- Как подключить проходной выключатель. Схема подключения
- Схема подключения проходного выключателя (переключателя) — RozetkaOnline.COM
- СХЕМА ПОДКЛЮЧЕНИЯ ВЫКЛЮЧАТЕЛЯ
- Схема подключения проходного выключателя с 2х или 3х мест
- Подключение проходного выключателя: как это делать правильно?
- Электрическая схема подключения проходного выключателя
- Принцип работы проходных и перекрестных переключателей
- Простая схема
- Однополюсные цепи освещения переключателя (США / Канада)
- Учебное пособие по физике: требования схемы
- – Ответы № 2
- Цепей: один путь к электричеству – Урок
- Быстрый просмотр
- Резюме
- Инженерное соединение
- Цели обучения
- Образовательные стандарты
- Больше подобной программы
- Предварительные знания
- Введение / Мотивация
- Предпосылки и концепции урока для учителей
- Сопутствующие мероприятия
- Закрытие урока
- Словарь / Определения
- Оценка
- Мероприятия по продлению урока
- Рекомендации
- Авторские права
- Авторы
- Программа поддержки
- Благодарности
- для агрессивных сред
- Электрические цепи и ток | Передача энергии в электрических системах
Как подключить проходной выключатель. Схема подключения
Здравствуйте, уважаемые читатели сайта sesaga.ru. В помещениях таких как спортзалы, коридоры, склады, а также на лестничных маршах, пролетах и т.п. часто возникает необходимость в установке выключателей, имеющих независимое друг от друга включение и отключение освещения, чтобы можно было войти через одну дверь и, допустим, включить свет, а выйти через другую и за собой свет погасить, или же наоборот.
Для решения этого вопроса были разработаны проходные выключатели, работающие в паре и позволяющие управлять освещением из двух мест.
Устройство проходного выключателя.
Механизм переключения контактов проходного одноклавишного выключателя практически такой же, как и у обычного двухклавишного выключателя. Отличие состоит лишь в расположении и переключении контактов.
У двухклавишного выключателя переключение контактов независимое и осуществляется двумя клавишами, поэтому контакты могут переключаться либо двумя клавишами одновременно, либо отдельно каждой клавишей.
У проходного одноклавишного выключателя переключение контактов зависимое и осуществляется одной клавишей, поэтому контакты переключаются одновременно.
Электрическая схема проходного выключателя.
Проходной выключатель имеет два контакта, включенных последовательно и образующих общую точку. Один контакт выключателя всегда замкнут, а второй всегда разомкнут.
При нажатии клавиши выключателя контакты переключаются и контакт, который был замкнут, размыкается, а который был разомкнут, замыкается. Такая работа контактов позволяет выключателю всегда быть готовым к включению или отключению освещения из двух мест.
Однако такая работа контактов требует особого включения в схему освещения, поэтому проходные выключатели подключаются строго по определенной схеме.
Схема подключения двух проходных выключателей.
На корпусе некоторых моделей проходных выключателей обозначают выводы, чтобы в процессе монтажа не прозванивать контакты.
А теперь рассмотрим схему подключения двух выключателей SA1 и SA2.
Фаза L подключена к клемме 2 выключателя SA1, а к клемме 2 выключателя SA2 подключен верхний вывод лампы EL1. Одноименные клеммы выключателей 1-1 и 3-3 соединены между собой перемычками красного и зеленого цвета.
Ноль N соединен с нижним выводом лампы.
Разберем работу схемы.
В исходном состоянии выключателей лампа не горит. Фаза L проходит через контакт 2-3 выключателя SA1 и через перемычку зеленого цвета попадает на клемму 3 выключателя SA2 и дальше никуда не идет, так как контакт 2-3 разомкнут.
При нажатии клавиши выключателя

Теперь нажимаем клавишу выключателя SA1 и его контакты 1-2 и 2-3 переключаются и лампа гаснет. Здесь фаза L через замкнутый контакт 1-2 выключателя SA1 и перемычку красного цвета попадает на клемму 1 контакта
1-2 выключателя SA2 и дальше не идет, так как контакт 1-2 разомкнут.
Теперь если нажать клавишу выключателя SA2, лампа опять включится. Фаза L через замкнутый контакт 1-2 выключателя SA1, перемычку красного цвета и замкнутый контакт 1-2 выключателя SA2 попадает на лампу.
И независимо от того, каким из выключателей будет включена или выключена лампа ее всегда можно включить или выключить любым выключателем. Вот таким образом работают проходные выключатели.
Нам еще осталось рассмотреть монтажную схему подключения с использованием распределительной коробки.
Фаза L заходит в распределительную коробку и в точке (1) соединяется с жилой провода, приходящей от клеммы 2 выключателя SA1. Одноименные клеммы 1-1 и 3-3 выключателей между собой соединены в точках (2 и 3). С клеммы 2 выключателя SA2 жила провода уходит в коробку и в точке (4) соединяется с жилой провода, приходящей от вывода лампы. Второй вывод лампы соединяется с нулем N в точке (5).
И теперь самое основное, что Вы должны запомнить при монтаже проходных выключателей: если после сборки схемы освещение работает не так, как требуется, значит, неправильно подключена клемма 2 выключателя. Проверяйте правильность подключения этой клеммы.
И в дополнение к сказанному предлагаю посмотреть ролик и окончательно разобраться в этой теме.
Вот и все, что хотел сказать об устройстве и подключении проходных выключателей. А в следующей статье Вы узнаете, как подключить перекрестный выключатель, дающий возможность управлять освещением с трех и более мест.
Удачи!
Схема подключения проходного выключателя (переключателя) — RozetkaOnline.COM
Проходной выключатель или переключатель света является несложным механическим устройством, основная функция которого – управление освещением, принцип действия: при взаимодействии с другим/другими переключателями, замыкание и размыкание электрической цепи на пути к светильнику. Переключатель разрывая одну электрическую цепь, замыкает другую, тем самым работая вместе с другим/другими переключателями, позволяет управлять освещением из разных мест. С каждым днем, схемы электропроводки освещения с использованием проходных выключателей получают все большее распространение. Самая простая схема переключения – это управление из двух мест, т.е. с использованием двух проходных выключателей, схема с принципом работы переключателя на два направления представлена ниже.
