- Коэффициент разрыхления грунтов – что это и как его рассчитать
- Коэффициент разрыхления грунта при разработке в смете
- Коэффициент разрыхления грунта: таблица по СНИП.
- Коэффициент первоначального разрыхления грунта
- и его расчет при проектировании дома
- Коэффициент разрыхления грунта (таблица, снип)
- Коэффициент остаточного разрыхления грунта
- Коэффициент разрыхления грунтов – что это и как его рассчитать
- Расчет коэффициента разрыхления грунта | Новости и Акции
- СНиП IV-2-82 Сборник 3. Буровзрывные работы, СНиП от 17 марта 1982 года №IV-2-82
- Коэффициент разрыхления песка снип
- Коэффициент разрыхления грунтов | «ЭкоАртСтрой»
- Коэффициент Разрыхления Грунта | Таблица СНИП 📊
- и его расчет при проектировании дома
- Коэффициент первоначального и остаточного разрыхления грунта
- Коэффициент разрыхления песка при разработке
- Какой коэффициент разрыхления грунта
- Что делать с уплотненной почвой
- Уплотнение почвы | UMN внутренний номер
- Почвы и населенные пункты – InterNACHI®
- Насыпная плотность – Измерение | Информационные бюллетени
- Земляные работы по выемке и уплотнению; Что нужно знать
- Несмотря на то, что подрядчик по земляным работам несет полную ответственность за свою работу, график проекта или качество могут быть нарушены, если ошибки будут обнаружены слишком поздно. Выше приведены некоторые проблемы, с которыми можно столкнуться в этой области, и возможные решения. Во многих случаях решения кажутся простыми в применении, но довольно сложными и дорогостоящими.Независимо от сложности, работа на сайте почти всегда имеет решающее значение для своевременного завершения проекта и должна быть приоритетом для разработчика сайта, как и C&C Site Development. Важно иметь опыт, который охватывает огромное количество проектов в одной и той же области, чтобы полностью понимать и преодолевать возможные результаты.
- Помните, что если у вас намечается какой-то проект, сейчас самое время позвонить в C&C Site Development за помощью и советом.Мы можем перенести ваш проект с необработанной площади на готовую площадку так же легко, как позвонив в C&C, позвоните нам сейчас, мы можем помочь:
- Влияние уплотнения почвы
- Выбор поправки на почву – 7.235
Коэффициент разрыхления грунтов – что это и как его рассчитать
Коэффициент первоначального разрыхления грунтов, а также показатели плотности приведены по категориям в таблице.
Наименование грунта | Категория грунта | Плотность грунта тонн/м3 | Коэффициент разрыхления грунта |
Песок рыхлый, сухой | I | 1,2…1,6 | 1,05…1,15 |
Песок влажный, супесь, суглинок разрыхленный | I | 1,4…1,7 | 1,1…1,25 |
Суглинок, средний и мелкий гравий, легкая глина | II | 1,5…1,8 | 1,2.-1,27 |
Глина, плотный суглинок | III | 1,6…1,9 | 1.2…1.35 |
Тяжелая глина, сланцы, суглинок с щебнем, гравием, легкий скальный грунт | IV | 1,9…2,0 | 1,35…1,5 |
К основным свойствам грунтов, влияющим на технологию и трудоемкость их разработки, относятся плотность, влажность, разрыхляемость.
Основными свойствами грунтов, влияющими на трудоёмкость их разработки и технологии, являются влажность, разрыхляемость и плотность.
Влажность грунта – это степень насыщения его водой. Её определяют как отношение массы воды в самом грунте к массе его твёрдых частиц. Выражается влажность в процентах. При влажности менее 5% грунты считаются сухими, при более чем 30% — мокрыми. Трудоёмкость разработки грунта повышается с увеличением его влажности. Но исключением является только глина: сухую её разрабатывать сложнее. Но при порядочной влажности глинистые грунты обретают липкость, что значительно усложняет их разработку.
Плотность – это масса одного кубического метра грунта в плотном теле (естественном состоянии). Несцементированные грунты обладают плотностью от 1,2 до 2,1 тонн/м3, скальные – до 3,3 тонн/м3.
Цены на разработку грунта за 1м3 механизированным способом
Оставьте заявку
При разработке грунт разрыхляется, увеличиваясь при этом в объёме. Именно данное количество грунта и транспортируется самосвалами к месту утилизации или складирования. Это явление называется первоначальным разрыхлением грунта, при этом характеризуясь коэффициентом первоначального рыхления (Кр), представляющего собой отношение объёма уже разрыхленного грунта к его объёму в естественном состоянии.В насыпи разрыхлённый грунт уплотняется воздействием массы вышележащих грунтов или с помощью механического уплотнения, смачивания дождём, движения транспорта и т. д. Только грунт не занимает объёма, занимавшего до разработки длительное время. Он сохраняет остаточное разрыхление, которое измеряется коэффициентом остаточного разрыхления (Кор).
Из вышеизложенного следует, что, рассчитывая общую стоимость выполнения работ, необходимо знать геометрические размеры будущего котлована. При этом коэффициент первоначального разрыхления нужно умножить на объём грунта в будущем карьере. Именно это количество грунта будет разработано и вывезено со строительного объекта для складирования или утилизации. И именно эта цифра умножается на цену разработки, погрузки и транспортировки одного кубического метра грунта.
Коэффициент разрыхления грунта при разработке в смете
Главная » Разное » Коэффициент разрыхления грунта при разработке в сметеКоэффициент разрыхления грунта: таблица по СНИП.
Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована.
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные — выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность — то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Исходя из строительных норм и правил (СНИП), КРГ (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Вся необходимая информация представлена далее в статье:
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Коэффициент разрыхления грунта по СНИП:
- КР рыхлой супеси, влажного песка или суглинка при плотности 1.5 составляет 1,15 (категория первая).
- КР сухого неуплотненного песка при плотности 1,4 составляет 1,11 (категория первая).
- КР легкой глины или очень мелкого гравия при плотности 1,75 составляет 1,25 (третья вторая).
- КР плотного суглинка или обычной глины при плотности 1,7 составляет 1,25 (категория третья).
- КР сланцев или тяжелой глины при плотности 1,9 составляет 1,35. Плотность оставляем по умолчанию, т/м3.
Допустим, вы хотите разработать участок. Задача — узнать какой объем грунта получится после проведенных подготовительных работ.
Известны следующие данные:
- ширина котлована — 1,1 м;
- вид почвы — влажный песок;
- глубина котлована — 1,4 м.
Вычисляем объем котлована (Xk):
Xk = 41*1,1*1,4 = 64 м3.
Теперь смотрим первоначальное разрыхление (по влажному песку) по таблице и считаем объем, который получим уже после работ:
Xr = 64*1,2 = 77 м3.
Таким образом, 77 кубов — это тот объем пласта, который подлежит вывозу по окончанию работ.
Для чего определяют разрыхления грунта?Объемы почвы до разработки и после выемки существенно различаются. Именно расчеты позволяют подрядчику понять, какое количество грунта придется вывезти. Для составления сметы этой части работ учитываются: плотность почвы, уровень ее влажности и разрыхление.
В строительстве виды почвы условно делят на два основные вида:
- сцементированный;
- несцементированный.
Первый вид — называют скальным. Это преимущественно горные породы (магматические, осадочные и т.д.). Они водоустойчивы, с высокой плотностью. Для их разработки (разделения) применяют специальные технологии взрыва.
Второй вид — породы несцементированные. Они отличаются дисперсностью, проще обрабатываются. Их плотность гораздо ниже, поэтому разработку можно вести ручным способом, с применением специальной техники (бульдозеров, экскаваторов). К несцементированному виду относят пески, суглинки, глину, чернозем, смешанные грунтовые смеси.
domstrousam.ru
Коэффициент первоначального разрыхления грунта
Коэффициент первоначального разрыхления грунта — это коэффициент показывающий увеличение объема грунта при его разработке и складированию в отвалах или насыпях, по сравнению
Или проще, коэффициент показывающий насколько грунт увеличиться в объеме при его разработке (то есть разрыхлении землеройными механизмами)
Не путать с коэффициентом остаточного разрыхления грунта и коэффициентом уплотнения грунта !
Коэффициент первоначального разрыхления грунта нормируется в приложении 2 ЕНиР Е2 В1 (Земляные работы. Механизированные и ручные земляные работы.), так как в других нормативных документах данной информации нет (СП 45.13330 2017 (2011) Земляные сооружения основания и фундаменты и ГЭСНах).
Таблица прил. 2 ЕНиР Е2В1 — Показатели разрыхления грунтов и пород
№ п/п | Наименование грунта | Первоначальное увеличение объема грунта после разработки, % |
---|---|---|
1 | Глина ломовая | 28-32 |
2 | Глина мягкая жирная | 24-30 |
3 | Глина сланцевая | 28-32 |
4 | Гравийно-галечные грунты | 16-20 |
5 | Растительный грунт | 20-25 |
6 | Лесс мягкий | 18-24 |
7 | Лесс твердый | 24-30 |
8 | Мергель | 33-37 |
9 | Опока | 33-37 |
10 | Песок | 10-15 |
11 | Разборно-скальные грунты | 30-45 |
12 | Скальные грунты | 45-50 |
13 | Солончак и солонец мягкие | 20-26 |
14 | Солончак и солонец твердые | 28-32 |
15 | Суглинок легкий и лессовидный | 18-24 |
16 | Суглинок тяжелый | 24-30 |
17 | Супесь | 12-17 |
18 | Торф | |
19 | Чернозем и каштановый грунт | 22-28 |
20 | Шлак | 14-18 |
В таблице указан процент увеличения объема грунта при разрыхлении!
Например: Необходимо определить объем грунта для вывоза на автосамосвалах, если известно, что геометрический объем котлована Vгеом. равен 1000 м3 , грунт в котловане — суглинок тяжелый.
Согласно таблице, первоначальное увеличение суглинка принято 27 % (как среднее между 24 и 30 %), следовательно коэффициент первоначального разрыхления составит:
kпервонач.разр. =27%/100%+1=1,27
Объем грунта для вывоза со строительной площадки составит:
Vвывоза=Vгеом х kпервонач.разр. = Vгеом х 1.27=1000х1.27=1270 м3.
Коэффициент остаточного разрыхления грунта
Коэффициент уплотнения грунта
Как достичь требуемого коэффициента уплотнения?
buildingclub.ru
и его расчет при проектировании дома
Строительные работы начинаются с разметки участка и разработки грунта под фундамент. Земляные работы занимают также первую строчку в строительной смете, и немалая сумма приходится на оплату техники, производящей выемку и вывоз грунта с участка. Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована
Коэффициент разрыхления грунта
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные, выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность, то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Влажность грунт – это мера его насыщения водой, выраженная в процентах. Нормальная влажность лежит в пределах 5-25%,а грунты, имеющие влажность более 30%, считаются мокрыми. При влажности до 5% грунты принято называть сухими.
Образец влажного грунта
Сцепление влияет на сопротивление грунта сдвигу, у песков и супесей этот показатель лежит в диапазоне 3-50 кПа, у глин и суглинков – в пределах 5-200 кПа.
Плотность зависит от качественного и количественного состава грунта, а также от его влажности. Самыми плотными, и, соответственно, тяжелыми являются скальные грунты, наиболее легкие категории грунта – пески и супеси. Характеристики грунтов приведены в таблице:
Таблица — различные категории грунта
Как видно из таблицы, коэффициент первоначального разрыхления грунта прямо пропорционален плотности грунта, иными словами, чем плотнее и тяжелее грунт в естественных условиях, тем больше объема он займет в выбранном состоянии. Этот параметр влияет на объемы вывозки грунта после его разработки.
Существует также такой показатель, как остаточное разрыхление грунта, он показывает, насколько грунт поддается осадке в процессе слеживания, при контакте с водой, при трамбовке механизмами. Для частного строительства этот показатель имеет значение при заказе гравия для выполнения подушки под фундамент и других работ, связанных с расчетом привозного грунта. Также он важен для складирования и утилизации грунтов.
Таблица — наименование грунта и его остаточное разрыхление %
Пример расчета коэффициента разрыхления грунта
Применение коэффициентов первоначального и остаточного разрыхления грунтов на практике можно рассмотреть на примере расчета. Предположим, что есть необходимость выполнить разработку грунта под котлован заглубленного ленточного фундамента с последующей отсыпкой гравийной подушки. Грунт на участке – влажный песок. Ширина котлована – 1 метр, общая длина ленты фундамента 40 метров, глубина котлована – 1,5 метров, толщина гравийной подушки после трамбовки – 0,3 метра.
- Находим объем котлована, а, следовательно, и грунта в естественном состоянии:
Vк = 40 · 1 · 1,5 = 60 м3.
- Применяя коэффициент первоначального разрыхления грунта, определяем его объем после разработки:
V1 = kр · Vк = 1,2 · 60 = 72 м3;
где kр= 1,2 – коэффициент первоначального разрыхления грунта для влажного песка, принятый по среднему значению (таблица 1).
Следовательно, объем вывоза грунта составит 72м3.
- Находим конечный объем гравийной подушки после трамбовки:
Vп = 40 · 1 · 0,3 = 12 м3.
- Находим по таблице 2 максимальные значения первоначального и остаточного коэффициента разрыхления для гравийных и галечных грунтов и выражаем их в долях.
Первоначальный коэффициент разрыхления kр = 20% или 1,2; остаточный коэффициент разрыхления kор = 8% или 1,08.
- Вычисляем объем гравия для выполнения гравийной подушки конечным объемом 12 м3.
V2 = Vп ·kр/kор=12 · 1,2/1,08 = 13,33 м3.
Следовательно, объем необходимого для отсыпки гравия составит 13,3м3.
Конечно, такой расчет является весьма приблизительным, но он даст вам представление о том, что такое коэффициент разрыхления грунта, и для чего он используется. При проектировании коттеджа или жилого дома применяется более сложная методика, но для предварительного расчета стройматериалов и трудозатрат на строительство гаража или дачного домика вы можете ее использовать.
stroyvopros.net
Коэффициент разрыхления грунта (таблица, снип)
При некоторых строительных работах происходит разработка грунта для закладки фундамента.Для планирования работ, связанных с выемкой и вывозом земли, следует учитывать некоторые особенности: разрыхление, влажность, плотность.
Представленная ниже таблица коэффициента разрыхления грунта поможет вам определить увеличение объема почвы при ее выемке из котлована.
Виды
- Скальные, каменные, горные и сцементированные породы – разработка возможна лишь с применением дробления или с использованием технологии взрыва.
- Глина, песок, смешанные типы пород – выборка производится вручную или механизировано с помощью бульдозеров, экскаваторов или другой специализированной техники.
Свойства
- Разрыхление – увеличение объема земли при выемке и разработке.
- Влажность – соотношение массы воды, которая содержится в земле, к массе твердых частиц. Определяется в процентах: грунт считается сухим при влажности менее 5%, превышающий отметку 30% – мокрый, в диапазоне от 5 до 30% – нормальная влажность. Чем более влажный состав, тем более трудоемкий процесс его выемки, исключением является глина (чем более сухая – тем сложнее ее разрабатывать, слишком влажная – приобретает вязкость, липкость).
- Плотность – масса 1 м3 грунта в плотном (естественном) состоянии. Самые плотные и тяжелые скальные породы, наиболее легкие – песчаные, супесчаные почвы.
- Сцепление – величина сопротивления к сдвигу, песчаные и супесчаные почвы имеют показатель – 3–50 кПа, глины, суглинки — 5–200 кПа.
Исходя из строительных норм и правил (СНИП), коэффициент разрыхления грунта (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Проанализировав таблицу, можно сказать, что первоначальный коэффициент разрыхления грунта прямо пропорционален диапазону плотности, проще говоря, чем более плотная и тяжелая почва в природных условиях, тем больший ее объем при разработке.
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Как рассчитать проведение необходимых работ
Для расчета необходимых работ следует знать геометрические размеры планируемого котлована. Далее умножьте коэффициент первоначального разрыхления на объем земли в природном состоянии.
В результате вы получите объем, который будет изъят из строительного карьера. Теперь очень просто рассчитать количество изъятой земли для складирования, погрузки, транспортировки для утилизации.
Посмотрите видео: ВИДЫ ГРУНТА. ГЕОЛОГИЧЕСКИЙ АНАЛИЗ УЧАСТКА
ecology-of.ru
Коэффициент остаточного разрыхления грунта
Коэффициент остаточного разрыхления грунта — это коэффициент показывающий увеличение объема грунта при его разработке с последующей укладке с уплотнением в насыпь (обратную засыпку фундаментов) по сравнению с объемом грунта в состоянии естественной плотности.
Или проще, коэффициент показывающий сколько грунта останется после разработки грунта и обратной засыпки с уплотнением в тот же котлован или траншею.
Не путать с коэффициентом первоначального разрыхления грунта и коэффициентом уплотнения грунта !
Коэффициент остаточного разрыхления грунта нормируется в приложении 2 ЕНиР Е2 В1 (Земляные работы. Механизированные и ручные земляные работы.), так как в других нормативных документах данной информации нет (СП 45.13330 2017 (2011) Земляные сооружения основания и фундаменты и ГЭСНах).
Таблица прил. 2 ЕНиР Е2В1 — Показатели остаточного разрыхления грунтов и пород
№ п/п | Наименование грунта | Остаточное разрыхление грунта, % |
---|---|---|
1 | Глина ломовая | 6-9 |
2 | Глина мягкая жирная | 4-7 |
3 | Глина сланцевая | 6-9 |
4 | Гравийно-галечные грунты | 5-8 |
5 | Растительный грунт | 3-4 |
6 | Лесс мягкий | 3-6 |
7 | Лесс твердый | 4-7 |
8 | Мергель | 11-15 |
9 | Опока | 11-15 |
10 | Песок | 2-5 |
11 | Разборно-скальные грунты | 15-20 |
12 | Скальные грунты | 20-30 |
13 | Солончак и солонец мягкие | 3-6 |
14 | Солончак и солонец твердые | 5-9 |
15 | Суглинок легкий и лессовидный | 3-6 |
16 | Суглинок тяжелый | 5-8 |
17 | Супесь | 3-5 |
18 | Торф | 8-10 |
19 | Чернозем и каштановый грунт | 5-7 |
20 | Шлак | 8-10 |
В таблице указан процент увеличения объема грунта при его разрыхлении и последующего уплотнения!
Например: Необходимо определить объем лишнего грунта обратной засыпки фундаментов здания для вывоза его на автосамосвалах, если известно, что геометрический объем котлована Vгеом.котлована равен 1000 м3 , грунт в котловане — суглинок тяжелый, геометрический объем фундаментов Vфунд =600 м3.
Определяем геометрический объем обратной засыпки грунта:
Vгеом.обр.зас.= Vгеом.котлована— Vфунд =1000-600=400 м3.
