это в четыре раза больше цены, необходимой для прямой конкуренции с бензином. Только около 30% от этих 500 долларов – это стоимость материалов. Наибольшая доля – 40% – идет в обрабатывающую промышленность.
Сами аккумуляторные фабрики обычно представляют собой огромные здания размером с авиационный ангар.Они содержат конвейерные станки длиной в десятки ярдов, часто поставленные друг на друга. Стоимость завода начального уровня составляет более 100 миллионов долларов. В Мидленде, штат Мичиган, XALT управляет одним из самых эффективных и современных литий-ионных заводов в США. Но, построенный на 300 миллионов долларов в виде федеральных и государственных грантов и кредитов, он также разрастается – чуть менее четверти его объекта площадью 400000 квадратных футов (37000 квадратных метров) отведено под оборудование, пространство размером с шесть футбольных полей. . Tesla начинает строительство завода по производству аккумуляторов, литий-ионного завода стоимостью 5 миллиардов долларов в Неваде.
Такие затраты не только делают батареи дорогими. Они также подавляют инновации. Кто, даже имея новую многообещающую идею улучшения химического состава батарей, сможет построить или одолжить завод стоимостью 100 миллионов долларов, чтобы опробовать его? Цель Чанга – снизить производственные затраты ниже 100 долларов за киловатт-час. Это позволило бы строить запускаемые заводы с гораздо меньшими затратами на внедрение инноваций. И это также создало бы настоящую конкуренцию с бензином.
* * * * *
Чанг и Уайлдер собираются приступить к третьему раунду инвестиций, требуя от 20 до 30 миллионов долларов.Они потратят деньги на масштабирование производства новой машины, которая производит ячейку каждые две-десять секунд. Эта машина, которая будет доступна для продажи через два года, предназначена для стационарных электрических батарей, используемых для питания предприятий, жилых кварталов и коммунальных служб, а не автомобилей. Машина будет иметь мощность 79 мегаватт-часов в год и производить любые литий-ионные батареи по цене около 160 долларов за киловатт-час. К 2020 году, по словам Чанга, это будет примерно до 85 долларов, что на 30% ниже, чем у обычных литий-ионных аккумуляторов, стоимость которых также снижается.Но самое главное, машина будет стоить около 11 миллионов долларов. Следовательно, начальные затраты на производство литий-ионных аккумуляторов резко упадут. «Это так далеко от парадигмы, вы просто не поверите», – сказал Уайлдер.
Если 24M создаст эту машину и сможет продать ее на рынке – это совершенно другой вопрос – она явно встряхнет крупные отрасли промышленности, в том числе аккумуляторы для стационарных автомобилей и электромобилей, не говоря уже о коммунальных предприятиях. Насколько быстро можно догадаться.
Батареи из кальциево-титановой рудыN ovel для превосходной гибкости в помещении
Новые батареи из кальциево-титановой руды для превосходной гибкости в помещениях Разработчики устройства из кальциево-титановой руды, рассчитанного на освещение 100-500 люкс, говорят, что его производство стоит 78-108 долларов за квадратный метр.
Источник изображения: mp.ofweek.com
Новая гибкая солнечная батарея из титаната кальция
Исследователи из Римского университета Тор Вергата, Института органической электроники Фраунгофера в Германии и Университета Южной Колумбии разработали изгибаемый солнечный элемент из титаната кальция для использования внутри помещений, который, как говорят, работает при освещении 100-500 люкс.
Устройство толщиной 100 микрон изготовлено с использованием технологии напыления с рулона на рулон и покрыто оксидом индия и олова на ультратонком гибком стекле с светопропусканием более 80 процентов, сопротивлением 13 Ом на квадрат и более 1600 операций гибки при кривизне 20.5 мм.
Устройство оснащено мезопористым держателем на плотном слое оксида олова, что является решающим фактором в достижении эффективности преобразования ячеек 20,6% и 22,6% при светодиодном освещении 200 и 400 люкс.
По словам разработчиков устройства, эти уровни эффективности являются самыми высокими зарегистрированными значениями для гибких фотоэлементов, разработанных для использования внутри помещений, а также на 60-90% выше, чем у наиболее эффективных фотоэлементов из титанита кальция на гибкой подложке.
Стоимость производства новой батареи
Исследователь Томас Браун сказал, что ориентировочная стоимость производства тысяч квадратных метров кальциево-титановой руды в гибком стекле для солнечных батарей составит около 110 долларов за квадратный метр в год.”Учитывая, что площадь ячейки, необходимая для питания маломощных электронных устройств, таких как беспроводные датчики, зависит от уровня внутреннего освещения; от того, сколько энергии потребляет устройство; и как часто оно обнаруживает и передает данные; затраты, связанные с производством Таким образом, фотоэлектрические модули, за исключением резки, упаковки и интеграции, будут стоить от менее 0,10 до 1 доллара “.
Источник изображения: mp.ofweek.com
Исследователи говорят, что гибкая кальциево-титановая руда для промышленного производства солнечных элементов в субстратах для домашних животных стоит около 34 долларов за квадратный метр, не включая расходы на специальную упаковку.Стоимость обмена гибких пластиковых подложек составляет около 6 долларов за квадратный метр, ориентировочная стоимость ультратонких стеклянных подложек составляет около 40 долларов за квадратный метр, а стоимость производства гибкого стекла солнечных элементов из титанита кальция составит 68 долларов за квадратный метр. ,” добавил он.