Так же, вашему вниманию, схема электропроводки с вариантом коммутации проводов в распределительной коробке
Для возможности управления освещением больше чем из двух мест, в схему добавляется перекрестный переключатель. Принципиальная схема работы системы с тремя органами управления светом, представлена ниже.
При этом схема электропроводки коммутации проводов в распределительной коробке дополняется. В распределительную коробку добавляется четырехжильный провод, который прокинут к перекрестному выключателю.
Добавляя к схеме перекрестные переключатели, можно увеличивать количество мест управления освещением, до любого количества.
СХЕМА ПОДКЛЮЧЕНИЯ ВЫКЛЮЧАТЕЛЯ
У нас не заграница, и взывать по таким мелочам, как заменить выключатель в комнате на новый, электрика, далеко не каждый будет. Да и уровень технической подготовки славян не сравнить с иностранным. Поэтому попробуем сами подключить новый выключатель на свет, так сказать своими руками. Для начала рассмотрим возможные варианты схем подключения выключателей.
Предупреждаем! Все работы по замене выключателей производите при отключенном напряжении сети!
Электрическая схема подключения в проводку очень простая. Фаза (коричневый цвет) проводом (1) заходит в коробку и, соединяясь с жилой провода (2) подключается к нижнему (входному) контакту выключателя. С верхнего (выходного) контакта, уже пунктирной линией, фаза проводом (2) заходит в коробку и, соединяясь в коробке с жилой провода (3), приходит на лампочку.
Нулевой провод от распределительной коробки идет сразу на потолок к лампочке. К выключателю и от него на лампочку идет только фазная жила. Так предусмотрено правилами и сделано в целях безопасности и безопасной эксплуатации электрооборудования, чтобы при отключенном выключателе разрывалась именно фаза, а не ноль. Ведь если фаза останется подключенной к лампочке (люстре), то во время замены ламп на новые можно нечаянно каснуться металлического цоколя и получить удар током. Конечно это будет не смертельно, но упав с табуретки можно получить повреждения похуже…
Но вернёмся к электромонтажным работам. Чтобы определить входной и выходные контакты, достаточно взглянуть на заднюю сторону выключателя. У двойного, как правило, имеются три вывода: два на одной стороне (L1 и L2) – выходные, и один на противоположной (L3) – входной.
Ноль к лампочке приходит напрямую с питающего провода, а фаза делается в разрыв. Разрывать ее будет выключатель, при нажатии кнопки включения он замкнет цепь и подаст фазу к лампочке, при выключении разомкнет и фаза пропадет. При подключении самой люстры учтите, что на резьбу подаётся ноль, а на цоколь — фаза. Очень часто их путают, подключая патрон “как придётся”.
Проходной выключатель освещения
Иногда в больших домах или магазинах (владельцы хрущёвок могут этот раздел не читать), нужно управлять светом из двух точек. Например, длинный коридор или лестница на второй этаж (в двухуровневых квартирах). Применение обычных выключателей неэффективно, так как включив свет при входе в помещение когда вы дойдете до другого конца помещения, вы уже не сможете выключить его.
Схема проходного выключателя
Отличия проходного от обычного выключателя в том, что проходной выключатель – это переключатель. Чтоб разобраться с принципом работы и со схемой включения проходного выключателя, предлагаем рассмотреть схему его включения с двух мест.
Если обычные выключатели просто разрывают цепь, то проходные выключатели переключаются с одной цепи на другую, то есть, в случае проходного выключателя с двух мест, необходимо чтобы на первый проходной выключатель приходило питание, а со второго проходного выключателя уходил один провод, который будет соединятся в распределительной коробке с проводом питающим лампочку. А между собой — эти два проходных выключателя соединяются обычным двужильным проводом.
А как осуществить включение с трех мест? В этой схеме, между двумя проходными выключателями, нужно сделать еще один, правда, он отличается от первых двух. В предыдущей схеме у выключателей один входной контакт и два выходных, между которыми он и переключается, а в этом выключателе — уже должно быть два входных провода и два выходных.
И последнее. Каким проводом нужно соединять включатели с лампой? На этот вопрос есть отдельный материал, в котором подробно описаны тип и области применения электромонтажных кабелей. В простейшем случае можно взять обычный провод ШВВП-2х0,75. Его хватит для питания ламп суммарной мощностью до 300 ватт.
Схема подключения проходного выключателя с 2х или 3х мест
Представим ситуацию: ночь, перед вами длинная лестница на второй этаж где темно, как в лесу. Вы нажали на выключатель света и стало светло, но когда поднялись по лестнице поняли, что свет может быть погашен только с помощью переключателя вверху…
Чтобы иметь возможность включать и выключать свет из двух разных мест, просто купите дополнительный проходной переключатель для лестницы. Это не единственное решение, но, безусловно, самое популярное. Есть ещё импульсные переключатели, о которых сказано в другой записи. Но в рамках этой статьи будем разбирать следующие вопросы:
- Работа лестничных выключателей
- Способ подключения проходных переключателей
- Практический пример и реализация схемы включения
- Возможность создать схему управления лампой из 3х и более мест.
Итак, благодаря лестничным переключателям можно зажечь одну и ту же лампу из двух разных мест. Не обязательно на лестнице. Это может быть любая большая комната, где разумно управлять лампой из двух мест. Вообще такие переключатели могут использоваться для включения / выключения любого устройства из двух мест, не обязательно лишь лампы.
Как работают лестничные переключатели
Упрощенная схема выглядит так (присмотритесь к анимации).
- Обеспечиваем электрический потенциал через фазовый провод ( L ).
- Выключатели соединены двумя коричневыми и серыми проводами (на схеме).
- Лампочка загорается когда электрический ток от L- провода достигает лампы.
- Схема может быть разорвана независимо, как с помощью лестничного переключателя S1, так и с помощью S2.
- С помощью лестничного выключателя не полностью разрывают цепь, а выбирают какой электрический потенциал передается второму выключателю.
Таким образом, проходной переключатель имеет еще один контакт по сравнению с одиночным переключателем. В обычном 2, а тут 3 терминала для присоединения проводов.
Следующая схема имеет больше общего с реальностью. Итак, посмотрим что здесь происходит:
- Шнур питания подключается к переключателю S1.