Согласно таблице, остаточное увеличение суглинка принято 6,5 % (как среднее между 5 и 8 %), следовательно коэффициент остаточного разрыхления равен:
kостат.разр. =6,5%/100%+1=1,065
Определяем необходимый объем обратной засыпки грунта:
Vтреб.обр.зас.= Vгеом.обр.зас. / kостат.разр.=400/1,065=375.6 м3.
Объем лишнего грунта для вывоза с учетом коэффициента первоначального разрыхления, составит:
Vвывоза= (Vгеом.обр.зас. — Vтреб.обр.зас.) х kпервонач.разр.=(400-375.6)х1.27=24.4х1.27=30.99м3
Коэффициент первоначального разрыхления грунта
Коэффициент уплотнения грунта
Как достичь требуемого коэффициента уплотнения?
buildingclub.ru
Коэффициент разрыхления грунтов – что это и как его рассчитать
Коэффициент первоначального разрыхления грунтов, а также показатели плотности приведены по категориям в таблице.
Наименование грунта | Категория грунта | Плотность грунта тонн/м3 | Коэффициент разрыхления грунта |
Песок рыхлый, сухой | I | 1,2…1,6 | 1,05…1,15 |
Песок влажный, супесь, суглинок разрыхленный | I | 1,4…1,7 | 1,1…1,25 |
Суглинок, средний и мелкий гравий, легкая глина | II | 1,5…1,8 | 1,2.-1,27 |
Глина, плотный суглинок | III | 1,6…1,9 | 1.2…1.35 |
Тяжелая глина, сланцы, суглинок с щебнем, гравием, легкий скальный грунт | IV | 1,9…2,0 | 1,35…1,5 |
К основным свойствам грунтов, влияющим на технологию и трудоемкость их разработки, относятся плотность, влажность, разрыхляемость.
Основными свойствами грунтов, влияющими на трудоёмкость их разработки и технологии, являются влажность, разрыхляемость и плотность.
Влажность грунта – это степень насыщения его водой. Её определяют как отношение массы воды в самом грунте к массе его твёрдых частиц. Выражается влажность в процентах. При влажности менее 5% грунты считаются сухими, при более чем 30% — мокрыми. Трудоёмкость разработки грунта повышается с увеличением его влажности. Но исключением является только глина: сухую её разрабатывать сложнее. Но при порядочной влажности глинистые грунты обретают липкость, что значительно усложняет их разработку.
Плотность – это масса одного кубического метра грунта в плотном теле (естественном состоянии). Несцементированные грунты обладают плотностью от 1,2 до 2,1 тонн/м3, скальные – до 3,3 тонн/м3.
Цены на разработку грунта за 1м3 механизированным способом
Оставьте заявку
При разработке грунт разрыхляется, увеличиваясь при этом в объёме. Именно данное количество грунта и транспортируется самосвалами к месту утилизации или складирования. Это явление называется первоначальным разрыхлением грунта, при этом характеризуясь коэффициентом первоначального рыхления (Кр), представляющего собой отношение объёма уже разрыхленного грунта к его объёму в естественном состоянии.
В насыпи разрыхлённый грунт уплотняется воздействием массы вышележащих грунтов или с помощью механического уплотнения, смачивания дождём, движения транспорта и т. д. Только грунт не занимает объёма, занимавшего до разработки длительное время. Он сохраняет остаточное разрыхление, которое измеряется коэффициентом остаточного разрыхления (Кор).
Из вышеизложенного следует, что, рассчитывая общую стоимость выполнения работ, необходимо знать геометрические размеры будущего котлована. При этом коэффициент первоначального разрыхления нужно умножить на объём грунта в будущем карьере. Именно это количество грунта будет разработано и вывезено со строительного объекта для складирования или утилизации. И именно эта цифра умножается на цену разработки, погрузки и транспортировки одного кубического метра грунта.
progressavtostroi.ru
Расчет коэффициента разрыхления грунта | Новости и Акции
Основными свойствами грунтов, влияющими на трудоёмкость их разработки и технологии, являются влажность, разрыхляемость и плотность.
Разрыхление – увеличение объема земли при выемке и разработке.
Влажность грунта – это степень насыщения его водой. Её определяют как отношение массы воды в самом грунте к массе его твёрдых частиц. Выражается влажность в процентах. При влажности менее 5% грунты считаются сухими, при более чем 30% — мокрыми. Трудоёмкость разработки грунта повышается с увеличением его влажности. Но исключением является только глина: сухую её разрабатывать сложнее. Но при порядочной влажности глинистые грунты обретают липкость, что значительно усложняет их разработку.
Плотность – это масса одного кубического метра грунта в плотном теле (естественном состоянии). Несцементированные грунты обладают плотностью от 1,2 до 2,1 тонн/м3, скальные – до 3,3 тонн/м3.
Сцепление – величина сопротивления к сдвигу, песчаные и супесчаные почвы имеют показатель – 3–50 кПа, глины, суглинки — 5–200 кПа.
Исходя из строительных норм и правил (СНИП), коэффициент разрыхления грунта (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Проанализировав таблицу, можно сказать, что первоначальный коэффициент разрыхления грунта прямо пропорционален диапазону плотности, проще говоря, чем более плотная и тяжелая почва в природных условиях, тем больший ее объем при разработке.
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
st66.ru
№ | Наименование и характеристика грунтов | Средняя плотность грунтов в естест- венном залегании, кг/м | Время чистого бурения | Группа грунтов |
1 | 2 | 3 | 4 | 5 |
1 | Алевролиты: | |||
| а) низкой прочности | 1500 | До 3,1 | IV |
| б) малопрочные | 2200 | 3,2-3,9 | V |
2 | Ангидрит прочный | 2900 | 4-5,3 | VI |
3 | Аргиллиты: | |||
а) плитчатые, малопрочные | 2000 | 3,2-3,9 | V | |
б) массивные, средней прочности | 2200 | 4-5,3 | VI | |
4 | Бокситы средней прочности | 2600 | 4-5,3 | VI |
5 | Гравийно-галечные грунты при размере частиц: | |||
| а) до 80 мм | 1750 | – | II |
| б) более 80 мм | 1950 | – | III |
6 | Гипс, малопрочный | 2200 | До 3,1 | IV |
7 | Глина: | |||
а) мягко- и тугопластичная без примесей | 1800 | – | II | |
б) то же, с примесью щебня, гальки, гравия или строительного мусора до 10% | 1750 | – | II | |
в) то же, с примесью более10% | 1900 | – | III | |
г) полутвердая | 1950 | – | III | |
д) твердая
| 1950-2150 | – | IV | |
8 | Грунт растительного слоя: | |||
а) без корней и примесей | 1200 | – | I | |
б) с корнями кустарника и деревьев | 1200 | – | II | |
в) с примесью гравия, щебня или строительного мусора до 10% | 1400 | – | II | |
9 | Грунты ледникового происхождения (моренные), аллювиальные, делювиальные и пролювиальные отложения: | |||
а) глина моренная с содержанием крупнообломочных включений в количестве до 10% | 1800 | – | III | |
б) то же, с содержанием крупнообломочных включений в количестве от 10 до 35% | 2000 | – | IV | |
|
| |||
в) пески, супеси и суглинки моренные с содержанием крупнообломочных включений в количестве до 10% | 1800 | – | II | |
г) то же, с содержанием крупнообломочных включений от 10 до 35% | 2000 | – | IV | |
д) грунты всех видов с содержанием крупнообломочных включений от 35 до 50% | 2100 | – | V | |
е) то же, с содержанием крупнообломочных включений от 50 до 65% | 2300 | – | VI | |
ж) то же, с содержанием крупнообломочных включений более 65% | 2500 | – | VII | |
10 | Грунты вечномерзлые и сезонномерзлые моренные, аллювиальные, делювиальные и пролювиальные отложения: | |||
а) растительный слой, торф, заторфованные грунты; | 1150 | – | IV | |
пески, супеси, суглинки и глины без примесей | 1750 | – | IV | |
б) пески, супеси, суглинки и глины с примесью гравия, гальки, дресвы и щебня в количестве до 20 % и валунов до 10% | 1950 | – | V | |
в) моренные грунты, аллювиальные, делювиальные и пролювиальные отложения с количестве до 35% | 2000 | – | V | |
г) то же, с примесью гравия, гальки, дресвы, щебня | 2100 | – | IV | |
д) моренные грунты, аллювиальные, делювиальные и пролювиальные отложения с содержанием крупнообломочных включений от 50 до 65% | 2300 | – | VII | |
е) то же, с содержанием крупнообломочных включений в количестве более 65% | 2500 | – | VIII | |
11 | Диабаз: | |||
а) сильновыветрившийся, малопрочный | 2600 | 6,8-9 | VIII | |
б) слабовыветрившийся, прочный | 2700 | 9,1-11,4 | IX | |
в) не затронутый выветриванием, очень прочный | 2800 | 11,5-15,2 | X | |
г) не затронутый выветриванием, очень прочный | 2900 | 15,3 и | ||
более | XI | |||
12 | Доломит | |||
а) мягкий, пористый, выветрившийся, средней прочности | 2700 | 4-5,3 | VI | |
б) прочный | 2800 | 5,4-6,7 | VII | |
в) очень прочный | 2900 | 6,8-9 | VIII | |
13 | Дресва в коренном залегании (элювий) | 2000 | 3,2-3,9 | V |
14 | Дресвяный грунт | 1800 | До 3,1 | IV |
15 | Змеевик (серпентин): | |||
а) выветрившийся, малопрочный | 2400 | 3,2-3,9 | V | |
б) средней прочности | 2500 | 4-5,3 | VI | |
в) прочный | 2600 | 5,4-6,7 | VII | |
16 | Известняк: | |||
а) выветрившийся, малопрочный | 1200 | 3,2-3,9 | V | |
б) мергелистый, средней прочности | 2300 | 4-5,3 | VI | |
в) мергелистый, прочный | 2700 | 5,4-6,7 | VII | |
г) доломитизированный, прочный | 2900 | 6,8-9 | VIII | |
д) окварцованный, очень прочный | 3100 | 9,1-11,4 | IX | |
17 | Кварцит : | |||
а) сильновыветрившийся, средней прочности | 2500 | 5,4-6,7 | VII | |
б) средневыветрившийся, прочный | 2600 | 6,8-9 | VIII | |
в) слабовыветрившийся, очень прочный | 2700 | 9,1-11,4 | IХ | |
г) невыветрившийся, очень прочный | 2800 | 11,5-15,2 | X | |
д) невыветрившийся мелкозернистый, очень прочный | 3000 | 15,3 | XI | |
18 | Конгломераты и брекчии : | |||
а) на глинистом цементе, средней прочности | 2100 | 3,1-3,9 | V | |
б) на известковом цементе, прочные | 2300 | 4-5,3 | VI | |
в) на кремнистом цементе, прочные | 2600 | 5,4-6,7 | VII | |
г) то же, очень прочные | 2900 | 6,8-9 | VIII | |
19 | Коренные глубинные породы (граниты, гнейсы, диориты, сиениты, габбро и др.): | |||
а) крупнозернистые, выветрившиеся и дресвяные, малопрочные | 2500 | 3,2-3,9 | V | |
б) среднезернистые, выветрившиеся, средней прочности | 2600 | 4-5,3 | VI | |
в) мелкозернистые, выветрившиеся, прочные | 2700 | 5,4-6,7 | VII | |
г) крупнозернистые, не затронутые выветриванием, прочные | 2800 | 6,8-9 | VIII | |
д) среднезернистые, не затронутые выветриванием, очень прочные | 2900 | 9,1-11,4 | IX | |
е) мелкозернистые, не затронутые выветриванием, очень прочные | 3100 | 11,5-15,2 | X | |
ж) порфировые, не затронутые выветриванием, очень прочные | 3300 | 15,3 и более | XI | |
20 | Коренные излившиеся породы (андезиты, базальты, | |||
а) сильновыветрившиеся, средней прочности | 2600 | 5,4-6,7 | VII | |
б) слабовыветрившиеся, прочные | 2700 | 6,8-9 | VIII | |
в) со следами выветривания, очень прочные | 2800 | 9,1-11,4 | IX | |
г) без следов выветривания, очень прочные | 3100 | 11,5-15,2 | X | |
д) то же, очень прочные | 3300 | 15,3 и более | XI | |
21 | Кремень, очень прочный | 3300 | 15,3 и | XI |
22 | Лёсс: | |||
а) мягкопластичный | 1600 | – | I | |
б) тугопластичный | 1800 | – | II | |
в) твердый | 1800 | – | III | |
23 | Мел : | |||
а) низкой прочности | 1550 | До 3,1 | IV | |
б) малопрочный | 1800 | 3,2-3,9 | V | |
24 | Мергель : | |||
а) низкой прочности | 1900 | До 3,1 | IV | |
б) малопрочный | 2300 | 3,2-3,9 | V | |
в) средней прочности | 2500 | 4-5,3 | VI | |
25 | Мрамор, прочный | 2700 | 5,4-6,7 | VII |
26 | Опока | 1900 | До 3,1 | V |
27 | Пемза | 1100 | 3,2-3,9 | V |
28 | Песок : | |||
а) без примесей | 1600 | – | I | |
б) то же, с примесью гальки, щебня, гравия или строительного мусора до 10 % | 1600 | – | I | |
в) то же, с примесью более 10 % | 1700 | – | II | |
г) барханный и дюнный | 1600 | – | II | |
29 | Песчаник : | |||
а) выветрившийся, малопрочный | 2200 | 3,2-3,9 | V | |
б) глинистый, средней прочности | 2300 | 4-5,3 | VI | |
в) на известковом цементе, прочный | 2500 | 5,4-6,7 | VII | |
г) на известковом или железистом цементе, прочный | 2600 | 6,8-9 | VIII | |
д) на кварцевом цементе, очень прочный | 2700 | 9,1-11,4 | IX | |
е) кремнистый, очень прочный | 2700 | 11,5-15,2 | X | |
30 | Ракушечник : | |||
а) слабоцементированный, низкой прочности | 1200 | До 3,1 | IV | |
б) сцементированный, малопрочный | 1800 | 3,2-3,9 | V | |
31 | Сланцы : | |||
а) выветрившиеся, низкой прочности | 2000 | До 3,1 | IV | |
б) глинистые, малопрочные | 2600 | 3,2-3,9 | V | |
в) средней прочности | 2800 | 4-5,3 | VI | |
г) окварцованные, прочные | 2300 | 5,4-6,7 | VII | |
д) песчаные, прочные | 2500 | 6,8-9 | VIII | |
е) окремнелые, очень прочные | 2600 | 11,5-15,2 | X | |
ж) кремнистые, очень прочные | 2600 | 15,3 и более | XI | |
32 | Солончак и солонец : | |||
а) пластичные | 1600 | – | II | |
б) твердые | 1800 | До 3,1 | IV | |
33 | Cуглинок : | |||
а) мягкопластичный без примесей | 1700 | – | I | |
б) то же, с примесью гальки, щебня, гравия или | 1700 | – | I | |
в) мягкопластичный с примесью более 10%, тугопластичный с примесью до 10%, а также полутвердый и твердый без примеси и с примесью до 10% | 1750 | – | II | |
г) полутвердый и твердый с примесью щебня, гальки, гравия или строительного мусора более 10 % | 1950 | – | III | |
34 | Супесь : | |||
а) пластичная без примесей | 1650 | – | I | |
б) твердая без примесей, а также пластичная и | 1650 | – | I | |
в) твердая и пластичная с примесью более 10 % | 1850 | – | II | |
35 | Торф : | |||
а) без древесных корней | 800-1000 | – | I | |
б) с древесными корнями толщиной до 30 мм | 850-1100 | – | II | |
в) то же, более 30 мм | 900-1200 | – | II | |
36 | Трепел : | |||
а) низкой прочности | 1550 | До 3,1 | IV | |
б) малопрочный | 1770 | 3,2-3,9 | V | |
37 | Туф | 1100 | 3,2-3,9 | V |
38 | Чернозем и каштановый грунт: | |||
а) пластичный | 1300 | – | I | |
б) пластичный с корнями кустарника | 1300 | – | II | |
docs.cntd.ru
Коэффициент разрыхления песка снип
При некоторых строительных работах происходит разработка грунта для закладки фундамента.Для планирования работ, связанных с выемкой и вывозом земли, следует учитывать некоторые особенности: разрыхление, влажность, плотность.
Представленная ниже таблица коэффициента разрыхления грунта поможет вам определить увеличение объема почвы при ее выемке из котлована.
- Скальные, каменные, горные и сцементированные породы – разработка возможна лишь с применением дробления или с использованием технологии взрыва.
- Глина, песок, смешанные типы пород – выборка производится вручную или механизировано с помощью бульдозеров, экскаваторов или другой специализированной техники.
Свойства
- Разрыхление – увеличение объема земли при выемке и разработке.
- Влажность – соотношение массы воды, которая содержится в земле, к массе твердых частиц. Определяется впроцентах: грунт считается сухим при влажности менее 5%, превышающий отметку 30% – мокрый, в диапазоне от 5 до 30% – нормальная влажность. Чем более влажный состав, тем более трудоемкий процесс его выемки, исключением является глина (чем более сухая – тем сложнее ее разрабатывать, слишком влажная – приобретает вязкость, липкость).
- Плотность – масса 1 м3 грунта в плотном (естественном) состоянии. Самые плотные и тяжелые скальные породы, наиболее легкие – песчаные, супесчаные почвы.
- Сцепление – величина сопротивления к сдвигу, песчаные и супесчаные почвы имеют показатель – 3–50 кПа, глины, суглинки — 5–200 кПа.
Исходя из строительных норм и правил (СНИП), коэффициент разрыхления грунта (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Проанализировав таблицу, можно сказать, что первоначальный коэффициент разрыхления грунта прямо пропорционален диапазону плотности, проще говоря, чем более плотная и тяжелая почва в природных условиях, тем больший ее объем при разработке.
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Как рассчитать проведение необходимых работ
Для расчета необходимых работ следует знать геометрические размеры планируемого котлована. Далее умножьте коэффициент первоначального разрыхления на объем земли в природном состоянии.
В результате вы получите объем, который будет изъят из строительного карьера. Теперь очень просто рассчитать количество изъятой земли для складирования, погрузки, транспортировки для утилизации.
Посмотрите видео: ВИДЫ ГРУНТА. ГЕОЛОГИЧЕСКИЙ АНАЛИЗ УЧАСТКА
Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована.
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные — выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность — то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Исходя из строительных норм и правил (СНИП), КРГ (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Вся необходимая информация представлена далее в статье:
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Коэффициент разрыхления грунта по СНИП:
- КР рыхлой супеси, влажного песка или суглинка при плотности 1.5 составляет 1,15 (категория первая).
- КР сухого неуплотненного песка при плотности 1,4 составляет 1,11 (категория первая).
- КР легкой глины или очень мелкого гравия при плотности 1,75 составляет 1,25 (третья вторая).