Согласно анализу микролитиевой группы, гибкое производственное стекло устройства с точной намоткой может не только получать оксид олова и индия, но и для всех других слоев в будущем, чтобы снизить производственные затраты, повысить производительность солнечных элементов и позволить применение гибкой кальциево-титановой руды.
Вдобавок исследователи добавили, что запуск их оборудования в массовое производство потребует увеличения площади ячейки с 1 квадратного сантиметра до примерно 10 квадратных сантиметров, что потенциально снизит КПД примерно до 18 процентов – все еще очень высокий показатель для гибкой батареи титаната кальция.
Современные новейшие аккумуляторные решения
Grepow в настоящее время способна серийно производить батарею типа типа . У нас есть более 5000 новых аккумуляторов на ваш выбор.Толщина составляет от 0,4 мм до 8 мм. Это значит, что самый тонкий может быть тоньше бумаги. Все портативные устройства, которыми вы пользуетесь, отлично работают с нашими батареями.
С момента основания мы сотрудничаем со многими из 500 крупнейших компаний мира.
Источник изображения: www.grepow.com
Щелкните ссылку, чтобы получить дополнительную информацию о новых батареях: https://www.grepow.com/page/shaped-battery.html
Свяжитесь с нами напрямую для получения дополнительной информации об аккумуляторах: Свяжитесь с нами
Статьи по теме:
Обзор производителей гибких аккумуляторов
Новый растягивающийся аккумулятор может питать носимую электронику
Высокоэластичная высокоэнергетическая текстильная литиевая батарея для носимой электроники
Растягиваемые суперконденсаторы для питания носимых устройств
Новые источники энергии: носимые устройства с автономным питанием
Термины и определения батарей
ABS: Материал внешнего корпуса, используемый для большинства батарей SLA.По оценке Underwriter Laboratories (UL) существуют различные типы огнестойких материалов из АБС-пластика. Используются как UL94-HB, так и UL94-VO, и UL94-VO имеет наивысший рейтинг по требованиям огнестойкости, но намного дороже, чем обычный материал ABS. Другой материал корпуса, используемый при производстве аккумуляторов, – полипропилен.
Активный материал: Активные электрохимические материалы, обычно называемые пастой, используемые при производстве положительных и отрицательных пластин.
AGM: Обозначает абсорбирующий стеклянный мат, который является разделителем, используемым между положительной и отрицательной пластинами внутри некоторых батарей SLA.
А · ч: означает ампер-час, который является относительным термином, описывающим количество ампер, которое батарея может непрерывно выдавать в течение заданного количества часов до конечного напряжения при заданной температуре. (Ач = амперы x часы при 25 ° C)
Температура окружающей среды: Средняя внешняя температура, которую испытывает аккумулятор.
Ампер: Единица электрического тока. (Иногда называется Amp или A)
Батарея: В батарее SLA; одиночные или параллельные группы положительных и отрицательных пластин, определяющие Ач в ячейке.Затем элементы соединяются последовательно, увеличивая тем самым напряжение.
C-Rate или C: Уровень тока, выраженный в амперах или миллиамперах, который зависит от номинальной емкости аккумулятора в ампер-часах. Например: при номинальном токе 6 Ач 1С = 6 ампер; 3C = 18 Ампер; 0,05C = 300 миллиампер.
Ячейка: Минимальная единица, из которой состоит аккумуляторная батарея. Примечание. Номинальное напряжение одиночного свинцово-кислотного элемента составляет 2,0 В. Ячейки состоят из положительных и отрицательных пластин, соединенных параллельно.Ячейка должна иметь как минимум 1 положительную и 1 отрицательную пластину.
Заряд постоянным током: Метод зарядки аккумуляторов путем подачи фиксированного тока и обеспечения свободного перемещения напряжения. Это можно использовать для батарей SLA, если период заряда отслеживается и контролируется, а рекомендуемый уровень напряжения не превышается. Все батареи SLA имеют максимальный зарядный ток, который необходимо соблюдать. Если эти условия не соблюдаются, аккумулятор будет сбрасывать избыточный заряд, который попадает в аккумулятор в виде тепла, что приводит к выходу аккумулятора из строя и высыханию электролита.
Зарядка при постоянном напряжении : Метод зарядки аккумуляторов путем приложения фиксированного напряжения и изменения тока до такой степени, в которой батареи противодействуют электродвижущей силе (ЭДС), снижая ток до конечного уровня тока заряда в конце заряда цикл. Рекомендуется для герметичных свинцово-кислотных аккумуляторов. Необходимо соблюдать пределы зарядного напряжения.
COS: «Литая лента», которая соединяет выступы пластин вместе внутри каждой ячейки. В каждой ячейке есть отрицательная полоса или полоска и положительная полоса или полоска.Эти ремни свариваются вручную с помощью пресс-формы или на автомате для повышения однородности конструкции.
Напряжение отключения: Конечное напряжение элемента или батареи в конце заряда или разряда
Counter EMF: (Counter Electromotive Force) Способность батарей подавлять ток, который они принимают во время процесса зарядки. Если это превышено, аккумулятор сбросит лишний заряд в виде тепла.
Цикл: Однократная зарядка и разрядка аккумулятора.
Срок службы: Число циклов, которое может выдержать батарея, прежде чем она перестанет обеспечивать требуемую емкость.