- Соединяем нейтральные ( N ) и защитные ( PE ) провода вне автоматических выключателей с помощью электрических разъемов. Защитный соединитель проводника соединен с корпусом лампы (или PE терминалом), нейтральный провод к клемме N.
- Силовой фазовый проводник ( L ) подключен к клемме № 1 переключателя S1. После этой операции и подачи напряжения электропотенциал будет подаваться либо на клемму № 2, либо на клемму № 3 переключателя S1.
- Следовательно, электрический ток 220 В на клеммах 2 или 3 достигнет переключателя S2.
- Если переключатели S1 и S2 находятся в одинаковых положениях, электрический потенциал появится на клемме № 1 переключателя S2 и свет загорится.
Чтобы загорелась лампочка, крайне важно чтоб цепь не прерывалась начиная с фазного провода подачи 220 В (L) и заканчивая лампой.
Принципиальная схема проходного выключателя
Далее вы сможете увидеть метод подключения переключателей лестниц. Посмотрим на следующую принципиальную схему:
На ней изменились три вещи:
- К коммутационной коробке S1 к переключателю S2 подключены два кабеля, которые используются для питания других переключателей освещения.
- Соединены все нейтральные и все защитные провода с двумя отдельными разъемами. Поскольку в терминале № 1 переключателя лестничной клетки S1 имеется только два контакта, необходимо использовать дополнительный электрический разъем, к которому они будут подключены: Фазовый провод питания L, фазовые провода приводящие к другим выключателям и источник питания S1.
- Между коробкой переключения S2 и лампой находится четвертый кабель (черный). Это может быть полезно в будущем, но в данной конфигурации он не используется и не связан ни с чем.
Пошаговая установка
Проходной выключатель S1
Ещё раз напомним — всегда начинаем любую установку с отключением напряжения в сети 220V.
Перед началом работы с помощью тестера напряжения убедитесь, что на силовых кабелях нет электрического потенциала, предпочтительно на всех выводах выходящих из короба.
Вид проводов, что выходят из коробки. Нам нужен шнур питания и кабель, который направляется для переключения S2.
Сразу подключим все провода, чтобы не пришлось снова откручивать переключатель позже.
Подключим все нейтральные провода к одному разъему, а все защитные провода к другому разъему. Во время этой операции используйте плоскогубцы.
Когда все нейтральные и защитные провода подключены, засовываем их в электрическую коробку. Осталось 5 фазных проводов:
- Источник питания — 1 шт.
- Для питания других выключателей — 2 шт.
- Для лестничного выключателя S2 — 2 шт.
Кабель питания и два шнура для других автоматических выключателей соединены вместе в электрическом разъеме. Также подключаем к этому разъему короткий кабель длиной в несколько сантиметров, который будет подключен к клемме 1 переключателя S1.
Шнур короткого замыкания соединен с одной стороны, а провода, ведущие к переключателю S2 на второй (верхней) стороне переключателя. После подачи напряжения электрический потенциал в линии будет передаваться либо коричневому, либо черному проводу в зависимости от положения переключателя.
Последний этап — сборка и выравнивание автоматического выключателя. Поставим назад рамку и клавишу. Вот ещё один рисунок того, как всё должно соединяться в коробе:
Про установку более подробно говорили в статье об одиночных переключателях.
Проходной выключатель S2
Переходим ко второму месту (выключателю). У нас есть два кабеля, каждый из которых имеет 4 провода:
- кабельный вывод от переключателя S1 (внизу)
- кабель, который ведет к лампе (вверху)
Из-за отсутствия синего проводника, серый провод обернут синей изолентой, чтобы показать что это нейтральный проводник.
Подобно переключателю S1 соединяем защитные проводники с одним разъемом и нейтральными проводниками с помощью второго разъема.
Осталось 4 фазных провода из которых черный, ведущий к лампе, в соответствии со схемой не будет использоваться.
Фиксируем провода. С верхней стороны подключите провода от переключателя S1, а нижний фазовый провод направляется на лампу.
В зависимости от положения переключателя S1, электрический потенциал будет либо на коричневом проводе (сверху), либо на черном проводе. То есть в зависимости от положения переключателя S2 направляющий провод к лампе (нижний коричневый) будет подключен к одному из верхних проводов.
Теперь обратная сборка, снова надеть рамку и клавишу.
Проходной выключатель на 3 места
Возможно ли подключить большее количество переключателей для управления освещением одной лампы? При использовании только обычных ступенчатых переключателей невозможно реализовать управление лампой больше, чем из двух мест. Для ещё большего количества мест необходимо купить перекрестные переключатели, которые размещаются между лестничными, как показано на схеме.
Подведём итог проделанных работ
Таким образом лестничный переключатель представляет собой недорогой и простой способ управления освещением из двух разных мест. Однако для этого требуется предварительное планирование и прокладку дополнительных кабелей между ними ещё на стадии ремонта / строительства проводки. На более позднем этапе эта операция может быть затруднительной — придётся вести провод по стене или долбить канал в ней.
Подключение проходного выключателя: как это делать правильно?
Проходные выключатели весьма удобны, когда необходимо включать и выключать лампочку из разных точек в квартире или доме. Например, в начале коридора можно включить лампочку, а пройдя через него выключить в другом конце. Или на первом этаже зажечь светильник на лестнице, а поднявшись на верх, выключить. Как правильно выполнить монтаж проходного выключателя, чтобы все работало как часы? Объясняем подробно со схемами и примерами.
Что потребуется для подключения проходного выключателя?
Для того, чтобы схема работала, нам потребуются следующие комплектующие:
- Два проходных выключателя.
- Трехжильный провод типа ВВГнг 3*1,5 мм2 или NYM 3*1,5 мм2
- Светильник.
- Фаза + ноль из щитка.
Проходные одноклавишные выключатели, в отличие от обычных, имеют не два контакта, а три, поэтому использовать обычные выключатели для таких целей не получится. В обычных двухклавишных выключателях тоже три контакта, однако для проходного монтажа они также не подойдут, так как работают иначе.
Схема подключения проходного выключателя
Для того, чтобы вся схема работала исправно, необходимо внутри выключателя правильно подсоединить провода к клеммам. В любом проходном одноклавишном выключателе клеммы обозначаются стрелочками: одна будет идти внутрь выключателя (фазная) и две наружу (выходные), как показано на рисунке ниже. Если перепутать и подключить фазный провод к стрелочке, которая идет наружу, то схема будет работать неправильно.