- КР плотного суглинка или обычной глины при плотности 1,7 составляет 1,25 (категория третья).
- КР сланцев или тяжелой глины при плотности 1,9 составляет 1,35. Плотность оставляем по умолчанию, т/м3.
Допустим, вы хотите разработать участок. Задача — узнать какой объем грунта получится после проведенных подготовительных работ.
Известны следующие данные:
- ширина котлована — 1,1 м;
- вид почвы — влажный песок;
- глубина котлована — 1,4 м.
Вычисляем объем котлована (Xk):
Xk = 41*1,1*1,4 = 64 м3.
Теперь смотрим первоначальное разрыхление (по влажному песку) по таблице и считаем объем, который получим уже после работ:
Xr = 64*1,2 = 77 м3.
Таким образом, 77 кубов — это тот объем пласта, который подлежит вывозу по окончанию работ.
Для чего определяют разрыхления грунта?Объемы почвы до разработки и после выемки существенно различаются. Именно расчеты позволяют подрядчику понять, какое количество грунта придется вывезти. Для составления сметы этой части работ учитываются: плотность почвы, уровень ее влажности и разрыхление.
В строительстве виды почвы условно делят на два основные вида:
Первый вид — называют скальным. Это преимущественно горные породы (магматические, осадочные и т.д.). Они водоустойчивы, с высокой плотностью. Для их разработки (разделения) применяют специальные технологии взрыва.
Второй вид — породы несцементированные. Они отличаются дисперсностью, проще обрабатываются. Их плотность гораздо ниже, поэтому разработку можно вести ручным способом, с применением специальной техники (бульдозеров, экскаваторов). К несцементированному виду относят пески, суглинки, глину, чернозем, смешанные грунтовые смеси.
Снип коэффициент разрыхления песка – Коэффициент разрыхления грунта: таблица по СНИП.
Коэффициент разрыхления грунта: таблица по СНИП.
Строительные работы начинаются с разметки участка и разработки грунта под фундамент. Земляные работы занимают также первую строчку в строительной смете, и немалая сумма приходится на оплату техники, производящей выемку и вывоз грунта с участка. Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована
Коэффициент разрыхления грунта
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные, выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность, то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Влажность грунт – это мера его насыщения водой, выраженная в процентах. Нормальная влажность лежит в пределах 5-25%,а грунты, имеющие влажность более 30%, считаются мокрыми. При влажности до 5% грунты принято называть сухими.
Образец влажного грунта
Сцепление влияет на сопротивление грунта сдвигу, у песков и супесей этот показатель лежит в диапазоне 3-50 кПа, у глин и суглинков – в пределах 5-200 кПа.
Плотность зависит от качественного и количественного состава грунта, а также от его влажности. Самыми плотными, и, соответственно, тяжелыми являются скальные грунты, наиболее легкие категории грунта – пески и супеси. Характеристики грунтов приведены в таблице:
Таблица — различные категории грунта
Как видно из таблицы, коэффициент первоначального разрыхления грунта прямо пропорционален плотности грунта, иными словами, чем плотнее и тяжелее грунт в естественных условиях, тем больше объема он займет в выбранном состоянии. Этот параметр влияет на объемы вывозки грунта после его разработки.
Существует также такой показатель, как остаточное разрыхление грунта, он показывает, насколько грунт поддается осадке в процессе слеживания, при контакте с водой, при трамбовке механизмами. Для частного строительства этот показатель имеет значение при заказе гравия для выполнения подушки под фундамент и других работ, связанных с расчетом привозного грунта. Также он важен для складирования и утилизации грунтов.
Таблица — наименование грунта и его остаточное разрыхление %
Пример расчета коэффициента разрыхления грунта
Применение коэффициентов первоначального и остаточного разрыхления грунтов на практике можно рассмотреть на примере расчета. Предположим, что есть необходимость выполнить разработку грунта под котлован заглубленного ленточного фундамента с последующей отсыпкой гравийной подушки. Грунт на участке – влажный песок. Ширина котлована – 1 метр, общая длина ленты фундамента 40 метров, глубина котлована – 1,5 метров, толщина гравийной подушки после трамбовки – 0,3 метра.
- Находим объем котлована, а, следовательно, и грунта в естественном состоянии:
Vк = 40 · 1 · 1,5 = 60 м 3 .
- Применяя коэффициент первоначального разрыхления грунта, определяем его объем после разработки:
V1 = kр · Vк = 1,2 · 60 = 72 м 3 ;
где kр= 1,2 – коэффициент первоначального разрыхления грунта для влажного песка, принятый по среднему значению (таблица 1).
Следовательно, объем вывоза грунта составит 72м 3 .
- Находим конечный объем гравийной подушки после трамбовки:
Vп = 40 · 1 · 0,3 = 12 м 3 .
- Находим по таблице 2 максимальные значения первоначального и остаточного коэффициента разрыхления для гравийных и галечных грунтов и выражаем их в долях.
Первоначальный коэффициент разрыхления kр = 20% или 1,2; остаточный коэффициент разрыхления kор = 8% или 1,08.
- Вычисляем объем гравия для выполнения гравийной подушки конечным объемом 12 м 3 .
Следовательно, объем необходимого для отсыпки гравия составит 13,3м 3 .
Конечно, такой расчет является весьма приблизительным, но он даст вам представление о том, что такое коэффициент разрыхления грунта, и для чего он используется. При проектировании коттеджа или жилого дома применяется более сложная методика, но для предварительного расчета стройматериалов и трудозатрат на строительство гаража или дачного домика вы можете ее использовать.
Коэффициент разрыхления грунтов | «ЭкоАртСтрой»
К основным свойствам грунтов, влияющим на технологию и трудоемкость их разработки, относятся плотность, влажность, разрыхляемость.
Основными свойствами грунтов, влияющими на трудоёмкость и стоимость земляных работ, являются: влажность, разрыхляемость и плотность (важно для устройства оснований).
Влажность грунта – это степень насыщения его водой. Её определяют как отношение массы воды в самом грунте к массе его твёрдых частиц. Выражается влажность в процентах. При влажности менее 5% грунты считаются сухими, при более чем 30% – мокрыми. Трудоёмкость разработки грунта повышается с увеличением его влажности. Но исключением является только глина: сухую её разрабатывать сложнее. Но при порядочной влажности глинистые грунты обретают липкость, что значительно усложняет их разработку.
Плотность – это масса одного кубического метра грунта в плотном теле (естественном состоянии). Несцементированные грунты обладают плотностью от 1,2 до 2,1 тонн/м3, скальные – до 3,3 тонн/м3.
При разработке грунт разрыхляется, увеличиваясь при этом в объёме. Именно данное количество грунта и транспортируется самосвалами к месту утилизации или складирования. Это явление называется первоначальным разрыхлением грунта, при этом характеризуясь коэффициентом первоначального рыхления (Кр), представляющего собой отношение объёма уже разрыхленного грунта к его объёму в естественном состоянии.
В насыпи разрыхлённый грунт уплотняется воздействием массы вышележащих грунтов или с помощью механического уплотнения, смачивания дождём, движения транспорта и т. д. Только грунт не занимает объёма, занимавшего до разработки длительное время. Он сохраняет остаточное разрыхление, которое измеряется коэффициентом остаточного разрыхления (Кор).
Коэффициент первоначального разрыхления грунтов, а также показатели плотности приведены по категориям в таблице.
Наименование грунта |
---|
Из вышеизложенного следует, что, рассчитывая общую стоимость выполнения работ, необходимо знать геометрические размеры будущего котлована. При этом коэффициент первоначального разрыхления нужно умножить на объём грунта в будущем карьере. Именно это количество грунта будет разработано и вывезено со строительного объекта для складирования или утилизации. И именно эта цифра умножается на цену разработки, погрузки и транспортировки одного кубического метра грунта.
Коэффициент разрыхления грунтов – что это и как его расчитать. – Мои статьи – Каталог статей
К основным свойствам грунтов, влияющим на технологию и трудоемкость их разработки, относятся плотность, влажность, разрыхляемость.
Плотностью называется масса 1 м3 грунта в естественном состоянии (в плотном теле). Плотность несцементированных грунтов 1,2…2,1 тонн/м3 , скальных – до 3,3 тонн/м3.
Влажность характеризуется степенью насыщения грунта водой и определяется отношением массы воды в грунте к массе твердых частиц грунта, выражается в процентах. При влажности более 30 % грунты считаются мокрыми, а при влажности до 5 % – сухими. Чем выше влажность грунта, тем выше трудоемкость его разработки. Исключение составляет глина – сухую глину разрабатывать труднее. Однако при значительной влажности у глинистых грунтов появляется липкость, которая усложняет их разработку.
Грунт при разработке разрыхляется и увеличивается в объеме. Именно это количество грунта и перевозится с объекта к месту складирования либо утилизации самосвалами. Это явление, называемое первоначальным разрыхлением грунта, характеризуется коэффициентом первоначального рыхления Кp, который представляет собой отношение объема разрыхленного грунта к объему грунта в естественном состоянии.
Уложенный в насыпь разрыхленный грунт уплотняется под влиянием массы вышележащих слоев грунта или механического уплотнения, движения транспорта, смачивания дождем и т.д.Однако грунт длительное время не занимает того объема, который он занимал до разработки, сохраняя остаточное разрыхление, показателем которого является коэффициент остаточного разрыхления грунта Кop.
Показатели плотности , а также коэффициент первоначального разрыхления грунтов по категориям приведена в таблице:
englishpromo.ru
Коэффициент разрыхления грунтов | «ЭкоАртСтрой»
К основным свойствам грунтов, влияющим на технологию и трудоемкость их разработки, относятся плотность, влажность, разрыхляемость.
Основными свойствами грунтов, влияющими на трудоёмкость и стоимость земляных работ, являются: влажность, разрыхляемость и плотность (важно для устройства оснований).
Влажность грунта – это степень насыщения его водой. Её определяют как отношение массы воды в самом грунте к массе его твёрдых частиц. Выражается влажность в процентах. При влажности менее 5% грунты считаются сухими, при более чем 30% – мокрыми. Трудоёмкость разработки грунта повышается с увеличением его влажности. Но исключением является только глина: сухую её разрабатывать сложнее. Но при порядочной влажности глинистые грунты обретают липкость, что значительно усложняет их разработку.
Плотность – это масса одного кубического метра грунта в плотном теле (естественном состоянии). Несцементированные грунты обладают плотностью от 1,2 до 2,1 тонн/м3, скальные – до 3,3 тонн/м3.
При разработке грунт разрыхляется, увеличиваясь при этом в объёме. Именно данное количество грунта и транспортируется самосвалами к месту утилизации или складирования. Это явление называется первоначальным разрыхлением грунта, при этом характеризуясь коэффициентом первоначального рыхления (Кр), представляющего собой отношение объёма уже разрыхленного грунта к его объёму в естественном состоянии.
В насыпи разрыхлённый грунт уплотняется воздействием массы вышележащих грунтов или с помощью механического уплотнения, смачивания дождём, движения транспорта и т. д. Только грунт не занимает объёма, занимавшего до разработки длительное время. Он сохраняет остаточное разрыхление, которое измеряется коэффициентом остаточного разрыхления (Кор).
Коэффициент первоначального разрыхления грунтов, а также показатели плотности приведены по категориям в таблице.
Наименование грунта | Категория грунта | Плотность грунта тонн/м3 | Коэффициент разрыхления грунта |
---|---|---|---|
Песок рыхлый, сухой | I | 1,2…1,6 | 1,05…1,15 |
Песок влажный, супесь, суглинок разрыхленный | I | 1,4…1,7 | 1,1…1,25 |
Суглинок, средний и мелкий гравий, легкая глина | II | 1,5…1,8 | 1,2.-1,27 |
Глина, плотный суглинок | III | 1,6…1,9 | 1.2…1.35 |
Тяжелая глина, сланцы, суглинок с щебнем, гравием, легкий скальный грунт | IV | 1,9…2,0 | 1,35…1,5 |
Из вышеизложенного следует, что, рассчитывая общую стоимость выполнения работ, необходимо знать геометрические размеры будущего котлована. При этом коэффициент первоначального разрыхления нужно умножить на объём грунта в будущем карьере. Именно это количество грунта будет разработано и вывезено со строительного объекта для складирования или утилизации. И именно эта цифра умножается на цену разработки, погрузки и транспортировки одного кубического метра грунта.
www.ekoartstroi.ru
Коэффициент Разрыхления Грунта | Таблица СНИП 📊
📊 Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована.
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные — выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность — то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Таблица Разрыхления Грунта
Исходя из строительных норм и правил (СНИП), КРГ (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Вся необходимая информация представлена далее в таблице:
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
КР по СНИП
Коэффициент разрыхления грунта по СНИП:
- КР рыхлой супеси, влажного песка или суглинка при плотности 1.5 составляет 1,15 (категория первая).
- КР сухого неуплотненного песка при плотности 1,4 составляет 1,11 (категория первая).
- КР легкой глины или очень мелкого гравия при плотности 1,75 составляет 1,25 (третья вторая).
- КР плотного суглинка или обычной глины при плотности 1,7 составляет 1,25 (категория третья).
- КР сланцев или тяжелой глины при плотности 1,9 составляет 1,35. Плотность оставляем по умолчанию, т/м3.
Рассчитываем самостоятельно
Допустим, вы хотите разработать участок. Задача — узнать какой объем грунта получится после проведенных подготовительных работ.
Известны следующие данные:
- ширина котлована — 1,1 м;
- вид почвы — влажный песок;
- глубина котлована — 1,4 м.
Вычисляем объем котлована (Xk):
Xk = 41*1,1*1,4 = 64 м3.
Теперь смотрим первоначальное разрыхление (по влажному песку) по таблице и считаем объем, который получим уже после работ:
Xr = 64*1,2 = 77 м3.
Таким образом, 77 кубов — это тот объем пласта, который подлежит вывозу по окончанию работ.
Для чего определяют разрыхления грунта?
Объемы почвы до разработки и после выемки существенно различаются. Именно расчеты позволяют подрядчику понять, какое количество грунта придется вывезти. Для составления сметы этой части работ учитываются: плотность почвы, уровень ее влажности и разрыхление.
В строительстве виды почвы условно делят на два основные вида:
- сцементированный;
- несцементированный.
Первый вид — называют скальным. Это преимущественно горные породы (магматические, осадочные и т.д.). Они водоустойчивы, с высокой плотностью. Для их разработки (разделения) применяют специальные технологии взрыва.
Второй вид — породы несцементированные. Они отличаются дисперсностью, проще обрабатываются. Их плотность гораздо ниже, поэтому разработку можно вести ручным способом, с применением специальной техники (бульдозеров, экскаваторов). К несцементированному виду относят пески, суглинки, глину, чернозем, смешанные грунтовые смеси.
и его расчет при проектировании дома
Строительные работы начинаются с разметки участка и разработки грунта под фундамент. Земляные работы занимают также первую строчку в строительной смете, и немалая сумма приходится на оплату техники, производящей выемку и вывоз грунта с участка. Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована
Коэффициент разрыхления грунта
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные, выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность, то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Влажность грунт – это мера его насыщения водой, выраженная в процентах. Нормальная влажность лежит в пределах 5-25%,а грунты, имеющие влажность более 30%, считаются мокрыми. При влажности до 5% грунты принято называть сухими.
Образец влажного грунта
Сцепление влияет на сопротивление грунта сдвигу, у песков и супесей этот показатель лежит в диапазоне 3-50 кПа, у глин и суглинков – в пределах 5-200 кПа.
Плотность зависит от качественного и количественного состава грунта, а также от его влажности. Самыми плотными, и, соответственно, тяжелыми являются скальные грунты, наиболее легкие категории грунта – пески и супеси. Характеристики грунтов приведены в таблице:
Таблица – различные категории грунта
Как видно из таблицы, коэффициент первоначального разрыхления грунта прямо пропорционален плотности грунта, иными словами, чем плотнее и тяжелее грунт в естественных условиях, тем больше объема он займет в выбранном состоянии. Этот параметр влияет на объемы вывозки грунта после его разработки.
Существует также такой показатель, как остаточное разрыхление грунта, он показывает, насколько грунт поддается осадке в процессе слеживания, при контакте с водой, при трамбовке механизмами. Для частного строительства этот показатель имеет значение при заказе гравия для выполнения подушки под фундамент и других работ, связанных с расчетом привозного грунта. Также он важен для складирования и утилизации грунтов.
Таблица – наименование грунта и его остаточное разрыхление %
Пример расчета коэффициента разрыхления грунта
Применение коэффициентов первоначального и остаточного разрыхления грунтов на практике можно рассмотреть на примере расчета. Предположим, что есть необходимость выполнить разработку грунта под котлован заглубленного ленточного фундамента с последующей отсыпкой гравийной подушки. Грунт на участке – влажный песок. Ширина котлована – 1 метр, общая длина ленты фундамента 40 метров, глубина котлована – 1,5 метров, толщина гравийной подушки после трамбовки – 0,3 метра.
- Находим объем котлована, а, следовательно, и грунта в естественном состоянии:
Vк = 40 · 1 · 1,5 = 60 м3.
- Применяя коэффициент первоначального разрыхления грунта, определяем его объем после разработки:
V1 = kр · Vк = 1,2 · 60 = 72 м3;
где kр= 1,2 – коэффициент первоначального разрыхления грунта для влажного песка, принятый по среднему значению (таблица 1).
Следовательно, объем вывоза грунта составит 72м3.
- Находим конечный объем гравийной подушки после трамбовки:
Vп = 40 · 1 · 0,3 = 12 м3.
- Находим по таблице 2 максимальные значения первоначального и остаточного коэффициента разрыхления для гравийных и галечных грунтов и выражаем их в долях.
Первоначальный коэффициент разрыхления kр = 20% или 1,2; остаточный коэффициент разрыхления kор = 8% или 1,08.
- Вычисляем объем гравия для выполнения гравийной подушки конечным объемом 12 м3.
V2 = Vп ·kр/kор=12 · 1,2/1,08 = 13,33 м3.
Следовательно, объем необходимого для отсыпки гравия составит 13,3м3.
Конечно, такой расчет является весьма приблизительным, но он даст вам представление о том, что такое коэффициент разрыхления грунта, и для чего он используется. При проектировании коттеджа или жилого дома применяется более сложная методика, но для предварительного расчета стройматериалов и трудозатрат на строительство гаража или дачного домика вы можете ее использовать.
Коэффициент первоначального и остаточного разрыхления грунта
Большинство строительных работ не обходятся без разработки грунта при рытье котлована под фундамент. Для составления сметы недостаточно знать какое количество почвы будет добыто. Важно учесть несколько важных показателей, среди которых — коэффициент разрыхления грунта, позволяющий рассчитать величину его увеличения после извлечения.