Скорость разряда: Величина тока, снимаемого с элемента или батареи и выраженная в долях от C (номинальная емкость элемента или батареи в ампер-часах (Ач)).
Напряжение в конце заряда: Напряжение, достигаемое аккумулятором в конце заряда, когда зарядное устройство еще подключено.
Электролит: В ячейку добавлен раствор, который проводит ионы в ячейке между положительной и отрицательной пластинами.В свинцово-кислотных аккумуляторах используется разбавленный раствор серной кислоты. Удельный вес электролита зависит от размера и конструкции.
Плотность энергии: Отношение энергии элемента или батареи к единице веса (фунт или килограмм) или единице объема (кубический дюйм или кубический метр)
Fast-on: Общая клемма на большинстве небольших батарей SLA. Fast-on – это бренд, который производит некоторые из этих вкладок и описывает эти типы клемм в индустрии аккумуляторов SLA. Есть 0,250 (1/4 дюйма в ширину) и.187 (ширина 1/8 дюйма) вкладок, обычно используемых в типах SLA.
Final Charge Current: Величина тока, которую батарея будет принимать, даже если она полностью заряжена. Обычно конечный ток заряда равен току, необходимому для компенсации внутреннего сопротивления батареи. После достижения этого значения зарядку необходимо остановить или переключить на плавающую зарядку.
Float Use or Charge: Для зарядки или поддержания аккумулятора при рекомендованном напряжении и токе, которые будут компенсировать только внутреннее сопротивление и значения саморазряда, но при этом будут достаточными для подзарядки аккумулятора после разрядки.Система плавающего заряда постоянно отслеживает состояние аккумулятора и регулирует уровни заряда, чтобы обеспечить постоянное поддержание полного заряда.
Formation: Процесс размещения заряда в положительной и отрицательной пластинах, который активирует активные материалы. Формирование внутри батареи происходит после сборки батареи. Формирование в батарее должно выполняться медленно или с каким-либо типом контроля нагрева, например с водяными банями, поскольку большое количество тепла, выделяемое во время этого процесса, вредно для срока службы батареи.Формирование резервуаров формирует пластины вне батареи в больших резервуарах. Сухозаряженные батареи требуют формирования резервуара, поскольку батареи собираются и продаются до добавления электролита.
Поглощение газа: Способность отрицательной пластины поглощать газообразный кислород, образующийся внутри батареи.
Гель или гель: Пушистый диоксид кремния добавляется в электролит аккумулятора для загустения и иммобилизации электролита. Этот гелеобразный электролит является тиксотропным, что означает, что он может распадаться на жидкость и со временем снова превращаться в густой гель.Обычно используется для увеличения срока службы, поскольку создает резерв электролита, необходимый для восстановления в результате глубокого разряда. Однако он выделяет немного больше газа, чем конструкции AGM, особенно в начале своего срока службы, и в некоторых конструкциях может иметь более высокое внутреннее сопротивление. По конструкции также есть SLA, VRLA и с некоторыми поставщиками гибрид AGM / Gel.
Процесс рекомбинации: Процесс, при котором внутренний газ рекомбинирует в жидкую форму.Зарядное напряжение / ток не должны превышать способность аккумуляторов рекомбинировать газы внутри, в противном случае произойдет их выделение и высыхание.
High-Rate Discharge: Очень быстрая разрядка аккумулятора. Обычно кратно C-скорости батареи или может выражаться в ваттах или силе тока при разных температурах (например, ток холодного пуска – CCA).
Иммобилизованный электролит: Для того, чтобы батареи SLA можно было использовать в различных положениях, электролит должен быть иммобилизован и удерживаться на поверхности пластины.Обычно существует два способа удержания электролита на месте: один абсорбируется материалом AGM, а другой заключается в добавлении коллоидального кремнезема к электролиту, создавая густой иммобилизованный гель.
Внутреннее сопротивление или сопротивление: Значение сопротивления батареи, выраженное в омах или миллиомах. Обычно измеряется на частоте 1 кгц при полной зарядке. Также может быть выражено в терминах проводимости.
Отсечка по низкому напряжению: Чувствительное устройство, предназначенное для прекращения разряда при заданном уровне напряжения.Используется для предотвращения чрезмерной разрядки аккумуляторов.
Lug: Верхний выступ на каждой сетке, который используется для соединения всех сетей вместе в параллельном соединении в каждой ячейке в батареях SLA.
Номинальная мощность: Номинальное или указанное значение номинальной мощности. В герметичных свинцово-кислотных (SLA) батареях номинальная емкость обычно измеряется из расчета 20 часов, что означает величину тока, которую батарея может выдавать в течение 20 часов до достижения конечного напряжения, равного 1.75 вольт на элемент при 25 ° C.
Номинальное напряжение: Номинальное или указанное значение напряжения батареи. В свинцово-кислотных аккумуляторах номинальное напряжение составляет 2 вольта на элемент. Фактическое напряжение полной зарядки для батарей SLA составляет 2,15 – 2,20 В на элемент в зависимости от удельного веса электролита. Плотность электролита напрямую влияет на фактическое напряжение.
Напряжение холостого хода: Измеренное напряжение батареи без нагрузки.
Overcharge: Непрерывная зарядка аккумулятора после достижения 100% номинальной емкости или слишком быстрой зарядки для аккумулятора.Срок службы батареи сокращается из-за продолжительной перезарядки из-за избыточного тепловыделения, а при сильной перезарядке также быстро высыхает электролит.