Схема подключения проходного выключателя следующая: ноль из счетчика подается через распредкоробку напрямую к лампочке. Фаза из счетчика подается на выключатель 1; два выхода выключателя 1 соединяются с выходами выключателя 2; фаза из выключателя 2 идет на лампочку. Обратите внимание на схему 1: здесь контакты на выключателе разомкнуты, поэтому лампочка выключена.
Предположим, человек проходя через коридор включает выключатель 1, тем самым замыкая цепь и включая лампочку. В этом случае схема становится такой:
В конце коридора он нажимает на выключатель 2, цепь размыкается, и лампочка выключается (схема 3). При этом, чтобы опять включить лампочку, ему не нужно возвращаться к выключателю 1 — достаточно нажать на клавишу выключателя 2.
При такой схеме лампочкой можно управлять любым выключателем, даже не задействуя второй. Теперь давайте посмотрим, как подключить выключатель непосредственно в распредкоробке.
Подключение проходного выключателя в распредкоробке
В распредкоробке мы наблюдаем 10 проводов: 2 приходит из щитовой, 2 от лампочки и по 3 от каждого выключателя. Соединяем провода следующим образом: синий ноль (1) из щитовой соединяем напрямую с синим нолем (1) лампочки. Фазу из щитовой (2) соединяем с белым проводом (2) первого выключателя. Затем красный выход (3) первого выключателя с красным выходом (3) второго. Также соединяем и зеленые провода (4). Белый провод (5) второго выключателя соединяем с фазным проводом (5) лампочки. Как качественно соединять провода, мы писали здесь.
В некоторых квартирах из щитовой также идет желто-зеленый провод заземления. Он не заходит в проходные выключатели, но сажается на отдельную клемму. После того, как все подключили, подайте питание из электрощитовой, и проверьте работу каждого выключателя. Если любым можно и включить и выключить светильник, тогда схема подключена правильно.
Если остались вопросы по подключению проходного выключателя, задайте их в комментариях!
Еще пара советов домашним электрикам:
Теги выключатели электропроводка
Электрическая схема подключения проходного выключателя
Введите ваш запрос для начала поиска.
В статье рассмотрим электрическую схему подключения проходного выключателя с одного, двух и трех мест. Назначение, конструктивные особенности. Как подсоединить проходной выключатель, схема подключения.
Как подключить проходной выключатель схема подключения
Электрические приборы могут управляться разными алгоритмами и технологиями с переключениями различными устройствами:
• выключателями, ключами, кнопками и переключателями;
• релейными схемами;
• потолочными датчиками движения;
• более сложными микропроцессорными устройствами.
Назначение проходного выключателя
Войдя в квартиру с улицы, мы включаем 1-й выключатель для освещения прихожей, после переодевания идем в спальню и оттуда отключаем светильники выключателем №2. Не надо ходить в полутьме или оставлять надолго включенное освещение.
Такая функция выполняется довольно просто. Для ее реализации надо применить проходные выключатели, которые немного отличаются по конструкции, а по внешнему виду напоминают привычные модели.
Конструкции проходных выключателей
Рассмотрим пример исполнения трех моделей:
• простой проходной одинарный выключатель с одним входом и двойными выходами;
• двухклавишный проходной (сдвоенный) выключатель с двумя входами и счетверенными выходами;
• спаренный проходной крестовидный выключатель с двумя входами.
Они по внешнему виду похожи на свои аналоги, но отличаются схемами переключения контактов.
Подключение проходного выключателя с двух мест
Наиболее простая электрическая схема подключения проходного выключателя с двух мест, позволяющая управлять освещением из удаленных мест двумя одинарными выключателями, имеет следующий вид.
Провода ноля на светильники подключается по классическому принципу: напрямую, без использования коммутационных контактов.
Фаза коммутируется. Каждый выключатель подключается в трех точках, имеет одно общее входное соединение и два на выходе. Фазные провода через соединение в распределительной коробке подходят к входному контакту 1-го выключателя для последующего отправления с выходных клемм к выходам 2-го выключателя, у которого вход скоммутирован на светильники с использованием соединений в распределительной коробке.
Стрелки на рисунке показывают направление токов, которые создаются последовательным включением обоих выключателей.
Данная электрическая схема способна работать от подключения 2 клавишного проходного выключателя при правильном монтаже, коммутируя электрические приборы.
Управление двумя светильниками с двух разных мест
Иногда требуется выполнять те же действия, когда светильники состоят из двух источников, например, люстра с четырьмя лампочками, которыми требуется манипулировать. Задача усложняется, но не сильно. В схеме заменяются некоторые элементы.
Проходные выключатели применяют сдвоенной конструкции с двумя клавишами и шестью контактами, увеличивается количество соединений проводов в распределительной коробке. Каждая пара клавиш работает самостоятельно на свою группу светильников по предыдущему принципу. Для этого входа’ выключателя №1 объединяются на фазу.
Провода ноля подводятся ко всем лампочкам сразу.
Проходной выключатель схема подключения на 3 точки
Здесь в комнатах №1 и №3 установлены одинарные проходные выключатели, а в комнате №2 — крестовидный спаренный (перекрестного типа), который одновременно переключает два контакта.Таким образом, выполнено подключение проходного выключателя по схеме на 3 точки. На фото показана схема подключения проходного выключателя с трех мест.
Положения переключателей
Алгоритм включения лампочек от положения клавиш выключателей в разных местах представлен табличной формой.
Выключатель Состояние положения Место №1 Место №2 Место №3 Лампочки и светильники
Положение Положение Положение
Верхнее Нижнее Верхнее Нижнее Верхнее Нижнее
№1 Верхнее + + + Включен
Нижнее + + + Отключен
Верхнее + + + Включен
Верхнее + + + Отключен
Нижнее + + + Отключен
Нижнее + + + Включен
Такими способами можно управлять освещением с большего количества мест, увеличивать их до четырех, шести и далее. Для этого достаточно применять третью схему, устанавливая по концам одинарные выключатели, а в середине спаренные крестовидные.
Другие методы
Однако это не единственный сейчас способ подобного управления. Если для двух мест контроля одним светильником удобно пользоваться проходным выключателем, то для усложненных схем надо рассматривать альтернативные разработки.