Типы грунта с точки зрения строительства
Грунт в строительстве — породы, залегающие в верхних слоях земной коры. Выделяют две основные группы: скальные и рыхлые. Виды:
- скальные — водоустойчивые, несжимаемые, залегают в виде сплошного массива;
- песчаные (супесь) – непластичные, в сухом состоянии сыпучие. При увеличении влажности меняется объем и плотность песка. Водопроницаемы, подвержены размыванию. Несколько видов: пылеватый, средний, гравелистый. Наиболее подходящим считается гравелистый вид;
- глинистые (суглинок) – пластичные, связные. Водопроницаемы, при увеличении влажности сильно увеличивается объем. При замерзании влаги сильно пучатся, при высыхании плохо отдают воду, подвержены растрескиванию. Легко размываются проточной водой;
- лессовидные – в сухом состоянии прочные и твердые, при увеличении влажности расплываются. Увеличение влажности приводит к резкому снижению несущей способности и просадке;
- торфяники — неравномерное сжатие, быстро насыщается влагой, вспучиваются. Не подходят для строительства;
- плывуны — подвижны, быстро насыщаются водой, что приводит к разжижению;
- растительные или биогенные — плодородные грунты. Имеют низкую несущую способность, поскольку плодородный слой со временем разлагается, неравномерно уменьшаясь.
После определения типа почвы определяют количество дополнительных строительных работ. При необходимости тип заменяют на более подходящий.
Важные свойства грунта
Свойства грунта — особенности того или иного вида почвы, определяемые входящими в состав компонентами. Для строительства наиболее важно учесть свойства, характеризующие поведение земли при естественном залегании и взаимодействии с инженерной и хозяйственной деятельностью человека.
Основные свойства:
- влажность — степень насыщенности пор почвы влагой. Определяется в процентном отношении массы воды к массе твердых частиц. Норма — от 6 до 24 %. Соответственно: ниже 6 % – сухие почвы, свыше 30 % – влажные. Чем выше этот показатель, тем сложнее разработка;
- сцепление — показатель, характеризующий связи между частицами смеси и то, как они сопротивляются сдвигу. Для песчаных пород нормальным считается показатель в пределах 0,03-0,05 МПа, для глины – 0,05-0,3 МПа;
- плотность — показатель, который зависит от сочетания влажности и состава. Рассчитывается как отношение массы почвы к занимаемому ей объему. Наименьшая плотность у песков, наибольшая – у скальных пород;
- разрыхляемость – способность увеличивать объем при разработке;
- водоудерживающая способность. Зависит от плотности материала.
Зачем нужно определять разрыхление грунта
Объемы почвы в момент добычи и после окончания процесса существенно отличаются. Предварительная оценка степени разрыхления грунта позволяет оценить будущие строительные работы и финансовые затраты, которые понадобятся для вывоза добытой земли или ее трамбования.
Даже после естественного или механического уплотнения под воздействием вышележащих слоев, осадков или работы строительной техники, материал не займет того объема, который был до начала работ. Каждый тип земли имеет свой показатель разрыхления, зависящий от состава, влажности, плотности и сцепления.
Понятие коэффициента разрыхления грунта
Коэффициент разрыхления — показатель, который необходимо рассчитать не только проектировщикам, но и специалистам, непосредственно работающим на стройплощадке. Наиболее точный способ расчетов — взвешивание разработанной земли. Конечно, в большинстве случаев применить его нереально.
Для различных видов пород строительными нормами и правилами (СНиП) устанавливается стандартный показатель, указывающий насколько увеличится V почвы после извлечения из места естественного залегания. Чем выше плотность добытой земли, тем больше она разрыхляется после извлечения. Это явление объясняется тем, что после извлечения разрываются связи между компонентными частицами почвы.
Показатель позволяет осуществить перевод объема грунта в твердом теле в аналогичный показатель (в м3) в рыхлом состоянии.
Коэффициент первоначального разрыхления
КАТЕГОРИЯ | НАИМЕНОВАНИЕ | ПЛОТНОСТЬ (тонн/м3) | КОЭФФИЦИЕНТ РАЗРЫХЛЕНИЯ |
---|---|---|---|
1 | Песок влажный, супесь, суглинок разрыхленный | 1,4 – 1,7 | 1,1 – 1,25 |
1 | Песок сухой рыхлый | 1,2 – 1,6 | 1,05 – 1,15 |
2 | Суглинок, гравий мелкий или средний, легкая глина | 1,5 – 1,8 | 1,2 – 1,27 |
3 | Глина, плотный суглинок | 1,6 – 1,9 | 1,2 – 1,35 |
4 | Тяжелая глина, сланцы, суглинок с примесью щебня, гравия, легкий скальный грунт | 1,9 – 2,0 | 1,35 – 1,5 |
Данные из таблицы применяются к почвам, которые пролежали в отвале не более четырех месяцев и не подверглись процессам естественного уплотнения.
Коэффициент остаточного разрыхления
В процессе складирования (более 4 месяцев) и воздействия атмосферных осадков, грунт уплотняется. Показатель разрыхления, по сравнению с первоначальными показателями, меняется в сторону уменьшения. Для определения остаточного коэффициента используют графу документа, в котором указаны остаточные показатели разрыхления.
Расчет объема грунта для вывоза
Недостаточно знать числовые показатели коэффициента, необходимо провести дополнительные расчеты, чтобы определить объем земли, которую нужно будет вывезти. Понадобится определить данные:
- ширина – 2 м;
- глубина – 2 м;
- общая длина фундамента – 30 м;
- почва — влажный песок.
Алгоритм расчетов:
- Определить V котлована: Vk= 30x2x2= 120 м3.
- Расчет первичного коэффициента для влажного песка ( средний Kp= 1,2) Kp= 1,2х120 = 144 м3.
Расчет объема лишнего грунта после обратной засыпки
Для определения объема лишнего грунта после обратной засыпки понадобятся показатели:
- V котлована – 900 м3;
- V фундамента – 700 м3;
- почва — суглинок.
Расчет:
- Находим V обратной засыпки, равный разнице между V котлована и V фундамента: 900-700=200 м3.
- Для суглинка (средний показатель – 6,5 %), коэффициент равен 1,065.
- V обратной засыпки: 200/1,065= 187,8 м3.
- Учитываем Kp и получаем: (200-187,8)/1,27=12,2 м3.
1 | Глина ломовая | 28-32 | |
2 | Глина мягкая жирная | 24-30 | |
3 | Глина сланцевая | 28-32 | |
4 | Гравийно-галечные грунты | 16-20 | |
5 | Растительный грунт | 20-25 | |
6 | Лесс мягкий | 18-24 | |
7 | Лесс твердый | 24-30 | |
8 | Мергель | 33-37 | |
9 | Опока | 33-37 | |
10 | Песок | 10-15 | |
11 | Разборно-скальные грунты | 30-45 | |
12 | Скальные грунты | 45-50 | |
13 | Солончак и солонец мягкие | 20-26 | |
14 | Солончак и солонец твердые | 28-32 | |
15 | Суглинок легкий и лессовидный | 18-24 | |
16 | Суглинок тяжелый | 24-30 | |
17 | Супесь | 12-17 | |
18 | Торф | 24-30 | |
19 | Чернозем и каштановый грунт | 22-28 | |
20 | Шлак | 14-18 |
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Вся необходимая информация представлена далее в статье:
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Коэффициент разрыхления грунта по СНИП:
- КР рыхлой супеси, влажного песка или суглинка при плотности 1.5 составляет 1,15 (категория первая).
- КР сухого неуплотненного песка при плотности 1,4 составляет 1,11 (категория первая).
- КР легкой глины или очень мелкого гравия при плотности 1,75 составляет 1,25 (третья вторая).
- КР плотного суглинка или обычной глины при плотности 1,7 составляет 1,25 (категория третья).
- КР сланцев или тяжелой глины при плотности 1,9 составляет 1,35. Плотность оставляем по умолчанию, т/м3.
Допустим, вы хотите разработать участок. Задача — узнать какой объем грунта получится после проведенных подготовительных работ.
Известны следующие данные:
- ширина котлована — 1,1 м;
- вид почвы — влажный песок;
- глубина котлована — 1,4 м.
Вычисляем объем котлована (Xk):
Xk = 41*1,1*1,4 = 64 м3.
Теперь смотрим первоначальное разрыхление (по влажному песку) по таблице и считаем объем, который получим уже после работ:
Xr = 64*1,2 = 77 м3.
Таким образом, 77 кубов — это тот объем пласта, который подлежит вывозу по окончанию работ.
Для чего определяют разрыхления грунта?Объемы почвы до разработки и после выемки существенно различаются. Именно расчеты позволяют подрядчику понять, какое количество грунта придется вывезти. Для составления сметы этой части работ учитываются: плотность почвы, уровень ее влажности и разрыхление.
В строительстве виды почвы условно делят на два основные вида:
Первый вид — называют скальным. Это преимущественно горные породы (магматические, осадочные и т.д.). Они водоустойчивы, с высокой плотностью. Для их разработки (разделения) применяют специальные технологии взрыва.
Второй вид — породы несцементированные. Они отличаются дисперсностью, проще обрабатываются. Их плотность гораздо ниже, поэтому разработку можно вести ручным способом, с применением специальной техники (бульдозеров, экскаваторов). К несцементированному виду относят пески, суглинки, глину, чернозем, смешанные грунтовые смеси.
При некоторых строительных работах происходит разработка грунта для закладки фундамента.Для планирования работ, связанных с выемкой и вывозом земли, следует учитывать некоторые особенности: разрыхление, влажность, плотность.
Представленная ниже таблица коэффициента разрыхления грунта поможет вам определить увеличение объема почвы при ее выемке из котлована.
- Скальные, каменные, горные и сцементированные породы – разработка возможна лишь с применением дробления или с использованием технологии взрыва.
- Глина, песок, смешанные типы пород – выборка производится вручную или механизировано с помощью бульдозеров, экскаваторов или другой специализированной техники.
Свойства
- Разрыхление – увеличение объема земли при выемке и разработке.
- Влажность – соотношение массы воды, которая содержится в земле, к массе твердых частиц. Определяется впроцентах: грунт считается сухим при влажности менее 5%, превышающий отметку 30% – мокрый, в диапазоне от 5 до 30% – нормальная влажность. Чем более влажный состав, тем более трудоемкий процесс его выемки, исключением является глина (чем более сухая – тем сложнее ее разрабатывать, слишком влажная – приобретает вязкость, липкость).
- Плотность – масса 1 м3 грунта в плотном (естественном) состоянии. Самые плотные и тяжелые скальные породы, наиболее легкие – песчаные, супесчаные почвы.
- Сцепление – величина сопротивления к сдвигу, песчаные и супесчаные почвы имеют показатель – 3–50 кПа, глины, суглинки — 5–200 кПа.
Исходя из строительных норм и правил (СНИП), коэффициент разрыхления грунта (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Проанализировав таблицу, можно сказать, что первоначальный коэффициент разрыхления грунта прямо пропорционален диапазону плотности, проще говоря, чем более плотная и тяжелая почва в природных условиях, тем больший ее объем при разработке.
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Как рассчитать проведение необходимых работ
Для расчета необходимых работ следует знать геометрические размеры планируемого котлована. Далее умножьте коэффициент первоначального разрыхления на объем земли в природном состоянии.
В результате вы получите объем, который будет изъят из строительного карьера. Теперь очень просто рассчитать количество изъятой земли для складирования, погрузки, транспортировки для утилизации.
Посмотрите видео: ВИДЫ ГРУНТА. ГЕОЛОГИЧЕСКИЙ АНАЛИЗ УЧАСТКА
Какой коэффициент разрыхления грунта
Коэффициент разрыхления грунта – как рассчитать. Работы по строительству дома стартуют с разметки земельного участка и земельной разработки под будущий фундамент. Работы земляного характера занимают первую строку в строительной смете, и весьма ощутимая сумма будет приходиться на оплату рабочей техники, которая производит выемку и вывоз ненужной земли с участка.
Для того, чтобы составлять смету и оценить стоимость работ мало знать лишь про размеры котлована, требуется еще учесть и грунтовые особенности.
Одним из подобных параметров будет коэффициент разрыхление грунта, который дает возможность узнать про увеличение объема при доставании его из недр котлована.
Общие сведения
Группы грунта
Все типы земли с точки зрения строительных работ можно поделить на такие две группы:
- Сцементированные, или еще их называют скальными – каменные породы горного типа, разработка которых возможна лишь с использованием взрывной технологии или, возможно, дробления.
- Несцементированные, и их доставание проводится вручную или же посредством экскаваторов, бульдозеров, а также иной специальной техники. К ним можно отнести глины, пески, а еще смешанные разновидности земли.
Свойства земли
На сложность работ по разработке и цену земляных работ воздействуют такие свойства земли:
- Влажность – отношение веса воды, которая содержится в грунте, к массе частиц твердого типа.
- Сцепление – это сопротивление различным сдвигам.
- Плотность, а именно масса одного метра кубического земли в естественном виде.
- Разрыхляемость – способность увеличится в объеме при вынимании и разработке.
Влажность земли – это его мера насыщения посредством воды, которая выражена в процентном соотношении. Нормальный уровень влажности будет лежать в пределах от 5 до 25%, а виды земли, которые имеют влажность больше 30%, можно считать мокрыми. При влажности до 5% землю можно называть сухой. Именно сцепление будет воздействовать на сопротивление земли сдвигу, у песков и супесей данный показатель будет лежать в диапазоне от 3 до 50 кПа, а у глины и суглинков – от 5 до 200 кПа.
Плотность будет очень сильно зависеть от количественного и качественного состава земли, а также от его уровня влажности. Наиболее плотными, а значит, тяжелыми являются грунты скального типа, а самые легкие типы грунта – это супески и пески.
Технические параметры разных видов земли приведены в этой таблице.
Название грунта | Категория земли | Плотность грунта, тонн/м3 | Коэффициент разрыхления земли |
Рыхлый и сухой песок | I | 1.2…1.6 | 1.09…1.15 |
Ладный песок, разрыхленный суглинок и супесь | I | 1.4….1.7 | 1.1….1.75 |
Мелкий и средний гравий, суглинок, а также легкая глина | II | 1.5…1.8 | 1.2…1.27 |
Плотный суглинок и глина | III | 1.6…1.9 | 1.2…1.35 |
Тяжелая глина, суглинок с щебенкой, сланцы, гравием, а также скальный легкий грунт | IV | 1.9….2 | 1.35….1.5 |
Как видно по представленной таблице, коэффициент первозданного грунтового разрыхления прямо пропорциональный плотности земли, другими словами, чем тяжелее и плотнее грунт при приодных условиях, то тем больше объема он будет занимать в выбранном состоянии. Такой параметр воздействует на объем вывоза земли после его разработки. Также есть иной показатель, и это конечное грунтовое разрыхление, который показывает, насколько земля поддается осадке при слеживании, контактировании с водой, а еще при трамбовании механизмами. Для частного возведения такой показатель имеет значение, если вы будете заказывать гравий для создания подушки для фундамента и остальных работ, которые связаны с расчетом привозной земли. Еще он важный при складировании и утилизации земли.
Подробности. Пример расчета коэффициента грунтового разрыхления
Коэффициент разрыхления грунта при разработке котлована крайне важен. Применение коэффициентов остаточного и первоначального разрыхления грунта на практике можно рассматривать на примере расчетов. Можно предположить, что есть необходимость производить разработку земли для котлована углубленного ленточного основания с дальнейшим отсыпанием гравийной подушки. Земля на участке – слегка влажный песок.
Ширина у выемки должна получиться 1 метр, а длина в целом фундаментной ленты 40 метров, углубление котлована на 1.5 метра, а толщина подушки из гравия после утрамбования составляет 0.3 метра.
Итак, найдите объем котлована, а значит, и грунта в естественном виде:
VR=40*1*1.5=60 м3.
Используя коэффициент первоначального грунтового разрыхления, можно определить его объем после разработки:
V1=kH*VK=1.2*60=72 м3.
При этом kЗ=1.2 является коэффициентом первоначального разрыхления земли для влажного песка, который принят по среднему значению. Получается, то объем вывоза ненужной земли составляет 72 м2.
Найдите конечный объем подушки из гравия после утрамбования:
VП=40*1*0.3=12 м3.
Найдите в таблице максимальное значение первозданного и остаточного коэффициента разрыхления для галечных и гравийных типов земли и выражает их по долям. При этом первоначальный коэффициент по разрыхлению kР=20% или 1.2, а конечный коэффициент разрыхлителя kОР=8%, или 1.08.
Вычислите объем насыпного материала для создания гравийной подушки с будущим объемом в 12 м3.
V2 = Vп ·kр/kор=12 · 1,2/1,08 = 13,33 м3.
Вывод
Получается, что объем требуемого для отсыпания гравия составляет 13.3 кубических метра. Естественно, что такой расчет является очень приблизительным, но он дает вам представление о том, что собой представляет коэффициент разрыхления грунта, и для чего он применяется.
При коттеджном проектировании или даже создании жилого дома применяется очень сложный метод, но для предварительного расчета строительных материалов и трудовых затрат на возведение гаража или дачного дома вы сможете ее применять.
Что делать с уплотненной почвой
Уплотненная почва может затруднить выращивание растений в огороде или цветнике. Узнайте, что вызывает уплотнение почвы и как его предотвратить.
Многие садоводы не знают, что проблемы с их огородом или цветником могут быть вызваны уплотненной почвой. Также могут быть затронуты газоны. Вы можете обнаружить, что почву трудно перекапывать или обрабатывать, а растения плохо растут. У них не такая большая корневая система, как следовало бы.После сильного дождя вода может скапливаться и оставаться в ней, а не впитываться.
Что вызывает это? Около половины здоровой почвы состоит из минеральных частиц, таких как песок, ил, глина, а также органических веществ. Оставшаяся половина называется поровым пространством. Это пространство для движения воздуха и воды вокруг минеральных частиц. Пористое пространство необходимо для создания здоровой среды для корней растений, а также полезных микроорганизмов и дождевых червей, которые расщепляют остатки растений на органические вещества.
Уплотнение чаще всего происходит с более тяжелыми грунтами, такими как глина и суглинок, но при использовании тяжелого оборудования песчаные грунты могут уплотняться. Это частицы почвы, которые плотно прилегают друг к другу. Проблема может усугубляться событиями, которые произошли с почвой на протяжении многих лет. Пористые пространства уменьшены до такой степени, что воздух и вода не могут свободно перемещаться, а корни растений не могут легко врастать в окружающую почву. Почва может оставаться слишком влажной дольше, чем это полезно для растущих там растений.
Факторы, способствующие уплотнению почвыПеревалка почвы. При чрезмерной обработке почвы мелкие агрегаты почвы разбиваются на отдельные частицы. В почве должны быть небольшие комки частиц, которые собираются вместе в небольшие комочки размером с горошину. При многократной обработке участка эти мелкие агрегаты разрушаются. Когда почва позже становится влажной, она не пропускает воду. Создается мини-пруд, и когда почва окончательно высыхает, он напоминает шкуру аллигатора.Этот линейный рисунок потрескавшейся почвы не пропускает внутрь ни воздух, ни воду.