Параллельное соединение: Группа батарей со всеми подключенными клеммами одинаковой полярности, тем самым увеличивая емкость подключенной группы батарей в Ач при неизменном напряжении (+ → +, – → -). Батареи, соединенные вместе, должны быть одинакового возраста, размера и конструкции. Батареи, которые отличаются последовательным или параллельным подключением, не будут заряжаться или разряжаться одинаково, что сокращает срок службы всей струны.
Пластины: Сетки и активный материал или склеиваются вместе в формованном или однородном состоянии. Существуют как положительные, так и отрицательные пластины с активным материалом.
Первичный элемент: Элемент, который можно разрядить только один раз. Например: бытовые щелочные батарейки.
Номинальная емкость: Емкость батареи, выраженная в ампер-часах (Ач или Ампер x час). Выражение разряда постоянного тока в течение определенного количества часов на заданную глубину разряда при 25 ° C.
Повторно закрывающееся защитное отверстие: Защитное устройство, встроенное в верхнюю часть элемента батареи, для снятия избыточного давления газов и предотвращения разрыва корпуса. Обычно это происходит, когда зарядка происходит быстрее, чем способность аккумуляторов восстанавливать внутреннюю скорость выделения газа. При правильных условиях зарядки в конце циклов зарядки может происходить небольшой сброс воздуха для выравнивания внутреннего давления. Клапаны обычно открываются при внутреннем давлении около 5-6 фунтов на квадратный дюйм.
Вторичная батарея: Батарея, которую можно многократно заряжать и разряжать, например, химические батареи SLA, NiCd, NiMh и литий-ионные.
Саморазряд: Потеря емкости батареи при хранении в неиспользованном состоянии без внешнего разряда. Тепло ускоряет это состояние, а холод замедляет саморазряд.
Разделитель: Материал, из которого разделены пластины батареи. В герметичных свинцово-кислотных аккумуляторах они обычно состоят из микропористого стекловолокна (Absorbent Glass Mat – AGM) и дополнительно служат для иммобилизации электролита, чтобы аккумулятор мог работать в разных положениях.Типы сепараторов, используемых в некоторых других типах батарей, – это SMPE (субмикропористый полиэтилен) конвертного типа и ребристые листовые сепараторы.
Подключение серии : Группа аккумуляторов с клеммами, подключенными с противоположной полярностью (+ → – → + → -), тем самым увеличивая напряжение группы аккумуляторов при неизменной емкости Ач. Батареи, соединенные вместе, должны быть одинакового возраста, размера и конструкции. Батареи, которые отличаются последовательным или параллельным подключением, не будут заряжаться или разряжаться одинаково, что сокращает срок службы всего комплекта батарей.
Срок службы: Ожидаемый срок службы батареи, выраженный в количестве полных циклов или годах работы в режиме ожидания до установленного оставшегося процента от первоначальной емкости. Срок службы зависит от количества циклов, глубины циклов, режима зарядки, обслуживания и температуры.
Срок годности: Максимальный период времени, в течение которого аккумулятор может храниться в определенных условиях без дополнительной зарядки. Саморазряд до восстанавливаемого состояния заряда используется для расчета этого значения.
Удельный вес: Термин, описывающий вес электролита по отношению к весу воды. Таким образом, 1.000 вес – это вес воды, а 1.300 – это средний относительный вес готового электролита батареи SLA. Полная концентрация Удельный вес серной кислоты составляет 1,840.
SLA: означает герметичные свинцово-кислотные батареи, поскольку батареи герметизированы снаружи внутрь, хотя изнутри они регулируются клапаном для сброса внутреннего давления по мере необходимости.Также называются аккумуляторами VRLA, AGM и Gel.
Резервная служба: (см. Также «Плавающее использование») Состояние, в котором аккумулятор постоянно поддерживается в полностью заряженном состоянии за счет непрерывного или плавающего заряда, поэтому он всегда готов к использованию.
Сульфатирование: Химическое состояние, возникающее в активном материале, когда аккумулятор остается в разряженном состоянии в течение определенного периода времени, вызывая кристаллизацию сульфатов, которые накапливаются в активном материале во время нормального разряда.Кристаллизация сульфатов может привести к необратимому повреждению аккумулятора.
Терминал: Точка подключения аккумулятора к внешней нагрузке. Батареи SLA имеют положительную и отрицательную клемму точки подключения. Обычно доступно несколько различных вариантов терминала для удовлетворения потребностей приложения.
Thermal Runaway: Состояние, при котором аккумулятор перезаряжается в среде с высокой температурой, когда уровень зарядки может продолжаться и увеличиваться по мере нагрева аккумулятора, создавая среду для безудержной зарядки.Поскольку тепло увеличивает емкость и необходимость дополнительной зарядки, батареи начинают требовать большего заряда, чем необходимо, создавая этот режим отказа.
Капельная зарядка: Непрерывная зарядка с помощью небольшого тока, предназначенная только для компенсации саморазряда в ненагруженной батарее. Некоторые типы зарядных устройств, управляемых микропроцессором, необходимы для контроля состояния батареи и обеспечения только заряда, необходимого для поддержания емкости батареи.
Under-Charge: Состояние батареи, при котором произошла недостаточная зарядка.Небольшие уровни непрерывной недостаточной зарядки могут быть вредными для аккумулятора, вызывая сульфатирование части пластин. Это эффективно снижает доступную емкость каждый раз, когда батарея недозаряжается, пока ее не останется недостаточно для использования.