Например, электромеханический прибор с размерами обычного автоматического выключателя способен коммутировать светильник или другие электрические приборы. Устройство управляется замыканием контактов на обыкновенных кнопках, которые допустимо устанавливать на любом удалении, используя доступные провода от телефонной линии. Даже вместо кнопок используют датчики с “сухим контактом”. Монтаж выполняется напрямую, без распред коробки.
Стоимость этой конструкции выше, но можно использовать слаботочные провода, которые стоят дешевле.
Перспективны выключатели с радиоуправлением, в силовой цепи для них предусмотрен специальный блок, работающий от кнопок по беспроводной связи и возможностями регулирования расхода мощности, как у диммера. Среди подобных разработок доступны электрические приборы системы “Noolite”.
Всегда можно сделать выбор конструкции, оценив ее сильные стороны и недостатки, чтобы электрическая схема хорошо работала. Достаточно учесть индивидуальные условия помещения и определиться с задачами.
Принцип работы проходных и перекрестных переключателей
Проходные выключатели представляют собой механизмы, обеспечивающие координацию работы одного источника света из нескольких разных точек. Для освещения помещения обычно использовали типичный выключатель, расположенный у входа. Это стандартный метод, применяемый повсеместно многие десятилетия. Однако сегодня его сложно отнести к разряду экономичных, особенно если учесть последние тенденции в сфере энергосберегающих технологий. Вот почему компании, специализирующиеся на производстве электрических устройств, включают в спектр своих предложений инновационный подход – размещение проходных выключателей. В чем специфика их работы, как их подключать, с какой целью устанавливаются такие механизмы и многое другое интересует современных пользователей. Попробуем разобраться во всем вместе.Зачем устанавливать этот механизм? Есть несколько направлений его эксплуатации:
Нередко можно услышать о выключателях с вмонтированным датчиком времени. Да, они тоже помогают сберечь энергоресурсы. Принцип работы этого механизма заключается в том, что задается определенный временной интервал, в продолжение которого электрическая энергия направляется на источник света. И после истечения этого срока он сам выключается.
Это тоже выход. Но лучше предусмотреть максимум бытовых ситуаций. Например, поднимаетесь вы стремительно по ступеням лестницы в подъезде, и времени вполне достаточно для освещения пролета. Но если кто-то идет медленно, с грузом, и где-то в середине пролета свет выключается, в этом, согласитесь, мало приятного.
Кроме того, механизмы с датчиком времени не отличаются надежностью, это доказано в ходе эксплуатации.
Что такое проходной выключатель?
Корректнее будет назвать его переключателем: он содержит не два, а три контакта, позволяющих производить переключение фаз. Этим он принципиально отличен от стандартных аналогов.
Как управлять механизмом из двух точек?
Схема подключения предполагает корректное соединение трех контактов.
Важно! От распределительной коробки к выключателю оптимально прокладывать трехжильный кабель. Так, чтобы в коробку поступало от всех по три провода.
Как подключается этот механизм?
Если координация предполагается из двух зон:- Ведущий к распределительной коробке общий провод снабжен двумя: фазовым и нулевым. Второй присоединяется к жиле, направляемой на осветительный прибор. Фазовый – к аналогичному от какого-то выключателя.
- После этого взаимно соединяются два проходных выключателя, на основе цвета жил. Обычно это красный, зеленый и белый. Белый первого механизма присоединяется к фазе единого провода, потом взаимно скрепляются зеленые и красные провода. Белый от второго выключателя соединяют с контактом светильника.
Каким образом предпочтительнее установить все составляющие? Особо жестких требований для этого нет. Основным принципом монтажа должна быть экономия стройматериалов. Речь о расходе электропровода. Вот почему сначала важно замерить пространство и выбрать правильную зону для монтажа распределительной коробки. Кроме того, стоит учесть, что внутренняя проводка подразумевает штробление стен, размещение кабеля и последующую отделку, чтобы придать пространству эстетичный вид.
На каком принципе это работает?
В системе задействованы три контакта:
Это тоже вполне возможно. Такой принцип подойдет в пространстве с длинным коридором с несколькими дверями. В такой ситуации удобно ко всем выходам монтировать по отдельному выключателю.
Основные требования инструкции по подключению:
- Механизма понадобится три: проходные с одним перекрестным (соединенным с двумя кнопками).
- Все делается так, как было описано выше (при наличии трех контактов). Перекрестный снабжен четырьмя жилами, и следовательно, столько же у него контактов.
Важно! Число точек управления одной лампой возможно какое угодно. Но есть нюанс – множество точек коммутации (соединения) в распределительной коробке. И, чтобы избежать путаницы, надо корректно маркировать все жилы от разных выключателей.
Как правило, перекрестный выключатель монтируют между проходными и присоединяют поэтапно:
- Проходные соединяют с общим кабелем и светильником по приведенному ранее принципу.
- Перекрестный соединяют по двум проводам с обеих сторон. Поэтому у него четыре выхода, из расчета: по паре на каждый выключатель.
- Внутри него размещено два ключа (это объясняет наличие двух кнопок на панельной поверхности): один присоединяет фазы зеленого цвета, второй – красного. Все они работают автономно.
Заметим еще, что у приборов различных брендов размещение клемм сделано с разными вариациями. Чтобы понять схему подключения, нужно отыскать ее на задней стенке прибора. При ее отсутствии там, нужно изучить упаковку. Если и там нет, следует вскрыть прибор и понажимать клавиши. Вы увидите, какой тумблер к какой клемме относится. Исходя из этого и нужно присоединять кабеля.
Есть дополнительный нюанс. Применяя одну совокупность проходных выключателей, вы можете задействовать различные группы источников света. Так, чтобы по одной цепи координировать работу двух групп ламп, надо применять не одинарные проходные выключатели, а двойные, имеющие две кнопки. Одновременно с этим все будут снабжены шестью контактами: двумя входными, четырьмя промежуточными для взаимного соединения.
Фактически, это пара одинарных механизмов, вмонтированных в единый корпус. Если нужно задействовать обе группы ламп сразу, нажимают одновременно две кнопки на панельной поверхности. Да, в принципах подключения электроприборов этой разновидности разобраться не всегда просто, но вполне реально.