Обработка слишком влажной почвы. Перед обработкой сада или обработкой почвы убедитесь, что почва не слишком влажная. Перед работой в саду весной возьмите горсть земли и сожмите ее в клубок. Если аккуратно ткнуть, он должен развалиться. В противном случае почва слишком влажная. Подождите, пока почва не рассыпется.
Примешивание песка к глинистой почве для разрыхления почвы. Добавление песка создает эффект, противоположный желаемому.Почва может стать похожей на бетон. При рыхлении почвы добавляйте органические вещества, такие как компост, торфяной мох или листовая плесень.
Сжимание грунта из-за веса. Транспортные средства, припаркованные или проезжающие по территории, строительные работы и даже места с интенсивным пешеходным движением, могут уплотняться. Это может быть постоянный наезд покрышек ездовой газонокосилки по территории.
Мертвые зоны указывают на то, что шины косилки неоднократно проезжали по лужайке, уплотняя почву. Путь между шинами прочный.Фото: Кевин Франк, MSU
После того, как вы поняли, что ваша почва уплотнена, нужно сделать несколько вещей. Не поддавайтесь желанию регулярно обрабатывать роторную обработку почвы или возделывать огород. Вместо этого рассмотрите возможность добавления органических веществ с помощью мульчи или компоста поверх цветочной клумбы или просто вручную засыпьте его лопатой на верхние 3-6 дюймов почвы. Для огорода: положите 2 дюйма компоста на поверхность почвы и возделывайте и повторяйте, в общей сложности, 4 дюйма за сезон. Целевой показатель от 5 до 15 процентов органического вещества был бы предпочтительным.
Мульча в многолетнем саду. Фото: Ребекка Финнеран, MSU Extension
Если используется механический роторный культиватор, будьте осторожны, чтобы не пересекать уже обработанные участки. Использование органических веществ, таких как солома или измельченные листья в огороде, которые можно скосить и превратить в почву весной или осенью, добавит больше органических веществ. Раз в три года проводите анализ почвы, чтобы проверить питательные вещества, pH почвы и процентное содержание органических веществ.Перейдите на сайт www.msusoiltest.com, чтобы приобрести комплект для самопроверки почвы.
Для большого огорода другим решением является выращивание покровной культуры в конце сезона, затем скашивание и перевертывание следующей весной перед посадкой. Корни проникают в уплотненную почву и разрыхляют ее. При скашивании и переворачивании скошенной ботвы почва дополнительно разрыхляется. Покровные культуры могут включать однолетний райграс, озимую пшеницу, озимую рожь, гречиху, масличный редис и вику волосатую.
Ни одно из этих исправлений не является быстрым или легким.Понимание того, что такое уплотненные почвы и как их изменить, – это пожизненное обязательство по улучшению почвы и урожаю.
Для получения дополнительной информации о большом количестве статей о Smart Gardens , а также о классах и мероприятиях Smart Gardens посетите сайт www.migarden.msu.edu.
Загрузите PDF-файл для печати: Что делать с уплотненным грунтом
Вы нашли эту статью полезной?
Расскажите, пожалуйста, почему
Представлять на рассмотрениеУплотнение почвы | UMN внутренний номер
Рисунок 24: Тракторы с гусеницами (фон) и шинами.Любое оборудование, будь то гусеницы или шины, может создавать уплотнение. Выбор оборудования, обеспечивающего наименьшее уплотнение, зависит от нескольких факторов.
Тракторы
Припаркованный гусеничный трактор оказывает давление на почву примерно от 4 до 8 фунтов на квадратный дюйм в зависимости от ширины, длины и веса трактора. Этот фунт на квадратный дюйм изменяется в зависимости от расположения роликов промежуточных колес, жесткости пружины в точках крепления, жесткости гусеницы, динамической передачи веса при нагрузке на дышло и т. Д.(Рисунок 24).
Радиальные шины создают давление на 1-2 фунта выше, чем их надлежащее внутреннее давление. Например, если радиальная шина накачана до 6 фунтов на квадратный дюйм, шина оказывает давление на почву от 7 до 8 фунтов на квадратный дюйм. Это давление также зависит от размера проушины, жесткости шины и нагрузки на дышло.
Старые модели диагональных шин, накачанных до 6–8 фунтов на квадратный дюйм, не могут эффективно работать и легко изнашиваются при таком низком давлении в шинах. Следовательно, они должны быть накачаны до 20-25 фунтов на квадратный дюйм.
Как управлять уплотнением почвы
Чтобы сохранить уплотнение почвы в зоне плуга, поддерживайте радиальное давление в шинах около 10 фунтов на квадратный дюйм.В зависимости от размера шин вам, возможно, придется добавить сдвоенные шины для достижения этой цели. Проконсультируйтесь с вашим местным дилером по шинам, чтобы определить надлежащее давление в шинах.
Исследование: Тракторное уплотнение
Рисунок 25: Уплотнение почвы полноприводными и гусеничными тракторами при различных тяговых нагрузках. ИсследованиеIowa показало, что небольшие тракторы, оснащенные гусеницами или радиальными шинами, создают уплотнение в верхних слоях на 5-8 дюймов. Однако ниже этой глубины эффект уплотнения был незначительным.
На рис. 25 показана корреляция между давлением в шинах и уплотнением почвы по результатам исследования, проведенного Университетом штата Огайо. Эффект уплотнения измерялся на глубине 20 дюймов на илистом суглинке (ширина шин составляла примерно 28 дюймов) для четырех различных сценариев. Они сравнили
- Трактор John Deere 8870 с сдвоенными баками 710 / 70R38, правильно накачанный до 6 и 7 фунтов на квадратный дюйм (спереди и сзади)
- Тот же трактор John Deere с шинами, накачанными до 24 фунтов на кв. Дюйм
- Cat Challenger 65 с резиновыми гусеницами 24 дюйма
- Cat Challenger 75 с резиновыми гусеницами 36 дюймов
По физическим свойствам почвы трактор с правильно накачанными шинами был признан лучшим, за ним следуют 36-дюймовые и 24-дюймовые гусеницы.Наибольшее уплотнение вызвал трактор с чрезмерно накачанными шинами. Относительный рейтинг был одинаковым для автомобилей без груза и с буксируемым грузом (40-футовый культиватор).
Комбайны
Рисунок 26: Уменьшение пористости почвы по глубине при разном давлении почвы.Общая нагрузка на ось тяжелого полевого оборудования, такого как зерновозы или комбайны, практически одинакова независимо от того, используются ли в оборудовании гусеницы или шины. Гусеницы улучшают тягу и управляемость в поле, но зерновоз 25 тонн на ось по-прежнему создает уплотнение под поверхностью, независимо от того, есть ли у него гусеницы или шины.
Исследование: уплотнение комбайна
Другой исследовательский проект в Огайо тестировал зерновоз на 1200 бушелей в сравнении с комбайном John Deere 9600 с другим расположением гусениц. Сдвоенные шины зернового прицепа, безусловно, вызывали наихудшее уплотнение. Результаты (Рисунок 26), от худшего до наименьшего уплотнения:
.Зерновоз с двойными шинами.
Комбайн с одинарными шинами 30.5L32 при давлении 34 фунта на квадратный дюйм.
Комбайн с полугусеничной системой со средним давлением 10 фунтов на квадратный дюйм.
Комбайн с двумя шинами 18.4R38 при давлении 26 фунтов на квадратный дюйм.
Комбайн с широкими шинами 68×50.0-32, накачанный под давлением 24 фунта на квадратный дюйм.
Комбайн с такими же широкими шинами при правильном давлении 15 фунтов на квадратный дюйм.
Обратите внимание, что среднее расчетное давление на грунт полугусеницы составляло около 10 фунтов на квадратный дюйм, но оно давало результаты, которые, по-видимому, сравняли его с шиной с давлением от 26 до 30 фунтов на квадратный дюйм. В основном это происходит из-за направленного вниз давления со стороны направляющих колес.Исследователи предположили, что чем ниже давление накачки, тем лучше для пористости почвы.
Почвы и населенные пункты – InterNACHI®
Вода и воздух занимают поровые пространства – пространство между частицами почвы. Последний ингредиент почвы – органическое вещество. Органическое вещество состоит из мертвых растений и животных, а также миллиардов живых организмов, населяющих почву.
Проблема грунта по отношению к зданию заключается в способности грунта выдерживать нагрузку на конструкцию, оставаясь при этом устойчивым.Обеспечение долгосрочной стабильности требует надлежащего уплотнения и уплотнения почвы до того, как на нее будет возложена постоянная нагрузка. Примерами постоянной нагрузки могут быть фундамент и стены, бетонный пол или плита проезжей части.
В процессе земляных работ почва нарушается, разрыхляя ее и увеличивая пространство между частицами почвы. По этой причине технические условия часто требуют, чтобы фундамент был размещен на ненарушенной почве.
В районах, где дом частично или полностью построен на засыпке, например, в домах, построенных на склонах холмов, эта засыпка должна быть как можно более прочной, прежде чем на нее будет возложена постоянная нагрузка.Делается это путем механического уплотнения почвы. Почва укладывается слоями (так называемые «подъемники»). Каждый слой механически уплотняется ударом, а иногда и вибрацией.
При уплотнении больших площадей, таких как участок на склоне холма, используется тяжелое оборудование. Для небольших площадей, таких как засыпка вокруг стен фундамента подвала, используется трамбующий домкрат, которым управляет один человек.
Уплотнение – это процесс вытеснения воздуха из пространств между частицами почвы. Уплотнение с трамбовкой прыгающего домкрата несколько неточно.При определении точки, в которой почва достаточно плотно уплотнена, оператор слышит звук трамбовки, ударяющейся о почву. Когда почва плотно уплотнена, звук будет иметь звонкий оттенок, который не изменится. Изменение тона указывает на то, что уплотнение все еще происходит.
Уплотнение увеличивает плотность почвы и улучшает ее способность выдерживать нагрузки. На уплотнение влияет ряд факторов:
- Тип почвы (глина, песок, ил, уровень органических веществ и т. Д.))
- Характеристики грунта (однородность, уклон, пластичность и т. Д.)
- Мощность грунта
- Метод уплотнения
- Содержание влаги во время уплотнения.
Почва подвергается как первичному, так и вторичному уплотнению.
Первичное уплотнение кратковременно и происходит в процессе механического уплотнения. Вторичное уплотнение является долгосрочным и происходит после завершения процесса уплотнения и сохранения постоянных нагрузок.
Во время вторичного уплотнения груз, помещенный на почву, медленно вытесняет воду из промежутков между частицами почвы. Когда это произойдет, частицы почвы будут двигаться близко друг к другу и произойдет оседание.Источником веса будет как конструкция, так и вышележащая почва.
Ожидаемая вторичная консолидация увеличивается с увеличением глубины пораженного участка. При выемке грунта с засыпкой глубиной 15 футов будет происходить большее вторичное уплотнение, чем при выемке грунта с засыпкой глубиной 8 футов.
Распространенным сценарием является ситуация, когда сооружение строится частично на ненарушенной почве и частично на уплотненном грунте. Почва в этих двух областях будет консолидироваться с разной скоростью, поскольку вес недавно построенной конструкции выталкивает воду между частицами почвы.Это называется «дифференциальное урегулирование».
Оседание отразится на любой части конструкции, опирающейся на осевший грунт. В должным образом уплотненной почве оседание будет настолько незначительным, что не будет видно никаких доказательств. Чрезвычайная дифференциальная осадка создает напряжения, которые снимаются растрескиванием.
Какие материалы трескаются, зависит от свойств материала и скорости оседания. Сначала треснут более хрупкие материалы. Последствия движения почвы чаще всего проявляются в трещинах в покрытиях внутренних и наружных стен, таких как гипсокартон и штукатурка, а также в стенах кирпичного фундамента.
Даже бетон, который большинство людей считает хрупким, может прогнуться, если давление прилагается медленно в течение длительного периода времени. Если давление будет приложено в течение более короткого периода времени, бетон потрескается.На уплотнение и уплотнение влияет состав почвы. Мелкозернистые почвы имеют большую площадь внутренней поверхности и могут удерживать больше воздуха и воды, чем крупнозернистые почвы.
Вот пример. Гипсокартон состоит из гораздо более твердых частиц, чем цемент.Унция пыли гипсокартона содержит около 5000 квадратных футов внутренней поверхности. Унция цементной пыли содержит около 50 000 квадратных футов внутренней поверхности.
Это означает, что мелкозернистые почвы, такие как глины, имеют большую внутреннюю поверхность, которая может содержать воду. Чтобы вытеснить воду из промежутков между частицами, необходимо преодолеть поверхностное натяжение. «Поверхностное натяжение» – это тенденция воды прилипать к поверхности. Когда вы наполняете стакан водой, это поверхностное натяжение, которое делает уровень воды немного выше по краям, где вода соприкасается с поверхностью стекла.Вода прилипает к стеклу.
Большая площадь внутренней поверхности мелкозернистых грунтов приводит к большему поверхностному натяжению. Мелкозернистые почвы также обычно имеют низкую проницаемость, что означает, что вода движется через них медленно. Эти условия увеличивают время и давление, необходимое для уплотнения почвы. Почвы будут продолжать консолидироваться до тех пор, пока сопротивление давлению материалов, из которых состоит почва, не достигнет равновесия с давлением со стороны веса почвы и конструкции наверху.
На скорость уплотнения влияют состав почвы, уровни влагонасыщения, величина и характер нагрузки на почву, а также состояние уплотнения почвы.
Другая проблема, связанная с влажностью, – это чрезмерное увлажнение почвы. Это может создать условия, при которых вода впитывается в промежутки между частицами почвы. Почва становится менее плотной, что снижает ее способность выдерживать нагрузку.
Насыпная плотность – Измерение | Информационные бюллетени
Ключевые моменты
- Насыпная плотность – это вес почвы в заданном объеме.
- Почвы с насыпной плотностью выше 1,6 г / см3 имеют тенденцию ограничивать рост корней.
- Насыпная плотность увеличивается с уплотнением и имеет тенденцию к увеличению с глубиной.
- Песчаные почвы более склонны к высокой насыпной плотности.
- Насыпную плотность можно использовать для расчета свойств почвы на единицу площади (например, кг / га).
Фон
Насыпная плотность почвы (BD), также известная как насыпная плотность в сухом состоянии, представляет собой вес сухой почвы (M твердых веществ ), деленный на общий объем почвы (V почва ).Общий объем почвы – это совокупный объем твердых частиц и пор, которые могут содержать воздух (V воздух ) или воду (V вода ) или и то, и другое (рисунок 1). Средние значения содержания воздуха, воды и твердого вещества в почве легко измерить и являются полезным показателем физического состояния почвы.
Почва и пористость (количество поровых пространств) отражают размер, форму и расположение частиц и пустот (структуру почвы). И BD, и пористость (V поры ) дают хорошее представление о пригодности для роста корней и проницаемости почвы и жизненно важны для системы почва-растение-атмосфера (Cresswell and Hamilton, 2002; McKenzie et al., 2004). Обычно желательно иметь почву с низким BD (<1,5 г / см 3 ) (Hunt and Gilkes, 1992) для оптимального движения воздуха и воды через почву.
Рисунок 1: Структурный состав почвы, содержащий фракцию почвы (твердые вещества V ) и поровое пространство для воздуха (V воздух ) и воды (V вода ).
Измерение насыпной плотности
Измерение насыпной плотности может быть выполнено, если вы подозреваете, что ваша почва уплотнена, или как часть планов управления удобрениями или орошением (см. Информационный бюллетень «Насыпная плотность – использование на ферме»).Чтобы учесть изменчивость, полезно провести несколько измерений в одном и том же месте с течением времени и на разной глубине в почве, например, на глубинах 10, 30 и 50 см, чтобы посмотреть как на поверхность почвы, так и на подпочву. Также полезно измерить объемную плотность при сравнении методов управления (например, возделываемых и не возделываемых), поскольку физические свойства почвы часто меняются (Hunt and Gilkes, 1992).
Наиболее распространенный метод измерения BD почвы – это сбор известного объема почвы с помощью металлического кольца, вдавленного в почву (неповрежденная сердцевина), и определение веса после высыхания (McKenzie et al., 2004).
Отбор проб почвы
Этот метод лучше всего подходит для влажных почв без гравия. При отборе проб летом можно увлажнить почву вручную, чтобы не повредить сердцевину насыпной плотности. Для этого поставьте бездонную бочку на почву и залейте водой, дав ей естественное увлажнение в течение 24 часов.
Используя соответствующие инструменты (см. Информационную рамку), подготовьте ровную горизонтальную поверхность в почве с помощью лопаты на глубине, на которой вы хотите взять пробы.Вдавите или аккуратно вбейте стальное кольцо в почву. Для защиты кольца можно использовать брусок. Не толкайте кольцо слишком далеко, иначе почва уплотняется. Выкопайте вокруг кольца, не нарушая и не разрыхляя почву, которая в нем находится, и аккуратно удалите его, оставив почву неповрежденной (рис. 2). Удалите излишки почвы с внешней стороны кольца и срежьте ножницами все растения или корни на поверхности почвы). Насыпьте почву в полиэтиленовый пакет и закройте его, отметив дату и место взятия пробы.Распространенными источниками ошибок при измерении BD являются разрушение почвы при отборе проб, неточная обрезка и неточное измерение объема кольца. Гравий может затруднить обрезку керна и дать неточные значения, поэтому лучше брать больше образцов, чтобы уменьшить ошибку таким образом.
Рис. 2: Кольцо насыпной плотности с неповрежденной сердцевиной грунта внутри.
Расчеты
Объем грунта
Объем почвы = объем кольца
Для расчета объема кольца:
i.Измерьте высоту кольца линейкой в см с точностью до миллиметра.
ii. Измерьте диаметр кольца и уменьшите это значение вдвое, чтобы получить радиус®.
iii. Объем кольца (см 3 ) = 3,14 x r 2 x высота кольца.
Если диаметр кольца = 7 см и высота кольца = 10 см Объем кольца = 3,14 x 3,5 x 3,5 x 10 = 384,65 см 3
Масса сухого грунта
Для расчета сухой массы почвы:
i.Взвесьте жаростойкий контейнер в граммах (W 1 ).
ii. Осторожно удалите всю почву из мешка в контейнер. Просушите почву 10 минут в микроволновой печи или 2 часа в обычной духовке при 105ºC.
iii. Когда почва высохнет, взвесьте образец на весах (W 2 ).
iv. Вес сухой почвы (г) = W 2 – W 1
Насыпная плотность
Насыпная плотность (г / см 3 ) = Вес сухой почвы (г) / Объем почвы (см 3 )
Насыпная плотность обычно выражается в мегаграммах на кубический метр (Мг / м 3 ), но также используются числовые эквивалентные единицы г / см 3 и т / м 3 (1 Мг / м 3 = 1 г / см 3 = 1 т / м 3 ) (Cresswell and Hamilton, 2002).