VRLA: Обозначает свинцово-кислотные батареи с регулируемым клапаном, что является еще одним названием для SLA и гелевых батарей. VRLA – более точный термин, поскольку батареи герметизированы только снаружи, поэтому внутреннее давление может быть сброшено изнутри батареи через клапаны сброса давления.
Вольт: Вольт – электрическая единица измерения напряжения или разности потенциалов (обозначение: В). Один вольт равен току, умноженному на 1 ампер на сопротивление 1 Ом (1 В = 1 А x 1 Ом)
Отключение напряжения: Чувствительное устройство, используемое для прекращения заряда или разряда, когда батарея достигает заданного уровня напряжения.
Вт: Значение мощности относительно ампер и вольт. Амперы x Вольт = Ватты до конечного напряжения и определенной температуры.Может быть выражено в ваттах на батарею или в ваттах на элемент.
Ватт на элемент (WPC): Количество Вт, которое каждый элемент в батарее может произвести при заданном конечном напряжении вольта для указанного времени и температуры. Чтобы рассчитать количество ватт на батарею (WPB), умножьте количество ватт на элемент на количество ячеек. (WPB = WPC X #cells)
(PDF) Анализ чувствительности капитальных затрат для полностью ванадиевой окислительно-восстановительной батареи
Представленный здесь подход к оценке чувствительности общих затрат
VRB к выбранным проектным переменным частично взят из статьи Мур и др.в
, где в процессе проектирования используется иерархический метод (5). Ядром этого метода является
, категоризация капитальных затрат на идентифицируемые области, которые исследуются на этапе
шаговой процедуры, при этом каждый шаг основан на предыдущем шаге. Для анализа капитальных затрат представлены следующие категории
:
1. Затраты, масштабируемые пропорционально мощности;
2. Затраты, масштабируемые пропорционально энергоемкости;
3.Затраты, не зависящие от размера.
Первые две категории составляют большую часть капитальных затрат на аккумулятор,
и будут областями, на которых будет сосредоточен анализ чувствительности к стоимости.
Электрическая мощность определяется конструкцией ячеек. Величина электрического тока
, производимого элементом, зависит от плотности тока элемента
и площади активного электрода. Предполагается, что ячейки в стеке идентичны, однако
, и представленная здесь стоимостная модель не допускает каких-либо изменений в текущем
через стек.Желаемое напряжение достигается выбором соответствующего количества
ячеек в стеке. Электрический потенциал стека увеличивается, когда ячейки стека
соединены последовательно. Каждая ячейка добавляет к электрическому потенциалу стопки значение
добавленного электрического потенциала ячеек. Требуемый общий ток достигается путем изменения
площади ячеек в стопке или путем параллельного подключения дополнительных ячеек.
Электрическая мощность VRB зависит от общего количества ячеек в
батарее.Текущая емкость ячейки и, таким образом, текущая емкость батареи составляет
, рассчитанную путем умножения плотности тока электрода на площадь активного электрода.
Текущая емкость VRB рассчитывается путем умножения текущей емкости ячейки
на количество пакетов, а электрический потенциал батареи рассчитывается как
, умножая электрический потенциал одной ячейки на количество ячеек. в стопке. Электрическая мощность
тогда является произведением текущей емкости и электрического потенциала.
Энергоемкость VRB определяется концентрацией ванадия
и объемом технологических растворов. Для фиксированной концентрации ванадия
Чем больше объем раствора, тем больше энергии может хранить батарея. Большие объемы
потребуются для конструкций батарей, требующих более высокой емкости
электроэнергии или более продолжительного времени цикла при заданной мощности. Важное соображение, связанное с
с энергоемкостью VRB, – это состояние заряда (SOC).SOC определяет
концентраций реагентов и продуктов в любой данный момент времени и представляет
– количество энергии, которое VRB хранит относительно его полной емкости (6). SOC
VRB учитывается, потому что электрический потенциал батареи зависит от SOC
. Это проиллюстрировано на Рисунке 2, который показывает соотношение электрического потенциала
и SOC (7). В то время как график потенциала ячейки на рисунке 2 асимптотически приближается к границам
; середина графика примерно линейна.Следовательно,
выгодно устанавливать пределы SOC для VRB в этой средней области, где
можно избежать резкого падения или увеличения электрического потенциала. Кроме того,
, сужающее пределы SOC, обеспечивает меньший диапазон колебаний мощности
транзакций ECS, 41 (17) 1-19 (2012)
3), если не имеется лицензия CC (см. Аннотацию). ecsdl.org/site/terms_use адрес. Распространение осуществляется в соответствии с условиями использования ECS (см. 220.168.133.33Загружено 11.07.2015 по IP
Сколько стоит отключение от сети с солнечной батареей?
Время чтения: 7 минутЭто первая часть серии, состоящей из двух частей, в которой исследуются экономические аспекты полного отключения солнечной энергии от сети. В части 1 основное внимание уделяется тому, что на самом деле означает «отключиться от сети», и как начать думать о расчете затрат на отключение от электросети. В части 2 обсуждаются два реальных примера определения размера автономной солнечной энергетической системы, а также возможность использования автономного решения.Ознакомьтесь с частью 2 здесь.