ИтогиИспользование проходных выключателей всегда выгодно и экономично, что давно доказано практикой. Это главное предназначение таких приборов. Но, помимо прочего, значительно снижается потребление энергии, и сегодня это особенно актуально. Как было показано в статье, схема подключения проходного выключателя не столь и сложна, поэтому вы сможете выполнить все самостоятельно. Основное, на что нужно обратить внимание, – правильное присоединение контактов друг к другу. Разобраться в этом можно ориентируясь по цвету жил. Все в ваших руках. А выгоду вы ощутите уже скоро!
Простая схема
Простая схема
Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает выявлять первопричины и устранять электрические неисправности. Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.
Помните о трех элементах электричества; напряжение, сила тока и сопротивление.Напряжение (иногда называемое электродвижущей силой) – это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, которая заставляет электроны двигаться в электрической цепи. Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током.Электрический ток – это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток – это количество воды, протекающей через шланг. Напряжение – это величина давления, под которым вода проходит через шланг.
Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер – это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока.Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом. Один вольт – это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.
ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ
Цепь – это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление.Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов). Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.
В замкнутой цепи напряжение источника обеспечивает электрическое давление, проталкивающее ток через цепь. Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка – это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства.Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).
ТРЕБОВАНИЯ К ЦЕПИ
Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь – это «путь» или петля, которая позволяет электричеству (току) течь.Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример – фары). После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет разрыв, у вас будет разрыв электрического потока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.
Типы цепей
Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные.Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузок. Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:
1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).
2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.
3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.
4. Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.). Преобразует электричество в работу.
5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.
Схемы серииКомпоненты последовательной цепи соединены встык друг за другом, чтобы образовалась простая петля для прохождения тока через цепь.Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю. Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни – хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.
Параллельные схемы
Параллельная цепь имеет более одного пути прохождения тока.На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым. Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, поэтому для протекания тока можно выбирать пути в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.
В приведенной ниже параллельной цепи два или более сопротивления (R1, R2 и т. Д.) соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной стороне.
Последовательно-параллельные схемы
Последовательно-параллельная схема включает некоторые компоненты, включенные последовательно, а другие – параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи.Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и остальных ветвях.
Внутреннее освещение приборной панели – хороший пример соединения резисторов и ламп в последовательно-параллельную цепь. В этом примере, регулируя реостат, вы можете увеличивать или уменьшать яркость света.
Диагностические схемы
Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.
Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, вызывает перегорание предохранителя, плавкой вставки или автоматического выключателя.
Высокое сопротивление в цепи может быть вызвано коррозией или разрывом на стороне источника или на стороне заземления. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.
УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ
Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием.Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.
Предохранители
ПредохранительA является наиболее распространенным типом устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь.Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току. Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.
Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты.Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя. Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так.Проверьте проводку к компонентам, которые выходят из строя сгоревшим предохранителем. Ищите плохие соединения, порезы, разрывы или шорты.
Предохранителиимеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току. Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.
Расположение предохранителей
Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью для ног или под IPDM. Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и плавкие элементы.
Крышки блока предохранителей
Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.
Типы предохранителей
Предохранители подразделяются на основные категории: предохранители пластинчатого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.
Общие типы предохранителей
Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, линейные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.
Базовая конструкция
Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока. (Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)
Номинальный ток предохранителя, сила тока
Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.
Плавкие вставки и элементы предохранителей
Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка. Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, обычно цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым.Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.
Плавкие вставки
Плавкие вставки – это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току. Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки – специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг.Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки предохранителями или предохранителями Maxi.
Картридж с предохранителем
Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific. Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель.Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или закреплены на болтах, вставной тип является наиболее популярным.
Конструкция картриджа с плавким элементом
Конструкция элемента предохранителя довольно проста. Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.
Цветовая маркировка элемента предохранителя
Номинальные значения силы тока предохранителя приведены ниже.Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.
Плавкие элементы
Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.
Плавкие элементы также могут располагаться в блоках реле / предохранителей в моторном отсеке.
Автоматические выключатели
Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя.Существует три типа автоматических выключателей: тип с ручным сбросом – механический, тип с автоматическим сбросом – механический и твердотельный с автоматическим сбросом – PTC. Автоматические выключатели обычно располагаются в блоках реле / предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.
Конструкция автоматического выключателя (ручного типа)
Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними.Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».
Автоматический выключатель (ручной тип)
Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно.Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.
Ручной сброс Тип
Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы переустановить биметаллическую пластину, как показано.
Тип с автоматическим сбросом – механический
Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями.Этот тип автоматического выключателя используется для защиты сильноточных цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционер и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться из-за перегрузки по току в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.
Устройство и работа с автоматическим сбросом
Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока. Автоматические выключатели с автоматическим возвратом в исходное положение считаются «циклическими», потому что они циклически размыкаются и замыкаются до тех пор, пока ток не вернется к нормальному уровню.
Твердотельный тип с автоматическим сбросом – PTC
Полимерное устройство с положительным температурным коэффициентом (PTC) известно как самовосстанавливающийся предохранитель.
Полимерный PTC – это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры. PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.
Конструкция и эксплуатация полимеров PTC
В нормальном состоянии материал в полимерном ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе.Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое. Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока на цепь остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.
УСТРОЙСТВА УПРАВЛЕНИЯ
Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи. Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора – это скорость открытия и закрытия цепи.
Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи.Устройство управления или переключатель позволяет включать или выключать электричество в цепи. Выключатель – это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.
Коммутаторы
- Однополюсный односторонний (SPST)
- Однополюсный, двусторонний (SPDT)
- Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
- Мгновенный контакт
- Меркурий
- Температура (биметалл)
- Задержка по времени
- Мигалка
- РЕЛЕ
- СОЛЕНОИДЫ
Переключатель – это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.
Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, однополюсные), SPDT (однополюсные, двухходовые) или MPMT (многополюсные, многоходовые).
Однополюсный одинарный бросок (SPST)
Самый простой тип переключателя – переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.
Однополюсный, двойной бросок (SPDT)
Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.
Многополюсная многоточечная (MPMT)
Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания – хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.
Мгновенный контакт
Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, за исключением случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала является хорошим примером переключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.
Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.
Меркурий
Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть – опасные отходы, с которыми следует обращаться осторожно.
Температурный биметаллический
Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предела температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.