Критические значения уплотнения
Критическое значение объемной плотности для ограничения роста корней варьируется в зависимости от типа почвы (Hunt and Gilkes, 1992), но в целом объемная плотность выше 1,6 г / см 3 имеет тенденцию ограничивать рост корней (McKenzie et al. , 2004 ). Песчаные почвы обычно имеют более высокую насыпную плотность (1,3–1,7 г / см 3 ), чем мелкие илы и глины (1,1–1,6 г / см 3 ), поскольку они имеют более крупное, но меньшее по размеру поровое пространство.В глинистых почвах с хорошей структурой почвы больше порового пространства, потому что частицы очень маленькие, и между ними помещается много маленьких пор. Почвы, богатые органическим веществом (например, торфяные почвы), могут иметь плотность менее 0,5 г / см 3 .
Насыпная плотность увеличивается с уплотнением (см. Информационный бюллетень о уплотнении недр) на глубине, и очень плотные грунты или сильно уплотненные горизонты могут превышать 2,0 г / см. 3 (NLWRA, 2001; Cresswell and Hamilton, 2002).
Грунты с крупными обломками
Фракция почвы, которая проходит через сито 2 мм, является фракцией мелкозема. Остающийся на сите материал (частицы> 2 мм) представляет собой крупные фрагменты и гравий. Наличие гравия существенно влияет на механические и гидравлические свойства почвы. Общее поровое пространство уменьшается в почве с большим количеством гравия, и растения более восприимчивы к эффектам засухи и заболачивания. Если в почве> 10% гравия или камни имеют размер> 2 см, обычные показания насыпной плотности будут неточными, так как большинство крупных фрагментов имеют насыпную плотность 2.2–3,0 г / см 3 (McKenzie et al., 2002). Это важно понимать при использовании измерений объемной плотности для расчета уровней питательных веществ на основе площади, поскольку это приведет к завышению оценки.
Метод выемки грунта или замены воды полезен для почв, которые слишком рыхлые, чтобы собрать неповрежденный керн или комок, или для почв, содержащих гравий. Как неповрежденный комок, так и методы раскопок подробно описаны Cresswell and Hamilton (2002).
Информацию об интерпретации результатов насыпной плотности и ее использовании в расчетах общего содержания питательных веществ и углерода см. В информационном бюллетене «Насыпная плотность – использование на ферме».
Дополнительная литература и ссылки
Крессвелл HP и Гамильтон (2002) Анализ размера частиц. В: Физические измерения и интерпретация почвы для оценки земель . (Редакторы NJ McKenzie, HP Cresswell и KJ Coughlan) Издательство CSIRO: Коллингвуд, Виктория. pp 224-239.
Хант Н. и Гилкс Р. (1992) Справочник по мониторингу фермерских хозяйств . Университет Западной Австралии: Недлендс, Вашингтон.
McKenzie N, Coughlan K и Cresswell H (2002) Физические измерения и интерпретация почвы для оценки земель .Издательство CSIRO: Коллингвуд, Виктория.
McKenzie NJ, Jacquier DJ, Isbell RF, Brown KL (2004) Австралийские почвы и ландшафты Иллюстрированный сборник . Издательство CSIRO: Коллингвуд, Виктория.
NLWRA (2001) Оценка сельского хозяйства Австралии 2001. Национальный аудит земельных и водных ресурсов.
Авторы: Кэтрин Браун, (Университет Западной Австралии) и Эндрю Верретт, (Департамент сельского хозяйства и продовольствия, Западная Австралия).
Этот информационный бюллетень gradient.org.au был профинансирован программой «Здоровые почвы для устойчивых ферм», инициативой Фонда природного наследия правительства Австралии в партнерстве с GRDC, а также регионами WA NRM Совета водозабора Avon и NRM Южного побережья. через инвестиции в Национальный план действий по солености и качеству воды и Национальную программу ухода за землями правительства Западной Австралии и Австралии.
Главный исполнительный директор Департамента сельского хозяйства и продовольствия штата Западная Австралия и Университета Западной Австралии не несут никакой ответственности по причине небрежности или иным образом, возникшей в результате использования или разглашения этой информации или любой ее части.
Земляные работы по выемке и уплотнению; Что нужно знать
Выемка земли и профилирование могут стать увлекательной частью строительного проекта. Приятно смотреть на мощное тяжелое оборудование, которое с максимальной пользой использует опытный оператор. Объем земляных работ варьируется от рытья опор для небольшого здания до перемещения миллионов кубических ярдов земли. Однако все земляные работы объединяет то, что тщательное планирование является ключом к успеху.
Необходимо дать определение нескольким терминам. Раскопки часто используют как широкий термин, который включает выемку (или выемку) и насыпь (или насыпь). Вырез определяется как удаление материала для снижения отметки области. Заливка определяется как размещение материала для повышения отметки области. Уплотнение должно происходить во время операции заполнения, чтобы увеличить плотность укладываемого грунта. Другой распространенный сбой в земляных работах – это выемка грунта и рытье траншеи.
Набухание и усадка – два важных и часто неправильно понимаемых термина. Рассмотрим простой пример: вырыть яму объемом 1,0 кубический ярд с помощью лопаты и бросить землю в тачки. В земле 1,0 кубический ярд почвы находится в девственном (или естественном) состоянии. После того, как ее перекопали в тачки, почва находится в рыхлом (или с меньшей плотностью) состоянии и, вероятно, имеет объем от 1,2 до 1,4 кубических ярдов. Этот процесс увеличения объема почвы от девственного состояния до рыхлого называется набуханием.
С другой стороны, усадка возникает, когда та же самая почва помещается обратно в яму объемом один кубический ярд и должным образом уплотняется. В зависимости от типа почвы конечный объем может составлять 0,9 куб. Ярда или 1,1 куб. Ярда. Вышеупомянутое объясняет, почему, когда кто-то копает и повторно засыпает яму, иногда не хватает почвы для заполнения ямы, а иногда остается почва.
Отличная таблица, показывающая веса, коэффициенты набухания и коэффициенты усадки для различных материалов, приведена ниже.Таблица характеристик – это постоянно растущий объем знаний, в который за последние 100 лет внесли свой вклад множество авторов. Все указанные значения обязательно являются приблизительными. Каменные материалы обозначены следующим образом: I – вулканический; S, осадочный; или М, метаморфический. Кубический ярд в колонне среза предполагает естественную влажность и имеет отклонение + 10%. Свободный столбец кубического ярда имеет отклонение +33 процента. Например, следует предположить, что влажная глина с данным набуханием 40 процентов имеет диапазон набухания от 30 до 53 процентов.2 процента. Кубический ярд в колонне наполнения также имеет отклонение на 33% и предполагает механическое уплотнение при соответствующем уровне влажности.
При выемке грунта и профилировании площадки наиболее частыми проблемами являются неправильное уплотнение, неправильные окончательные отметки и работа за пределами указанной области, которая должна быть нарушена. Не существует волшебства, простых ответов или процедур, которые позволили бы избежать вышеуказанных проблем.
Неправильное уплотнение почвы – распространенная и часто трудная проблема.В предыдущем разделе «Инженерия и геология почвы» обсуждались технические аспекты уплотнения почвы. Практические, полевые задачи включают:
- Почва слишком влажная: ее необходимо аэрировать или смешать с сушильными материалами.
- Почва для высыхания: необходимо добавить воды
- Подъемники для слишком глубокого уплотнения: уменьшить глубину подъема
- Различные типы почвы: проверьте, соответствует ли тест Проктора (тест, который измеряет плотность образца почвы для других тестов) типу встречающейся почвы
- Инспектор грунта задерживает операции по уплотнению, чтобы провести испытания: попытаться создать командную среду и спланировать проведение испытаний для всеобщего блага.
Проблемы с неправильными окончательными отметками и выходом за рамки указанных в контракте ограничений более очевидны. Подрядчик земляных работ, безусловно, должен нести ответственность за свою работу, единственная реальная проблема связана с определением ошибки. Разработчик сайта должен знать об этой потенциальной проблеме и разработать собственное решение для ее решения.
В целом, лучшие решения следующие:
- Начальник строительства должен быть осведомлен о конкретных требованиях в максимально возможной степени (т.е. понимать всю работу) и иногда проводить выборочную проверку.
- По возможности субподрядчики, следующие за классификацией площадки, должны проверить и принять предыдущие работы до начала.
Несмотря на то, что подрядчик по земляным работам несет полную ответственность за свою работу, график проекта или качество могут быть нарушены, если ошибки будут обнаружены слишком поздно. Выше приведены некоторые проблемы, с которыми можно столкнуться в этой области, и возможные решения. Во многих случаях решения кажутся простыми в применении, но довольно сложными и дорогостоящими.Независимо от сложности, работа на сайте почти всегда имеет решающее значение для своевременного завершения проекта и должна быть приоритетом для разработчика сайта, как и C&C Site Development. Важно иметь опыт, который охватывает огромное количество проектов в одной и той же области, чтобы полностью понимать и преодолевать возможные результаты.
Помните, что если у вас намечается какой-то проект, сейчас самое время позвонить в C&C Site Development за помощью и советом.Мы можем перенести ваш проект с необработанной площади на готовую площадку так же легко, как позвонив в C&C, позвоните нам сейчас, мы можем помочь:
C&C Site Development готова помочь вам сегодня.- Мы предлагаем опыт и лидерство посредством консультационных услуг на всех этапах строительства, повышая эффективность и, в конечном итоге, прибыльность.
- Наша ответственная практика проведения торгов вместе с нашими эффективными и профессиональными административными услугами доказала свою эффективность при запуске и успешном завершении проектов при постоянной поддержке.
- Наши системы и философия находятся на переднем крае отраслевых стандартов, а цели, которые мы ставим, используя проверенные тактики, повышают эффективность проектов и их прибыльность.
Влияние уплотнения почвы
Введение
Угроза уплотнения почвы сегодня больше, чем в прошлом, из-за резкого увеличения размеров сельскохозяйственного оборудования (рис. 1).Поэтому производители должны уделять уплотнению почвы больше внимания, чем раньше. В этом информационном бюллетене мы обсудим последствия уплотнения почвы и кратко определим способы его предотвращения или смягчения.
Рис. 1. Вес трактора резко увеличился с 1950-х годов. Соун Б. Д. и Ван Оуверкерк. 1998. «Уплотнение почвы: глобальная угроза устойчивому землепользованию». Достижения в геоэкологии 31: 517-525.
Влияние уплотнения на урожайность
Влияние уплотнения почвы на корма
Влияние дорожного движения на люцерну и травяной дерново является комбинацией уплотнения почвы и повреждения древостоя.В недавнем исследовании, проведенном в Висконсине и Айове, были зарегистрированы ежегодные потери урожая люцерны до 37 процентов из-за нормального движения на полях. На основе этой работы был инициирован многосторонний проект, чтобы лучше понять потери урожая из-за трафика люцерны. Потери доходности колеблются от 1 до 34 процентов (Рисунок 2). Повреждение насаждений люцерны намного больше через 5 дней после скашивания, чем через 2 дня после скашивания, что свидетельствует о важности своевременной уборки силоса или сена с поля.
Рисунок 2.Потери урожая из-за прохождения люцерны через 2 и 5 дней после обрезки. Сто процентов делянок шесть раз обкатили трактором мощностью 100 л.с. Ундерсандер, Д. 2003. Личное сообщение.
Влияние уплотнения почвы на пахотную почву
Обработка почвы часто проводится для удаления колеи, и фермеры предполагают, что она заботится об уплотнении почвы. Таким образом, фермеры становятся беспечными и игнорируют условия влажности почвы для движения транспорта и другие важные принципы предотвращения уплотнения почвы, полагая, что они всегда могут решить проблему с помощью обработки почвы.
Важно различать уплотнение верхнего и нижнего слоев почвы. Исследования показали, что обработка почвы может смягчить последствия уплотнения верхнего слоя почвы на песчаных почвах в течение 1 года. Однако на более тяжелых почвах требуется больше проходов обработки и повторяющиеся циклы замораживания-сушки, чтобы смягчить эффекты уплотнения поверхности. Таким образом, уплотнение верхнего слоя почвы снижает урожайность на этих почвах, несмотря на обработку почвы. Поскольку большинство почв Пенсильвании содержат значительное количество глины в поверхностных горизонтах, уплотнение верхнего слоя почвы может снизить урожайность даже при обработке почвы.
Уплотнение грунта ниже глубины нормальной обработки почвы. Исследования показывают, что уплотнение грунта не снижается циклами замораживания-оттаивания и увлажнения-сушки на любом типе почвы. В рамках международного исследования, которое включало обработку почвы после уплотнения, средние потери урожайности в первый год составили примерно 15 процентов, хотя результаты менялись от года к году и от участка к участку (Рисунок 3). Считалось, что эта потеря в первый год в первую очередь связана с остаточным эффектом уплотнения верхнего слоя почвы.Без повторного уплотнения потери урожая снизились примерно до 3 процентов через 10 лет после уплотнения. Окончательную потерю урожая, которая, скорее всего, возникла из-за уплотнения грунта, можно считать постоянным. Эффекты уплотнения грунта возникают из-за использования высоких осевых нагрузок (10 тонн и более) на влажной почве и наблюдаются на всех типах почв (включая песчаные почвы).
Рисунок 3. Относительная урожайность на уплотненной почве по сравнению с неуплотненной почвой с отвальной вспашкой. Сто процентов полей в нескольких местах в северных широтах было четыре раза обкатано с 10-тонной осевой нагрузкой и накачанными шинами 40 фунтов на квадратный дюйм.Hakansson, I. и R.C. Reeder. 1994. «Уплотнение почвы транспортными средствами с высокой осевой нагрузкой – степень, устойчивость и реакция растений». Исследование обработки почвы 29: 277-304.
Обработка почвы также может привести к образованию почвообрабатывающего поддона. Наиболее вредным видом обработки почвы является отвальная вспашка с одним колесом (или лошадью) в борозде, что вызывает прямое уплотнение почвы. Пахота с отвалом на земле, безусловно, предпочтительнее этой практики. Однако даже в этом случае отвальный плуг может вызвать уплотнение непосредственно под плугом.Диск – еще один инструмент, который может вызвать образование такой посуды. В наших исследованиях в Пенсильвании мы также наблюдали образование плугов на молочных фермах, которые использовали чизельный плуг (рис. 4).
Рис. 4. Сопротивление проникновению на молочной ферме PA, где для подготовки поля использовалось долото / диск. Чуть ниже глубины чизельной вспашки был обнаружен поддон.
Для подготовки семенного ложа в уплотненной почве требуется больше операций по обработке почвы и больше мощности. Это приводит к усиленному измельчению почвы и общему ухудшению структуры почвы, что делает ее более чувствительной к повторному уплотнению.Таким образом, уплотнение может вызвать порочную спираль обработки почвы, которая ухудшает качество почвы (рис. 5) и приводит к увеличению выбросов парниковых газов, двуокиси углерода, метана и закиси азота из-за повышенного расхода топлива и более медленной фильтрации воды. Потери аммиака также увеличиваются из-за уменьшения инфильтрации уплотненной почвы. Увеличение стока вызовет усиление эрозии и потерь питательных веществ и пестицидов в поверхностные воды. В то же время снижение просачивания через почвенный профиль ограничивает возможность пополнения подземных вод из уплотненных почв.Таким образом, эта порочная спираль уплотнения / обработки почвы представляет собой экологическую угрозу с последствиями, выходящими за рамки отдельного поля.
Рисунок 5. Динамика современных животноводческих ферм может легко привести к нисходящей спирали деградации почвы с уплотнением и обработкой почвы.
Влияние уплотнения почвы на производство сельскохозяйственных культур при нулевой обработке
Методика нулевой обработки почвы имеет множество преимуществ по сравнению с обработкой почвы – снижение трудозатрат, снижение затрат на оборудование, меньший сток и эрозию, повышенная засухоустойчивость сельскохозяйственных культур и более высокое содержание органических веществ и биологическая активность.Более высокое содержание органического вещества и биологическая активность при нулевой обработке почвы делают почву более устойчивой к ее уплотнению. Одно исследование очень хорошо это иллюстрирует (Рисунок 6). Верхний слой почвы с полей с длительной нулевой и традиционной обработкой почвы подвергался стандартной уплотнительной обработке при различной влажности. «Тест на плотность по Проктору» используется для определения максимальной уплотняемости почвы. Обычная почва для обработки почвы может быть уплотнена до максимальной плотности 1,65 г / см 3 , что считается ограничением для корней для этой почвы.Почву с нулевой обработкой почвы можно было уплотнить только до 1,40 г / см 3 , что не считается ограничением для корней. Таким образом, уплотнение верхнего слоя почвы не будет проблемой на полях с нулевой обработкой почвы. Повышенная твердость почв для нулевой обработки почвы делает их более доступными, а поля для нулевой обработки почвы со временем могут стать лучше осушаемыми.
Рис. 6. Поверхность долговременной почвы с нулевой обработкой почвы не может быть уплотнена до такой же плотности, как почва, обрабатываемая традиционным способом, из-за более высокого содержания органических веществ. Томас, Г.В., Г.Р. Хаслер и Р. Л. Блевинс. 1996. «Влияние органического вещества и обработки почвы на максимальное уплотнение почвы с помощью теста Проктора». Почвоведение 161: 502-508.
При этом уплотнение все еще может иметь значительное негативное влияние на продуктивность почв с нулевой обработкой почвы. В нашем собственном исследовании мы наблюдали снижение урожайности на 30 бушелей в засушливый 2002 год и снижение урожайности на 20 бушелей во влажный 2003 год (Рисунок 7). Согласно исследованиям, проведенным в Кентукки, урожай кукурузы на чрезвычайно уплотненной почве с нулевой обработкой почвы составил всего 2 процента от урожая на неуплотненной почве в первый год после уплотнения (рис. 8).Примечательно, что урожайность вернулась (без обработки почвы) до 85 процентов на второй год после уплотнения и стабилизировалась примерно на 93 процентах после этого. Это показывает устойчивость почв для нулевой обработки почвы за счет биологических факторов, но также показывает, что уплотнение может привести к очень значительным краткосрочным и долгосрочным потерям урожая при нулевой обработке почвы.
Рисунок 7. Уплотнение почвы может привести к значительным потерям урожая при нулевой обработке почвы. Сто процентов поля было уплотнено 30-тонным навозным грузовиком с накачанными шинами на 100 фунтов на квадратный дюйм.(Испытание штата Пенсильвания в округе Центр.)
Рис. 8. Снижение урожайности кукурузы из-за сильного уплотнения верхних 12 дюймов почвы с длительной нулевой обработкой почвы в Кентукки. Мердок, Л. 2002. Личное общение.
Влияние уплотнения почвы на состояние почвы и сельскохозяйственных культур
В этом разделе мы рассмотрим влияние уплотнения почвы на физические, химические и биологические свойства почвы, а также на рост и здоровье сельскохозяйственных культур.