Сэкономьте тысячи на установке солнечных батарей и аккумуляторов
Идея автономной жизни становится все более популярной. Учитывая рост цен на электроэнергию по всей стране, трудно хотя бы подумать о том, чтобы отрезать шнур каждый раз, когда по почте приходит счет за коммунальные услуги. Но что на самом деле означает «отключиться от сети»? Для такой простой концепции логистика отключения от сети на самом деле является довольно сложной и очень дорогостоящей.
Что значит «отключиться от сети»?
Отключение вашего дома от сети с точки зрения электричества означает полное удаление любого подключения к более крупной электросети, которая питает подавляющее большинство домов, зданий и предприятий по всей стране.Это означает, что для отключения от сети вам необходимо будет удовлетворить все потребности вашего дома за счет электроэнергии, производимой на месте.
Важно отметить, что установка солнечных батарей на крыше не означает, что вы отключились от сети . Большинство систем солнечной энергии не предназначены для постоянного производства электроэнергии, достаточной для того, чтобы быть единственным источником энергии для дома, поэтому подавляющее большинство домовладельцев, использующих солнечную энергию, поддерживают связь со своими коммунальными предприятиями.
В этих случаях политика, называемая чистым измерением, позволяет вам возвращать электроэнергию, произведенную вашими солнечными панелями, в электрическую сеть, когда вы ее не используете, а затем получать ее из сети, когда ваши солнечные панели не производят , ночью или в неидеальную погоду.В конце месяца или года ваша электроэнергетическая компания выставляет счет за чистую продукцию, произведенную вашими солнечными панелями, и электричество, которое вы использовали из сети, отсюда и термин «нетто-счетчик».
В автономной солнечной энергетической системе у вас нет доступа к большей электрической сети, когда она вам нужна, либо ночью, когда ваши солнечные панели не работают, либо в случае длительного периода облачная погода. Вместо этого вам нужно создать свою собственную персональную «сетку», установив на месте аккумуляторную батарею, чтобы хранить выходную мощность ваших солнечных панелей для использования в более поздний момент времени.
Рассчитайте стоимость автономной системы в четыре этапа.
Для отключения от сети солнечной энергии требуется нечто большее, чем просто установка солнечных панелей и отключение от электросети. Есть четыре основных шага, чтобы определить, возможно ли отключение от сети для вашего дома, а также сколько это будет стоить:
- Подсчитайте, сколько электроэнергии вы потребляете;
- Определите, сколько солнечных батарей вам понадобится;
- Спроектируйте систему солнечных батарей в соответствии со своими потребностями;
- И добавьте стоимость комбинированной солнечной системы плюс накопитель.
Сколько электроэнергии вы потребляете?
Первым шагом к отключению от сети является понимание того, сколько электроэнергии вы используете, также известное как ваше потребление или ваша электрическая нагрузка. Чтобы выяснить, сколько солнечных панелей и солнечных батарей вам нужно отключить от сети, вам нужно знать, сколько электроэнергии потребляет ваш дом каждый день.
Есть два основных способа рассчитать ежедневную потребность вашего дома в электроэнергии. Первый и самый простой – найти в счете за электроэнергию ежемесячное потребление (выраженное в киловатт-часах или кВтч).Чтобы получить ежедневное потребление электроэнергии, разделите месячное потребление на количество дней в месяце. Поскольку использование может меняться от месяца к месяцу, рекомендуется выполнять этот расчет для нескольких месяцев.
Второй метод расчета ежедневной нагрузки на электроэнергию – это восходящий подход: умножьте мощность каждого прибора в вашем доме на количество часов, в течение которых вы его используете каждый день. Хотя вы не сможете найти конкретную мощность для всех своих приборов, большая часть крупной бытовой электроники – например, телевизоры или холодильники – поставляется с желтой наклейкой Energy Guide, на которой оценивается годовое потребление энергии.Разделите это число на 365, чтобы получить расчетную среднесуточную электрическую нагрузку на эти приборы.
Одним из лучших инструментов для оценки энергопотребления является калькулятор Министерства энергетики. На основе этого калькулятора приведены некоторые оценки электрической нагрузки обычных бытовых приборов:
Устройство | Расчетная годовая нагрузка (кВтч) | Расчетная дневная нагрузка (кВтч) |
---|---|---|
Холодильник | 600 | 1.6 |
Блок кондиционирования воздуха | 215 | 0,6 |
Центральное кондиционирование воздуха | 1,000 | 2,7 |
Обогреватель | 600 | 1,6 |
Перечисленный выше подход является отличный способ просмотреть историю использования энергии, хотя может быть не так полезен для прогнозирования потребления энергии в будущем. Второй подход, с другой стороны, лучше предсказывает, что вы можете использовать в будущем.Однако оба этих подхода являются оценочными; если вы планируете установить солнечную батарею и накопитель для отключения от сети, возможно, стоит приобрести домашний энергомонитор, чтобы получить более точную оценку вашего потребления электроэнергии
Потребление электроэнергии напрямую влияет на размер системы накопления солнечной энергии плюс вам нужно будет установить. Проведя сначала аудит энергоэффективности или изменив свои привычки потребления (например, сушив одежду и посуду воздухом вместо использования электрического тепла), вы можете существенно снизить затраты на отключение от сети.
Сколько батарей вам понадобится?