Задержка по времени
Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток протекает через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, что приводит к изгибу биметаллической ленты и размыканию контактов.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени – это обогреватель заднего стекла.
Мигалка
Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова проходить через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).
Реле
Реле – это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). Нормально разомкнутые (Н.О.) реле имеют контакты, которые «разомкнуты» до тех пор, пока на реле не будет подано напряжение, в то время как нормально замкнутые (N.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.
Работа реле
Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.
Соленоиды – тянущие типа
Соленоид – это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.
Работа вытяжного типа
Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой протекает ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, протягиваясь и втягивая железный стержень в центр катушки.
Работа толкающего / толкающего типа
В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.
УСТРОЙСТВА НАГРУЗКИ
Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.
Фары
Фонари бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.
Двигатели
Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, двигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как разработан двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.
Нагревательные элементы
Нагревательные элементы можно найти в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.
ЧТО ТАКОЕ ЗАКОН ОМА?
Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление растет, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электрических сетях. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.
Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким, если сопротивление низкое, или ток будет низким, если сопротивление высокое. Если напряжение слишком высокое, ток будет большим.
На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет большим. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.
На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления – насколько сложно протолкнуть поток электрического заряда.
Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.
Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.
Однополюсные цепи освещения переключателя (США / Канада)
Цепи освещения с однополюсным переключателем (США / Канада). Узнайте, как подключить однополюсный выключатель света.
Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube.
Помните, что электричество опасно и может привести к летальному исходу. Вы должны быть квалифицированными и компетентными для выполнения электромонтажных работ.
Эта статья посвящена использованию цветовой кодировки и терминологии для Северной Америки. Если вам нужен другой регион, ознакомьтесь с другими нашими статьями Нажмите здесь .
Что такое однополюсные переключатели?
через GIPHY
Однополюсные переключатели – это самый простой тип переключателей. У них есть две клеммы и заземление. Внутри переключателя находится дорожка, по которой проходит электричество, мы можем повернуть переключатель
, чтобы замкнуть или разорвать цепь и управлять потоком электричества.
Коммутатор первым в цепи
Первая версия, которую мы рассмотрим, – это когда переключатель располагается первым в цепи.
via GIPHY
Для этого вам понадобятся следующие детали:
С выключенным питанием; проводим черный горячий провод к нижнему выводу переключателя. Затем мы протягиваем еще один горячий провод к потолочной коробке и в осветительную арматуру.
Затем мы вводим наш белый нейтральный провод и подключаем его к гайке провода внутри распределительной коробки.Затем мы протягиваем еще один белый нейтральный провод от гайки к потолочной коробке и в осветительную арматуру.
Чтобы сделать схему безопасной, мы вводим заземляющий провод и подключаем его к гайке внутри распределительной коробки. Затем мы протягиваем провод заземления от клеммы заземления переключателя и подключаем его к гайке провода. Затем мы можем провести еще один провод заземления от потолочной коробки и также подключить его к гайке заземляющего провода.
Переключатель в настоящее время выключен, поэтому, когда мы запитываем цепь, электричество может достигать переключателя, но не может пройти через него, потому что переключатель разомкнут.Когда мы переводим переключатель в положение «включено», цепь замыкается, и электричество может течь через свет, чтобы привести его в действие, а затем вернуться к панели выключателя. Если мы снова щелкнем выключателем
, тогда цепь разомкнется, и свет погаснет.
Лампа первая в цепи
через GIPHY
Для этого вам понадобятся следующие детали:
При выключенном питании мы подключаем горячий провод к проволочной гайке внутри потолочной коробки. Затем пропускаем нейтральный провод через потолочную коробку в осветительную арматуру.После этого мы протягиваем черный провод от осветительной арматуры и пропускаем его через потолочную коробку к распределительной коробке, чтобы затем подключить его к верхней клемме выключателя. Затем мы протягиваем белый провод от нижнего вывода переключателя и подключаем его к гайке с горячим проводом внутри потолочной коробки. Он будет проводить электричество, поэтому мы хотим отметить его черной лентой, чтобы предупредить, что он горячий.
Теперь мы хотим подвести заземляющий провод и подключить его к гайке для провода внутри потолочной коробки.Затем мы подключаем металлическую потолочную коробку к той же гайке заземляющего провода. Наконец, мы подключаем последнее заземление от гайки заземляющего провода через распределительную коробку к клемме заземления переключателя.
Выключатель выключен, поэтому, когда мы запитываем цепь, электричество может проходить через выключатель, но не может проходить. Когда мы переводим переключатель в положение «включено», электричество может течь через переключатель и питать свет. Если мы щелкнем выключателем, он снова перережет путь электричества, и свет погаснет.
Трехжильный кабель между потолочной коробкой и переключателем
через GIPHY
Для этого вам понадобятся следующие детали:
В остальном эта версия почти идентична предыдущей, за исключением того, что мы используем красный и черный провода для подачи электричества к выключатель, а не обматывать белый провод черной лентой. В этом методе нам нужно использовать еще несколько гаек, и один из нейтральных проводов будет оканчиваться внутри распределительной коробки.
Это работает так же, когда мы запитываем цепь, электричество течет к переключателю, но не может пройти, потому что цепь разорвана.Когда мы щелкаем выключателем, он замыкает цепь и питает свет, пока мы снова не щелкнем выключателем.
Учебное пособие по физике: требования схемы
Предположим, вам дали небольшую лампочку, электрохимический элемент и оголенный медный провод, и вас попросили найти четыре различных расположения трех элементов, которые приведут к образованию электрической цепи, которая зажгла бы лампочку. Какие четыре расположения могут привести к успешному зажиганию лампочки? И что еще более важно, что общего у каждой из четырех схем, что привело бы нас к пониманию двух требований к электрической цепи?Само по себе упражнение является стоящим занятием, и если оно не выполнялось раньше, следует попробовать его, прежде чем читать дальше.Как и во многих других лабораторных занятиях, в фактическом участии в работе есть сила, которую нельзя заменить простым чтением о ней. Когда это упражнение выполняется в классе физики, есть множество наблюдений, которые можно сделать, наблюдая за классом, полным студентов, стремящихся найти четыре схемы. Часто используются следующие меры, которые не приводят к включению лампочки.