Плотность почвы
Самым прямым следствием уплотнения почвы является увеличение объемной плотности почвы.Насыпная плотность – это масса высушенного в печи почвы в стандартном объеме почвы, часто выражаемая в граммах на кубический сантиметр (г / см3). Оптимальная насыпная плотность почв зависит от текстуры почвы (Таблица 1). Когда объемная плотность превышает определенный уровень, рост корней ограничивается. Здесь следует сделать предостережение относительно влияния обработки почвы на насыпную плотность. Почвы с нулевой обработкой почвы часто имеют более высокую насыпную плотность, чем недавно вспаханные почвы. Однако из-за более высокого содержания органического вещества в верхнем слое почвы и большей биологической активности структура почвы с нулевой обработкой почвы может быть более благоприятной для роста корней, чем структура культивируемой почвы, несмотря на более высокую насыпную плотность.
Текстура почвы | Ideal Насыпная плотность | Насыпная плотность ограничивает рост корней |
---|---|---|
—– г / см 3 —– | ||
USDA. 1999. Руководство по набору для проверки качества почвы. Институт качества почвы Министерства сельского хозяйства США. Вашингтон, округ Колумбия | ||
Песок, суглинистый песок | <1,60 | > 1.80 |
Суглинок, суглинок | <1,40 | > 1,80 |
Суглинок супесчаный, суглинок | <1,40 | > 1,75 |
Ил6 9026 906 суглинок 1,75 | ||
Суглинок илистый суглинок | <1,40 | > 1,65 |
Глина песчанистая, илистая глина | <1,10 | > 1,58 |
Глина | <1.10 | > 1,47 |
Пористость
Из-за увеличения насыпной плотности пористость грунта уменьшается. На крупные поры (так называемые макропоры), необходимые для движения воды и воздуха в почве, в первую очередь влияет уплотнение почвы. Исследования показали, что большинству корней растений для роста требуется более чем 10-процентная пористость, заполненная воздухом. Количество дней с адекватным процентом заполненной воздухом пористости будет сокращено из-за уплотнения, что отрицательно скажется на росте и функции корня.Важно отметить, что обработка уплотненных почв делает их более восприимчивыми к повторному уплотнению. В одном исследовании общая пористость и макропористость пастбища сравнивалась с таковой у плуга в пахотной почве. В одном случае чаша плуга никогда не разбивалась из-за образования грунта, тогда как в другом случае чаша плуга была разбита, но поддон восстановился после многих лет нормальной работы на поле и обработки почвы. Результаты демонстрируют уменьшение крупных пор в поддоне плуга и худшее состояние повторно уплотненного поддона плуга (Рисунок 9).Почва с длительной нулевой обработкой почвы, не подвергавшаяся уплотнению, будет в таком же состоянии, как и пастбищная почва.
Рис. 9. Общая пористость и макропористость были значительно уменьшены в исходной и загрунтованной, но впоследствии повторно уплотненной плуге по сравнению с неуплотненным пастбищем. По материалам Kooistra, M.J. и O.H. Boersma. 1994. “Уплотнение грунта в голландских морских супесях: методы рыхления и эффекты”. Исследование обработки почвы 29: 237-247.
Сопротивление проникновению
Проникновение корней ограничено, если корни сталкиваются с большим сопротивлением.Исследования полностью нарушенной почвы, уплотненной до различной плотности, показали, что рост корней линейно уменьшается с сопротивлением проникновению, начиная с 100 фунтов на квадратный дюйм, пока рост корней полностью не прекращается при 300 фунтах на квадратный дюйм (Рисунок 10). Сопротивление проникновению является лучшим индикатором влияния уплотнения почвы на рост корней, чем объемная плотность, поскольку результаты можно интерпретировать независимо от текстуры почвы. Более подробную информацию о сопротивлении проникновению можно найти в разделе «Диагностика уплотнения почвы с помощью пенетрометра» (тестер уплотнения грунта).
Рисунок 10. Взаимосвязь между сопротивлением проникновению и проникновением корня. По материалам Тейлора, Х. М., Г. М. Роберсона и Дж. Дж. Паркера. 1966. “Соотношение прочности почвы-проникновения корней для средне- и крупнозернистых почвенных материалов”. Почвоведение 102: 18-22.
Структура почвы
Уплотнение почвы разрушает структуру почвы и приводит к более массивной структуре почвы с меньшим количеством естественных пустот (Рисунок 11). В пастбищной почве (подобной почве с нулевой обработкой почвы, которая не обрабатывалась в течение длительного времени) структура почвы очень хорошо развита из-за воздействия повышенного содержания органического вещества и тонкой корневой системы трав.Даже под дождем такая почва не смывается, потому что агрегаты очень стабильны и инфильтрация высока. Поры можно увидеть под верхним слоем почвы из-за воздействия почвенных животных, таких как дождевые черви и корни. Однако на вспаханной почве с плугом структура верхнего слоя почвы намного слабее. Капли дождя, попадая на поверхность, быстро образуют уплотнение, которое при высыхании превращается в корку. Инфильтрация на этой почве будет быстро уменьшаться. На глубине обработки почвы образовался очень плотный поддон, а на глубине вспашки видно несколько пор, созданных почвенными животными и разложившимися корнями.Обработка поддона плуга помогает, но не улучшает структуру почвы (Рисунок 11). Для улучшения структуры почвы необходимо стимулирование биологической активности почвы за счет уменьшения обработки почвы и увеличения поступления органических веществ.
- Сильно развитая структура, крошка
- Слабо развитая структура, крошка
- Почвенный материал с множеством старых корневых каналов и каналов дождевых червей
- Слабо развитая структура, комковатая
- Плуг, уплотненный, мало корневых каналов или каналов дождевых червей
- Почва материал с корневыми каналами
- Сломанный поддон плуга с большими воздушными карманами
- Слабо развитая структура
Рисунок 11.Уплотнение почвы повреждает структуру почвы, а обработка почвы мало способствует ее улучшению. По материалам Kooistra, M.J. и O.H. Boersma. 1994. “Уплотнение грунта в голландских морских супесях: методы рыхления и эффекты”. Исследование обработки почвы 29: 237-247.
Биота почвы
Почва содержит огромное количество организмов. Их можно разделить на микро-, мезо- и макрофауну (мелкую, среднюю и крупную). Бактерии и грибы – важная микрофауна почвы, которая питается органическими веществами или живыми растениями.На акре луга содержится 0,5-1 тонна бактерий и 1-2 тонны биомассы грибов. В той же почве содержится примерно 10 тонн живых корней трав и 40 тонн «мертвого» органического вещества. Большинство бактерий и грибов выполняют полезные функции, такие как разложение растительных остатков, высвобождение питательных веществ и образование агрегатов. Некоторые бактерии, такие как ризобии, обеспечивают растения азотом. Некоторые грибы живут в симбиозе с корнями растений, способствуя усвоению неподвижных питательных веществ, таких как фосфор и калий.Лишь некоторые бактерии и грибки имеют отрицательные эффекты (например, болезни растений). Бактерии и грибы лежат в основе пищевой сети почвы (рис. 12). Они питаются другими организмами, такими как простейшие, нематоды и членистоногие (некоторые нематоды питаются корнями растений), которые питаются более крупными почвенными животными. Наличие большего разнообразия почвенных организмов помогает держать «плохих» насекомых под контролем, потому что хищников тоже может быть много.
Рисунок 12. Почвенная пищевая сеть. Предоставлено Службой охраны природных ресурсов Министерства сельского хозяйства США.
Уплотнение почвы влияет на среду обитания почвенных организмов за счет уменьшения размера пор и изменения физической среды почвы. Самые мелкие организмы, такие как бактерии и грибки, могут жить в порах, которые сложно уплотнить. Даже простейшие очень малы и вряд ли будут напрямую затронуты уплотнением. С другой стороны, количество нематод, скорее всего, уменьшится за счет уплотнения почвы, поскольку их поровое пространство может быть уменьшено. Это может повлиять как на «плохих» (питающихся корнями), так и «хороших» (питающихся грибами и бактериями) нематод.Поскольку уплотнение может уменьшить популяцию нематод, питающихся грибами и бактериями, вполне возможно, что популяция бактерий увеличивается с уплотнением, потому что становится меньше хищников.
Другой эффект уплотнения почвенной биоты является косвенным. Из-за более медленного просачивания воды в уплотненную почву могут возникать продолжительные периоды насыщения. Некоторые почвенные организмы затем начинают использовать нитраты вместо кислорода, и происходит денитрификация. Некоторые анаэробные бактерии выделяют сероводород (запах тухлых яиц, типичный для болот).Этот газ токсичен для многих растений. В целом разложение органического вещества в уплотненных почвах будет происходить медленнее, и будет происходить меньшая биологическая активность.
Более крупные почвенные животные (мезо- и макрофауна) также страдают от уплотнения почвы. Не роющие животные, такие как клещи, коллемболы и личинки мух, будут испытывать особые трудности при жизни в уплотненной почве. Роющие животные, такие как дождевые черви, термиты, муравьи и жуки, могут лучше защищаться, но все равно будут страдать от негативных последствий.В исследовании, проведенном в Австралии, уплотнение влажной почвы 10-тонной осевой нагрузкой уменьшило общую численность макрофауны. Количество дождевых червей уменьшилось со 166 000 до 8 000 на акр из-за сильного уплотнения (Таблица 2). Уплотнение сухой почвы 6-тонной осевой нагрузкой не оказало негативного воздействия на макрофауну. Количество туннелей для земляных червей было уменьшено в почвах с высокой насыпной плотностью, что указывает на снижение активности дождевых червей (рис. 13).
Обработка уплотнением | Земляные черви (кол-во на акр) |
---|---|
По материалам Рэдфорда, Б. Дж., А. К. Уилсон-Раммени, Г. Б. Симпсона, К. Л. Белла и М. А. Фергюсона. 2001. «Уплотненная почва влияет на популяции почвенной макрофауны в полузасушливой среде в центральном Квинсленде». Биология и биохимия почвы 33: 1, 869-1, 872. | |
Без уплотнения | 166,000 |
Ежегодное уплотнение влажной почвы при нагрузке на ось 10 тонн | 8000 |
Ежегодное уплотнение влажная почва при нагрузке на ось 6 т первый год | 100000 |
Рисунок 13.Уплотнение почвы сокращает проход земляных червей. Раштон, С. П. 1986. «Влияние уплотнения почвы на Lumbricus terrestris и его возможные последствия для населения на землях, восстановленных в результате открытой добычи угля». Педология 29: 85-90.
Почвенные организмы чрезвычайно важны для продуктивности почвы и экологических функций, особенно при нулевой обработке почвы. Поэтому снижение биологической активности из-за уплотнения вызывает большую озабоченность. К счастью, более высокая биологическая активность в почвах с нулевой обработкой также помогает им быстрее восстанавливаться после уплотнения, чем пахотные почвы.Однако, чтобы гарантировать высокую продуктивность почвы, необходимо избегать ее уплотнения.
Проникновение и просачивание воды
Уплотнение почвы вызывает уменьшение крупных пор (называемых макропорами), что приводит к гораздо более низкой скорости инфильтрации воды в почву, а также к снижению насыщенной гидравлической проводимости. Насыщенная гидравлическая проводимость – это движение воды через почву, когда почва полностью насыщена водой. Ненасыщенная гидравлическая проводимость – это движение воды в почве, которая не насыщена.Ненасыщенная гидравлическая проводимость иногда увеличивается из-за уплотнения. Ненасыщенная гидравлическая проводимость важна, когда вода должна перейти к корням. Таким образом, уплотненные почвы иногда не так чувствительны к засухе, как неуплотненные почвы – если предположить, что корневая система одинакового размера в обоих случаях, что обычно не так. Как правило, чистый эффект уплотнения заключается в том, что посевы легче повреждаются засухой из-за небольшой корневой системы.
В эксперименте на пастбищах объем макропор уплотненной почвы был вдвое меньше, чем объем неуплотненной почвы (Таблица 3).Резко снизились воздухопроницаемость и скорость инфильтрации. Результатом будет уменьшенная аэрация и повышенный сток.
Уплотнение | Объем макропор (футы 3 / фут 3 ) | Воздухопроницаемость (мм 2 ) | Скорость инфильтрации (дюйм / час) |
---|---|---|---|
Неуплотненный | 0,119 | 55 | 1,06 |
Уплотненный | 0,044 | 1 | 0,25 |
степень уплотнения почвы будет высокая почва комковатая и грубая. Подготовка посевного ложа к измельчению комьев включает несколько проходов трактором по полю.Это уменьшит шероховатость поверхности, но уплотненная почва, которая была обработана, имеет более крупные агрегаты, чем та же почва, которая не была уплотнена. Таким образом, степень инфильтрации может быть достаточно высокой в уплотненной почве сразу после обработки почвы. Воздействие капель дождя на поверхность почвы и последующие поездки по полю во многом сводят на нет это очевидное преимущество. Это видно в поле в виде застаивания воды в колее колес (Рисунок 14, см. Следующую страницу). На этих следах колес обычно начинается сток и эрозия, особенно если они проходят вверх и вниз по склону.
Рис. 14. Уплотнение почвы снижает инфильтрацию.
Рост корней
Рост корней в уплотненных почвах ограничен, поскольку корни могут развивать максимальное давление, выше которого они не могут расширяться в почве. Как упоминалось выше, максимальное сопротивление проникновению (измеренное стандартным коническим пенетрометром), которое могут преодолеть корни, составляет 300 фунтов на квадратный дюйм. Во многих случаях корни могут прорасти через трещины и трещины, поэтому полное отсутствие роста корней маловероятно.Вместо этого корни будут концентрироваться в областях над или рядом с уплотненными зонами в почве (Рисунок 15). Помимо эффекта сопротивления проникновению, корни также страдают от повышенных анаэробных условий в уплотненных почвах. Снижение роста корней ограничивает такие функции корней, как закрепление растений и поглощение воды и питательных веществ. Кроме того, было обнаружено, что уплотнение почвы снижает клубенькообразование бобовых культур, таких как соя, что может ограничивать азотное питание этих культур.
Рисунок 15.В неуплотненной почве (слева) корни занимают больший объем почвы, чем в уплотненной (справа). По материалам Keisling, T. К., Дж. Т. Бэтчелор, О.А. Портье. 1995. «Морфология корней сои в почвах с почвообрабатывающими лотками и без них в нижнем течении долины реки Миссисипи». Журнал питания растений 18: 373-384.
Поглощение питательных веществ
Уплотнение почвы влияет на усвоение питательных веществ. На азот из-за уплотнения влияет несколько способов: (1) более слабый внутренний дренаж почвы приведет к большим потерям в результате дентрификации и меньшей минерализации органического азота; (2) потери нитратов при выщелачивании уменьшатся; (3) потеря органического азота (в органическом веществе) и азотных удобрений, вносимых с поверхности, может увеличиться; и (4) диффузия нитратов и аммония к корням растений будет медленнее в уплотненных влажных почвах, но быстрее – в сухих.Во влажном умеренном климате – как в Пенсильвании – уплотнение почвы в первую очередь увеличивает потери от денитрификации и снижает минерализацию азота. В одном исследовании на супесчаных песках во влажном умеренном климате минерализация азота снизилась на 33 процента, а степень денитрификации увеличилась на 20 процентов во влажный год. В исследовании с райграсом необходимо было более чем вдвое увеличить количество азота в уплотненной почве для достижения того же выхода сухого вещества (рис. 16). Таким образом, уплотнение приводит к менее эффективному использованию азота и необходимости вносить больше при том же потенциале урожайности.
Рис. 16. Кривая азотной реакции райграса на суглинке в Шотландии в уплотненной и неуплотненной почве. Для достижения той же урожайности в 2 тонны / акр необходимо было внести вдвое больше азота. Дуглас, Дж. Т. и К. Э. Кроуфорд. 1993. «Реакция травы райграса на движение колес и внесенный азот». Наука о травах 48: 91-100.
Уплотнение сильно влияет на поглощение фосфора, потому что фосфор очень неподвижен в почве. Для усвоения фосфора необходимы обширные корневые системы.Поскольку уплотнение снижает рост корней, поглощение фосфора в уплотненной почве затруднено (Рисунок 17). Поглощение калия будет затронуто так же, как и фосфор.
Рис. 17. Поглощение и концентрация фосфора в зерне и соломе снижаются из-за уплотнения почвы. Lipiec, J., and W. Stepniewski. 1995. “Влияние систем уплотнения почвы и обработки почвы на поглощение и потери питательных веществ”. Исследование обработки почвы 35: 37-52.
Управление уплотнением почвы
Основная цель этого информационного бюллетеня состояла в том, чтобы рассмотреть влияние уплотнения почвы на свойства почвы и рост сельскохозяйственных культур.Уплотнение почвы увеличивает ее плотность, снижает пористость (особенно макропористость) и приводит к увеличению сопротивления проникновению и ухудшению структуры почвы. Эта деградация усиливается, когда обработка почвы используется для разрушения уплотненной почвы. Биота почвы страдает от уплотнения. Например, количество дождевых червей и их активность снизятся в уплотненных почвах; инфильтрация и просачивание воды в уплотненных почвах медленнее; рост корней будет подавлен из-за уплотнения почвы, что приведет к снижению поглощения неподвижных питательных веществ, таких как фосфор и калий; и увеличение потерь азота можно ожидать из-за продолжительных периодов насыщения в уплотненных почвах.Таким образом, необходимо ограничение уплотнения почвы. Ниже приведены несколько советов по управлению уплотнением. Более подробная информация доступна в информационном бюллетене «Как избежать уплотнения почвы».
- Избегайте перемещения влажной почвы. Уплотнять можно только влажную почву. Поля не должны передаваться, если они не превышают лимит пластичности или влажнее. Чтобы проверить, находится ли почва на пределе пластичности, сначала возьмите горсть почвы. Если вы легко можете сделать мяч, месив эту почву, условия не подходят для движения по полю.Искусственный дренаж может помочь увеличить количество дней движения на плохо дренированной почве.
- Не допускайте нагрузки на ось ниже 10 тонн. Уплотнение грунта вызвано осевой нагрузкой и в основном носит постоянный характер. Чтобы избежать уплотнения грунта, поддерживайте осевые нагрузки ниже 10 тонн на ось, предпочтительно менее 6 тонн на ось.
- Уменьшите контактное давление, используя плавающие шины, двойные гусеницы или гусеницы. Уплотнение верхнего слоя почвы вызвано высоким контактным давлением. Чтобы уменьшить контактное давление, необходимо распределить нагрузку на большую площадь.Это можно сделать за счет снижения внутреннего давления. Основное правило гласит, что давление в шинах такое же, как и контактное давление. Шины, накачанные до 100 фунтов на квадратный дюйм, такие как шины для грузовых автомобилей, не должны находиться в поле. Чтобы иметь возможность нести груз при низком давлении в шине, необходимы шины большего размера или несколько, отсюда и необходимость во флотационных шинах и двойных шинах. Шины большого диаметра также помогают увеличить след от шин. Гусеницы помогают распределить нагрузку на большой площади, но наличие нескольких осей под гусеницами необходимо, чтобы избежать резких скачков давления.Гусеницы имеют преимущество перед двойным уменьшением контактного давления без увеличения площади обрабатываемого поля.