Чтобы отключиться от сети, вам нужен способ хранить электричество, вырабатываемое вашей солнечной энергетической системой, в то время, когда вы ее не используете. Важно отметить, что не каждая солнечная батарея может работать независимо от сети, даже если вы питаете ее солнечной энергией. Чтобы отключиться от сети, вам особенно нужна батарея, которая может «изолироваться» или образовывать свою собственную сеть, чтобы панели могли заряжать батарею каждый день без подключения к сети.
Чтобы определить количество этих батарей, необходимое для питания вашего дома в течение одного дня, вам необходимо знать как свое ежедневное потребление электроэнергии, так и количество электроэнергии, хранящейся в стандартной солнечной батарее.
Количество электроэнергии, хранящейся в батарее, называется «полезной энергией», выраженной в кВтч. Это количество электричества, которое вы можете получить от батареи после учета электрических потерь и любой энергии, необходимой для питания самой батареи.
Имея в руках эти две точки данных, легко вычислить необходимое количество батарей. Например, среднее американское домохозяйство потребляет около 30 кВт / ч в день. Учитывая потери при преобразовании, связанные с хранением электроэнергии, вам понадобится достаточно батарей, чтобы хранить немного больше, чем вы используете в день, вероятно, ближе к 32 кВтч, в зависимости от эффективности выбранной вами батареи.
Двумя наиболее распространенными солнечными батареями являются Tesla Powerwall 2 и LG Chem RESU 10H, которые накапливают 13,5 кВтч и 9,3 кВтч полезной энергии соответственно. Итак, в этом примере среднему американскому домовладельцу потребуется 3 Powerwall или 4 батареи RESU 10H для удовлетворения дневных потребностей в электроэнергии.
Важно помнить, что это как раз то количество батарей, которое вам понадобится для питания вашего дома в течение одного дня. На самом деле вам нужно иметь достаточно емкости для хранения резервных копий для питания вашего дома в течение многих дней или даже целой недели, чтобы у вас все еще было электричество, если у вас будет период ненастной погоды или вам потребуется среднее ежедневное использование за один день.
Сколько солнечных панелей вам понадобится?
Затем вы захотите спроектировать солнечную энергетическую систему, которая будет снабжать электроэнергией вашу собственность, и систему хранения, которая будет достаточно большой, чтобы заряжать батарею каждый день.
Электроэнергия, которую вырабатывает система солнечных батарей, напрямую зависит от количества солнечного света, получаемого вашими панелями. Средний дом в США получает в среднем 5 солнечных часов в день в течение года, что представляет не количество времени, в течение которого панели находятся на солнце, а скорее измеряет количество часов, в течение которых интенсивность солнечного света составляет 1000 Вт. /квадратный метр.Количество электроэнергии, производимой вашими панелями, также зависит от угла, под которым они расположены, и от того, получают ли они прямой солнечный свет весь день или проводят время в тени.
Чтобы определить, сколько солнечных панелей вам нужно для зарядки батарей каждый день, разделите количество необходимой электроэнергии (в данном случае 32 кВтч) на количество ожидаемых солнечных часов (в данном примере 5):
32 кВтч / 5 часов = 6,4 кВт
Таким образом, нам нужна группа солнечных панелей около 6,4 кВт , чтобы ежедневно заполнять аккумуляторную батарею емкостью 32 кВтч.
Количество солнечных панелей, которые вам понадобятся для системы 6,4 кВт, зависит от выходной мощности (в ваттах) используемых вами солнечных панелей, которая обычно находится в диапазоне от 250 до 400 Вт:
Мощность солнечной панели (Вт) | Количество солнечных панелей для системы 6,4 кВт |
---|---|
250 | 26 |
300 | 21 |
350 | 18 |
400 | 16 |
Суммируем затраты
Средняя стоимость солнечной энергии в США.S. составляет $ 2,81 за ватт , что означает, что наша система на 6,4 кВт доходит до $ 17 984 до льгот. Одна установленная батарея Tesla Powerwall стоит от 9800 до 15800 долларов, поэтому установка трех Powerwall, вероятно, будет стоить где-то от 29400 долларов до 47400 долларов без учета поощрений. Сложите это вместе, и вы получите общую стоимость установки где-то между 45 долларов, 000 и 65 000 долларов без учета каких-либо скидок, налоговых льгот или других льгот.
Однако помните, что это всего лишь затраты на систему, способную обеспечить энергией американский дом среднего размера (или немного ниже среднего) в течение одного среднего дня. На самом деле не каждый день требует одинакового количества электроэнергии, и не каждый день бывает идеально солнечным. В то время как среднее ежедневное потребление в американских домах составляет 30 кВтч, в жаркие летние дни с включенным на полную мощность кондиционером можно использовать до 80 кВтч.
Как только вы начнете учитывать как сезонные, так и ежедневные погодные изменения, перспектива выхода из сети становится значительно более сложной.Что будет, если дождь идет в течение недели или если вы живете в регионе со снежной зимой? Всего час пасмурной погоды в течение дня может снизить выработку вашей солнечной батареи до 20 процентов, а это означает, что если вы выберете размер своей системы хранения Solar Plus только так, чтобы она полностью соответствовала вашему среднему дневному потреблению, это может быть много раз в течение года. когда ваша система не производит достаточно электроэнергии для питания вашего дома. В результате почти в каждом случае для отключения от сети требуется резервное электричество на срок более одного дня.