- Уменьшите площадь проезжей части за счет увеличения ширины полосы и ширины транспортного средства или за счет уменьшения количества поездок. Уменьшите площадь поля, подверженного движению, за счет увеличения ширины валка разбрасывателя навоза или расстояния между колесами, чтобы отдельные колеи колес были расположены более широко. Использование крупногабаритного оборудования и нулевой обработки почвы может сократить количество поездок по полю.Очень многообещающий подход – использовать постоянные полосы движения и никогда не использовать тяжелую технику в зоне между полосами движения. Недостатком такого подхода является необходимость регулировки расстояния между колесами на всей тяжелой технике.
- Повышение содержания органических веществ в почве и ее жизнеспособности. Почва с высоким содержанием органического вещества и благоприятная для почвенных организмов более устойчива к уплотнению и может лучше восстанавливаться после небольшого повреждения уплотнением. Чтобы увеличить содержание органических веществ, возвращайте растительные остатки в почву, выращивайте покровные культуры в межсезонье и используйте компост и навоз.Управляйте для максимальной производительности, чтобы оптимизировать попадание органических веществ в почву. Уменьшите потери органических веществ за счет предотвращения эрозии почвы и использования нулевой обработки почвы. Эти методы также помогут повысить биологическую активность почвы.
- Экономно используйте обработку почвы. Обработку почвы следует использовать с осторожностью, чтобы уменьшить уплотнение, когда никакие другие средства не могут быть использованы. Производителям следует избегать попадания в порочную спираль уплотнения / обработки почвы, как объяснялось ранее. Если проводится какая-либо обработка почвы, постарайтесь оставить как можно больше растительных остатков на поверхности почвы, чтобы защитить их от эрозии и использовать их в качестве источника пищи для определенных почвенных организмов, таких как дождевые черви.Предпочтительна неинверсионная обработка почвы. По возможности проводите обработку почвы только в посевной зоне. Есть две разные точки зрения относительно полезности дробления под поверхностью почвы. Одна школа мысли заключается в том, что желательно максимальное дробление, чтобы обеспечить максимальное количество каналов для проникновения воды, аэрации и проникновения корней. Недостатком этого подхода является то, что почва более подвержена уплотнению после обработки почвы, следовательно, необходимо ограничить движение транспорта после обработки почвы.Вторая школа мысли способствует созданию широко расставленных щелей для проникновения корней, проникновения воды и воздухообмена в прочной почвенной матрице. Твердая почва между прорезями будет поддерживать движение по полю, и прорези останутся нетронутыми. Однако при этом подходе для исследования корней будет доступен меньший объем почвы, чем при первом. Глубина плотного слоя должна определять глубину обработки почвы. Глубину обработки следует устанавливать на дюйм или два ниже уплотненного поддона, если таковой имеется.Если уплотненного поддона нет, нет смысла проводить глубокую обработку почвы.
Подготовил Сьерд В. Дуйкер, доцент кафедры управления почвенными ресурсами.
Выбор поправки на почву – 7.235
Распечатать этот информационный бюллетень
, автор J.G. Дэвис и Д. Уайтинг * (2/13)
Краткая информация…
- На глинистых почвах поправки к почве улучшают агрегацию почвы, увеличивают пористость и проницаемость, а также улучшают аэрацию, дренаж и глубину укоренения.
- На песчаных почвах почвенные поправки увеличивают способность удерживать воду и питательные вещества.
- Разнообразные продукты доступны в мешках или навалом для внесения поправок в почву. Однако поправки в почву не регулируются. Многие из них очень богаты солями.
- Благодаря крупному животноводству в Колорадо, удобрения и компост на его основе легко доступны. Они часто содержат большое количество солей, что ограничивает нормы расхода. Используйте с осторожностью.
- Компосты на растительной основе с низким содержанием соли. Их можно применять при более высоких дозах внесения, более эффективно улучшая почву.Компосты на растительной основе обычно дороже.
Поправка к почве – это любой материал, добавляемый к почве для улучшения ее физических свойств, таких как удерживание воды, проницаемость, инфильтрация воды, дренаж, аэрация и структура. Цель состоит в том, чтобы обеспечить лучшую среду для корней.
Для работы поправка должна быть тщательно перемешана с почвой. Если его просто закопать, его эффективность снижается, и он будет мешать движению воды и воздуха и росту корней.
Обработка почвы – это не то же самое, что мульчирование, хотя многие мульчи также используются в качестве поправок. На поверхности почвы оставляют мульчу. Его цель – уменьшить испарение и сток, подавить рост сорняков и создать привлекательный внешний вид. Мульчирует также умеренную температуру почвы. Органическую мульчу можно вносить в почву в качестве поправок после того, как она разложилась до такой степени, что перестает служить своей цели.
Поправки к органическим и неорганическим веществам
Есть две большие категории почвенных поправок: органические и неорганические.Органические поправки происходят из чего-то живого. С другой стороны, неорганические добавки либо добываются добычей полезных ископаемых, либо создаются человеком. Органические добавки включают сфагновый торф, древесную щепу, скошенную траву, солому, компост, навоз, твердые биологические вещества, опилки и древесную золу. Неорганические добавки включают вермикулит, перлит, куски шин, мелкий гравий и песок.
Не все из вышеперечисленного рекомендовано Государственным университетом Колорадо. Это просто примеры. Древесная зола, органическая добавка, имеет высокий уровень pH и соли.Он может усугубить общие проблемы с почвой в Колорадо, и его не следует использовать в качестве удобрения почвы. Не добавляйте песок в глинистую почву – это создаст структуру почвы, похожую на бетон.
Органические добавки увеличивают содержание органических веществ в почве и обладают множеством преимуществ. Со временем органические вещества улучшают аэрацию почвы, инфильтрацию воды и удерживают воду и питательные вещества. Многие органические добавки содержат питательные вещества для растений и действуют как органические удобрения. Органические вещества также являются важным источником энергии для бактерий, грибов и дождевых червей, обитающих в почве.
Заявки
В идеале ландшафт и почвы сада должны быть улучшены до 4-5% органических веществ. На этом уровне минерализация (высвобождение) азота из органических веществ будет достаточной для большинства растений без дополнительных удобрений. Многие города теперь требуют, чтобы ландшафтные почвы были доведены до этого уровня в новых разработках в качестве метода сохранения воды. Благодаря улучшенной аэрации и более глубокому укоренению растения более эффективно улавливают дождь.
В таблице 1 приведены стандартные нормы внесения. Если поправки на почву могут содержать большое количество солей, норма ограничивается из-за солевой проблемы. Солевые ожоги корней и гибель ландшафтных и садовых растений являются обычным явлением из-за чрезмерного внесения соленых почвенных добавок.
Изделия из дерева
Изделия из дерева могут связывать азот в почве и вызывать дефицит азота в растениях. Микроорганизмы в почве используют азот для разложения древесины. В течение нескольких месяцев или лет, когда микроорганизмы завершают процесс быстрого разложения, азот высвобождается и снова становится доступным для растений.Эта опасность наиболее высока при использовании опилок, поскольку они имеют большую площадь поверхности, чем древесная щепа.
Компостируйте древесные продукты перед их использованием в качестве удобрений для почвы. Чтобы эти продукты быстро разлагались, добавьте в компостную кучу источник азота. Это могут быть растительные остатки с высоким содержанием азота (например, скошенная трава или навоз) или азотные удобрения. Не используйте неразложившиеся древесные продукты или опилки в качестве удобрения почвы. Он медленно разрушается, связывает азот, мешает подготовке семенного ложа и препятствует движению почвы и воды по профилю почвы.
Сфагновый торф vs. горный торф
Сфагновый торф – отличное средство для улучшения почвы, особенно для песчаных почв, которые будут удерживать больше воды после применения сфагнового торфа. Сфагновый торф обычно кислый (то есть с низким pH) и может помочь садоводам выращивать растения, которым требуется более кислая почва.
Сфагновый торф собирают с болот в Канаде и на севере США. В этой влажной среде после сбора урожая болота можно восстановить. Однако урожайность значительно превышает скорость вегетации торфяных болот, поэтому он считается полуобновляющимся ресурсом.
Горный торф Колорадо не является хорошей поправкой на почву. Он часто имеет слишком мелкую текстуру и обычно имеет более высокий pH.
Горный торф добывается на высокогорных заболоченных территориях, на восстановление которых потребуются сотни лет. Эта добыча чрезвычайно разрушительна для гидрологических циклов и горных экосистем.
Безопасны ли биологические твердые вещества?
Твердые биологические вещества являются побочными продуктами очистки сточных вод. Их можно найти отдельно или в компосте из листьев или других органических материалов.
Основное беспокойство по поводу твердых биологических веществ – это содержание тяжелых металлов, уровни патогенов и солей. Используйте только твердые биологические вещества класса А, они были обработаны для снижения содержания бактерий. Биологические твердые вещества класса А одобрены для использования в производственном сельском хозяйстве. Однако рекомендуется избегать внесения в огороды из-за потенциального содержания тяжелых металлов (таких как кадмий и свинец).
Некоторые города продают или раздают твердые биологические вещества или компост, изготовленные из твердых биологических веществ. Часто в нем очень много солей.Спросите о содержании соли. Используйте с осторожностью.
Навоз
Свежий навоз может нанести вред растениям из-за повышенного уровня аммиака. Чтобы избежать этой проблемы, используйте только выдержанный или компостированный навоз.
Патогены человека, включая кишечную палочку, представляют собой еще одну потенциальную проблему со свежим навозом, особенно на огородах. Для овощей, непосредственно контактирующих с почвой, свежий навоз необходимо вносить как минимум за четыре месяца до сбора урожая. Для других фруктов и овощей свежий навоз необходимо вносить не менее чем за три месяца до сбора урожая.Проще говоря, свежий навоз в весенний сад вносят только осенью. Для получения дополнительной информации о кишечной палочке см. Информационный бюллетень 9.369 Предотвращение проникновения кишечной палочки в сад на планшет .
Застарелый навоз – это навоз, который хранится не менее шести месяцев. Выйдет излишек аммиака. Уровни соли могут быть выше по мере того, как соли концентрируются в разлагающемся материале, или могут вымываться при сильных осадках. Семена сорняков будут всхожими.
Композиционный навоз технически относится к навозу, который прошел через несколько активных циклов нагрева и превратился в промежуточный.Если нагреть выше 145 градусов по Фаренгейту, он убьет болезнетворные микроорганизмы и семена сорняков. В компостированном навозе органическое вещество стабилизировано (благодаря быстрому процессу разложения), что делает его идеальным улучшением почвы. Уровень соли может быть концентрированным или вымываться с обильными дождями.
В качестве пояснения, компосты и навоз не подлежат регулированию. Многие коммерчески доступные продукты помечены как «компостированные». Однако это не означает, что он прошел активный процесс разложения.
Компост
Компост относится к разложившемуся органическому веществу. Это не регулируется, поэтому нет стандарта о степени разложения. В коммерчески доступных продуктах термин «компост» часто используется в общем и не означает, что продукт прошел через процесс активного нагрева и разложения.
В Колорадо доступен широкий ассортимент компостных продуктов в мешках и навалом. Это может быть комбинация компоста на растительной основе, компоста на основе навоза, твердых биологических веществ и других побочных продуктов сельского хозяйства (например, куриных перьев).
В условиях крупного животноводства в Колорадо наиболее распространены компосты на основе навоза. Они часто содержат много солей. Используйте с осторожностью.
Компост, сделанный исключительно из продуктов растительного происхождения (например, древесной щепы и дворовых отходов), имеет низкое содержание солей. Они предпочтительнее компостов на основе навоза, которые часто содержат больше солей. Однако, как правило, они дороже.
Работая с доктором Джин Ридер, программа «Мастер-садовник» штата Колорадо провела испытания почвы на образцах местного навоза и компоста в мешках.Большинство было с высоким содержанием соли. Используйте с осторожностью!
Факторы, которые следует учитывать при выборе поправки
При выборе улучшения почвы необходимо учитывать как минимум четыре фактора:
- сколько продержится поправка в почве,
- текстура почвы,
- засоленность почв и чувствительность растений к солям и
- содержание соли и pH поправки.
Лабораторные тесты могут определять содержание солей, pH и содержание органических веществ в органических добавках.Затем можно определить качество органических удобрений для крупномасштабного ландшафтного использования.
Срок действия поправки
Выбор поправки зависит от ваших целей.
- Вы пытаетесь быстро улучшить физические свойства почвы? Выберите поправку, которая быстро разлагается.
- Вы хотите, чтобы ваша почва улучшилась на долгое время? Выберите поправку, которая медленно разлагается.
- Вы хотите быстрое улучшение, которое продлится долгое время? Выберите комбинацию поправок.
Таблица 1: Нормы внесения удобрений в почву. | |||
---|---|---|---|
Участок | Глубина улучшения почвы перед заделкой A (при глубине заделки 6-8 дюймов) B | ||
Компосты на растительной основе и другие почвенные добавки с низким содержанием солей C | Навоз, компост на основе навоза, твердые биологические вещества, компост на основе твердых веществ и другие почвенные добавки с высоким содержанием солей D | ||
Разовое нанесение на новые ландшафты перед посадкой деревьев, кустарников, многолетних растений и газонов. | 2-3 дюйма | 1 дюйм E | |
Ежегодное внесение в огород и однолетние клумбы | Первые три года | 2-3 дюйма | 1 дюйм E |
Четвертый год и далее | 1-2 дюйма | 1 дюйм E | |
A Три кубических ярда (87 бушелей) покрывают 1000 квадратных футов глубиной примерно 1 дюйм. B Внесите удобрения в верхние 6-8 дюймов почвы.На уплотненных / глинистых почвах любое меньшее значение может привести к малой глубине укоренения, что предрасполагает растения к замедлению роста, низкой жизнеспособности и низкой стрессоустойчивости. Норма должна быть скорректирована, если глубина заделки другая. C Компост на основе растений получают исключительно из растительных материалов (листьев, скошенной травы, древесной щепы и других дворовых отходов). Используйте эту норму внесения для других почвенных добавок, которые, как известно, содержат мало соли. D Используйте эту норму внесения для любых поправок почвы с морскими или твердыми биологическими веществами, если содержание соли действительно не известно по результатам анализа почвы, как низкое.Избыточные соли часто встречаются во многих коммерчески доступных упакованных в мешки и сыпучих продуктах. Используйте с осторожностью. E Для внесения удобрений в почву с высоким содержанием солей эта стандартная норма внесения может быть слишком высокой. Используйте с осторожностью. |
Текстура почвы
Текстура почвы или то, как она ощущается, отражает размер частиц почвы. Песчаные почвы содержат крупные частицы почвы и кажутся песчаными. Глинистые почвы имеют мелкие частицы почвы и кажутся липкими. И песчаные, и глинистые почвы являются проблемой для садоводов.Суглинки представляют собой смесь частиц почвы разного размера.
При внесении изменений в песчаные почвы цель состоит в том, чтобы повысить способность почвы удерживать влагу и накапливать питательные вещества. Для этого используйте хорошо разлагаемые органические добавки, такие как компост, торф или выдержанный навоз.
Целью глинистых почв является улучшение агрегации почвы, увеличение пористости и проницаемости, а также улучшение аэрации и дренажа. В этой ситуации наиболее эффективны волокнистые добавки, такие как торф, щепа, кора деревьев или солома.
Используйте таблицы 2 и 3 для получения более конкретных рекомендаций. Поскольку песчаные почвы имеют низкое влагоудержание, выбирайте добавки с высоким удержанием воды, такие как торф, компост или вермикулит. Глинистые почвы обладают низкой проницаемостью, поэтому выбирайте добавки с высокой проницаемостью, такие как компостированная древесная щепа, компостированная кора лиственных пород или перлит. Вермикулит – не лучший выбор для глинистых почв из-за его высокой водоудерживающей способности.
Siltlowhigh
Таблица 2: Проницаемость и водоудержание различных типов почв. | ||
Текстура почвы | Проницаемость | Удержание воды |
---|---|---|
Песок | высокая | низкий |
Суглинок | средний | средний |
Глина | низкий | высокая |
Таблица 3: Проницаемость и водоудержание различных почвенных добавок. | ||
Поправка | Проницаемость | Удержание воды |
---|---|---|
Волокнистый | ||
Торф | низкое-среднее | очень высокий |
Древесная щепа | высокая | низкое-среднее |
Кора лиственных пород | высокая | низкое-среднее |
Гумус | ||
Компост | низкое-среднее | средний-высокий |
Выдержанный навоз | низкое-среднее | средний |
Неорганическое | ||
Вермикулит | высокая | высокая |
Перлит | высокая | низкий |
Засоленность почвы и чувствительность растений к солям
Многие виды компоста, приготовленные из навоза и твердых биологических веществ, содержат большое количество солей.Избегайте этих поправок в почвах с высоким содержанием солей (выше 3 ммос / см) или при выращивании растений, чувствительных к солям. Малина, клубника, фасоль, морковь, лук, мятлик Кентукки, клен, сосна, калина и многие другие ландшафтные растения чувствительны к соли. В таких случаях выбирайте компосты на растительной основе или сфагновый торф.
Содержание соли и pH согласно поправке
Всегда остерегайтесь солей в почвенных добавках. Высокое содержание соли и высокий pH – распространенные проблемы в почвах Колорадо.Поэтому избегайте добавок с высоким содержанием солей или с высоким pH. Поправки, часто с высоким содержанием солей и / или pH, включают древесную золу, горный торф и навоз из Колорадо, а также компост на основе навоза, твердые биологические вещества и компост на основе твердых веществ.
Поправка с общим содержанием солей до 10 ммос / см приемлема, если хорошо смешана с малосолевыми почвами (менее 1 ммос / см). Поправки с содержанием соли более 10 ммос / см сомнительны. Выберите малосолевую поправку для почв с высоким содержанием солей.
Сфагновый торф и компост, изготовленные из чисто растительных источников, с низким содержанием солей являются хорошим выбором для улучшения почв Колорадо.
Попросите анализ органических поправок, которые вы рассматриваете, и мудро выберите поправки. Если анализ недоступен, протестируйте небольшое количество поправки перед покупкой большого количества.
Будьте осторожны, так как содержание соли в компосте может варьироваться от партии к партии.
1 J.G. Дэвис, специалист по почвам и адъюнкт-профессор кафедры почвенных наук и сельскохозяйственных культур; и Д.Уайтинг, специалист по расширению. 6/00. Пересмотрено 13 февраля.
В начало страницы.
.