Единственный способ безопасно отключиться от сети – это убедиться, что вы готовы к самым экстремальным ситуациям, потому что остаться без электричества и без электрической сети, из которой можно было бы тянуть, может быть потенциально опасной ситуацией, чтобы оказаться дюймов. На северо-востоке автономная солнечная установка должна учитывать колебания нагрузки на электроэнергию в течение сезонов, а также возможность значительного сокращения производства в зимние месяцы из-за снежного покрова или пасмурных дней. На Юго-Западе из-за интенсивного использования переменного тока летом может потребоваться больший, чем обычно, массив и система хранения, чтобы в вашем доме было комфортно в жаркие месяцы.
Почему отключиться от сети?
Есть дома, которые очень хорошо работают в автономном режиме с меньшими и менее дорогими солнечными батареями и системами хранения. Но эти дома спроектированы специально для этой цели, часто потому, что они расположены в отдаленных районах, где нет доступа к электросети. Некоторые из этих домов построены в соответствии со стандартами пассивных домов и требуют очень мало энергии для отопления или охлаждения. Другие используют сжигание дров для отопления помещений и ограничивают количество электрических систем в доме.Домовладельцы в таких ситуациях могут платить больше за эти функции или вести свой образ жизни с расчетом на периоды времени в течение года без электричества.
Однако в большинстве случаев желание отключиться от сети может быть связано не столько с отказом от электросети, сколько с повышением отказоустойчивости. Установив одну или две солнечные батареи с возможностью изолирования, вы можете гарантировать, что ваш дом останется под напряжением даже в случае сурового погодного явления или отключения остальной сети.Для большинства покупателей солнечной энергии это рентабельный способ повысить отказоустойчивость вашего дома, не тратя денег на полное отключение от сети.
Прочтите наш анализ реальных примеров в Части 2.
Этот пост был первоначально опубликован в «Новостях Матери Земли».
содержимое хранилища
Узнайте, сколько стоит солнечная энергия + хранилище в вашем районе в 2021 году
Карты солнечной инсоляции США | Северная Аризона Wind & Sun
Карты солнечной инсоляции от Национальной лаборатории возобновляемых источников энергии (NREL)
Здесь четыре карты:
- Среднее годовое солнце – Первый показывает среднегодовое значение
- Best Case – 2-й вариант “лучший вариант” или июня
- Наихудший случай – 3-й вариант является «наихудшим» или декабря года.
- With Tracking Mount – 4-я карта снова показывает наихудший случай ( января ), но с панелью слежения , которая следует за солнцем.
Для проектирования системы вы почти всегда используете наихудший случай, или карту декабря-января . «Плоский коллектор» – это просто солнечная батарея.
Полный набор карт (всего около 300) доступен на сайте NREL:
- Некоторые определения:
- киловатт-часов на квадратный метр: Земля на уровне моря получает около 1000 ватт на квадратный метр.Если на карте указано 9 кВтч / м2, значит, вы получаете около 9 полных часов солнечного света на панели. Современные солнечные панели имеют эффективность около 15%, так что получается примерно 150 Вт на квадратный метр или 15 Вт на квадратный фут.
Наклон на юг по широте: Панель обращена строго на юг и наклонена под тем же углом, что и широта. Если вы посмотрите на дорожную карту и увидите, что широта составляет 23 градуса, тогда панель будет наклонена на 23 градуса.
На этой первой карте показано среднегодовое значение в
киловатт-часов на квадратный метр за средний годовой день.Перевод: В полдень в ясный день на каждый квадратный метр поступает 1000 ватт солнечной энергии. Если вы посмотрите на большие желтые области, вы увидите, что в среднем он выдает около 6000 Вт в день. Таким образом, даже несмотря на то, что средний день составляет ровно 12 часов, мощность, которую вы фактически получаете от своих панелей, равна примерно 5-6 часам полного солнечного света в день. Поскольку типичная современная солнечная панель имеет КПД около 12%, вы получите около 700 Вт на квадратный метр панели. Итак, если на карте указано, что вы живете в районе «шести», вы можете ожидать, что солнечная энергия будет равна 6 часам в день в течение всего года.
На этой карте показано среднегодовое значение для среднего июньского (в лучшем случае) дня.
Большая часть страны теперь желтая, что говорит о том, что хорошая солнечная энергия доступна для большей части страны в течение лета.
На этой карте показано среднегодовое значение для среднего декабрьского (наихудшего) дня.
Как видите, зимой совсем другая история. На большей части страны сейчас в среднем 4 часа или меньше солнечных часов в день.
На этой карте показано среднегодовое значение для среднего январского дня (наихудший случай), но с установкой
для слежения за солнечным светом .Сравните это с предыдущей картой, и вы увидите, какое значение может иметь система трекинга. Показан пример для 2-осевого трекера, такого как WattSun. Одноосный трекер, такой как Zomeworks, будет немного меньше, но все же значительно больше, чем фиксированный массив. Самая большая проблема с гусеничными креплениями заключается в том, что они дают наибольший прирост летом, в то время как наибольшая потребность в мощности приходится на зиму.Если у вас много энергии летом, но не хватает зимой, лучшим вариантом может быть использование трекера максимальной мощности (MPPT Charge Controller). Крепления для слежения, которые имели гораздо больший смысл, когда солнечные панели продавались в диапазоне от 10 долларов США за ватт, но с текущими ценами в диапазоне от 4,50 до 5,50 долларов США за ватт экономические преимущества отслеживания меньше.