После нескольких минут попыток, нескольких здоровых смешков и периодических возгласов о том, насколько сильно нагревается провод, нескольким ученикам удается зажечь лампочку.В отличие от вышеупомянутых попыток, первая успешная попытка характеризуется созданием полной проводящей петли от положительной клеммы к отрицательной клемме, при этом как батарея, так и лампочка являются частью петли. Как показано на схеме справа, основание лампочки подключается к положительному выводу элемента, а провод проходит от ребристых сторон лампы до отрицательного вывода элемента. Создается полная проводящая петля, в которую входит лампочка.Существует цепь, и заряд течет по всему проводящему пути, зажигая при этом лампочку. Сравните расположение элемента, лампы и провода справа с неудачным расположением, показанным выше. При попытке A провод не возвращается к отрицательному выводу ячейки. В попытке B провод действительно образует петлю, но не возвращается к отрицательному выводу ячейки. В попытке C нет полного цикла. Попытка D похожа на попытку B тем, что есть петля, но не от положительной клеммы к отрицательной.И при попытке E возникает петля, и она идет от положительного вывода к отрицательному; это цепь, но лампочка в нее не входит. ВНИМАНИЕ: При попытке E ваши пальцы нагреваются, когда вы держите оголенный провод, и заряд начинает течь с высокой скоростью между положительной и отрицательной клеммами.
Анатомия лампочкиКак только одна группа студентов успешно зажигает лампочку, многие другие лабораторные группы быстро следуют ее примеру.Но тогда возникает вопрос, какими еще способами можно расположить элемент, лампочку и оголенный провод, чтобы зажечь лампочку. Часто короткий урок анатомии лампочки побуждает лабораторные группы быстро найти одну или несколько оставшихся схем.
Лампочка – это относительно простое устройство, состоящее из нити накала, опирающейся на два провода или как-то прикрепленных к ним. Провода и нить накала – это проводящие материалы, которые позволяют заряду проходить через них.Один провод подключается к ребристым сторонам лампочек. Другой провод подключается к нижнему цоколю лампочки. Ребристый край и нижнее основание разделены изоляционным материалом, который предотвращает прямой поток заряда между нижним основанием и ребристым краем. Единственный путь, по которому заряд может пройти от ребристого края к нижнему основанию или наоборот, – это путь, который включает провода и нить накала. Заряд может входить в ребристый край, проходить через нить и выходить из нижнего основания; или он может войти в нижнее основание, пройти сквозь нить и выйти из ребристого края.Таким образом, есть две возможные точки входа и две соответствующие точки выхода.
Успешный способ зажечь лампу, как показано выше, заключался в размещении нижнего основания лампы на положительной клемме и соединении ребристого края с отрицательной клеммой с помощью провода. Любой заряд, который попадает в лампочку в нижнем основании, выходит из лампы в том месте, где провод соприкасается с ребристым краем. Тем не менее, нижнее основание не обязательно должно быть той частью лампы, которая касается положительной клеммы.Лампа загорится так же легко, если ребристый край поместить поверх положительной клеммы, а нижнее основание соединить с отрицательной клеммой с помощью провода. Последние две компоновки, которые приводят к включению лампочки, включают размещение лампы на отрицательном выводе ячейки, либо путем соприкосновения с ребристым краем, либо с нижним основанием. Затем провод должен соединить другую часть лампы с положительной клеммой элемента.
Требование замкнутого проводящего путиЕсть два требования, которые должны быть выполнены, чтобы установить электрическую цепь.Первое наглядно продемонстрировано вышеупомянутой деятельностью. Должен быть замкнутый проводящий путь, который простирается от положительного вывода к отрицательному. Недостаточно просто наличия замкнутого проводящего контура; Сама петля должна проходить от положительного вывода к отрицательному выводу электрохимической ячейки. Электрический контур похож на водяной контур в аквапарке. Поток заряда по проводам аналогичен потоку воды по трубам и горкам в аквапарке.Если труба закупоривается или ломается так, что вода не может пройти полный путь через контур , то поток воды скоро прекратится. В электрической цепи все соединения должны быть выполнены с использованием проводящих материалов, способных переносить зарядов. По мере продолжения эксперимента с ячейкой, лампочкой и проводом некоторые студенты исследуют способность различных материалов нести заряд, вставляя их в свои цепи. Металлические материалы являются проводниками и могут быть вставлены в цепь, чтобы успешно зажечь лампочку.С другой стороны, бумага и пластмассы обычно являются изоляторами, и их вставка в цепь будет препятствовать прохождению заряда до такой степени, что ток пропадет и лампочка больше не загорится. Должен быть замкнутый проводящий контур от положительного вывода к отрицательному, чтобы установить цепь и иметь ток.
С пониманием этого первого требования к электрической цепи становится ясно, что происходит, когда лампа накаливания в настольной лампе или торшере перестает работать.Со временем нить накаливания лампочки становится слабой и хрупкой, часто может сломаться или просто ослабнуть. Когда это происходит, цепь разомкнута, и замкнутый проводящий контур больше не существует. Без замкнутого проводящего контура не может быть ни цепи, ни потока заряда, ни горящей лампочки. В следующий раз, когда вы обнаружите сломанную лампочку в лампе, осторожно извлеките ее и осмотрите нить. Часто встряхивание снятой лампы вызывает дребезжание; нить накала, вероятно, упала с опорных стоек, на которые она обычно опирается, на дно стеклянного шара.При встряхивании вы услышите стук нити, ударяющейся о стеклянный шар.
Потребность в энергоснабженииВторое требование к электрической цепи, которое является общим для каждой из успешных попыток, продемонстрированных выше, заключается в том, что на двух концах цепи должна быть разность электрических потенциалов. Чаще всего это устанавливается при использовании электрохимической ячейки, набора ячеек (т.е.е., аккумулятор) или какой-либо другой источник энергии. Существенно, что существует некоторый источник энергии, способный увеличивать электрическую потенциальную энергию заряда, когда он перемещается от терминала с низкой энергией к терминалу с высокой энергией. Как обсуждалось в Уроке 1, для перемещения положительного тестового заряда против электрического поля требуется энергия. Применительно к электрическим цепям движение положительного тестового заряда через элемент от вывода с низким энергопотреблением к выводу с высоким энергопотреблением является движением против электрического поля.Это движение заряда требует, чтобы над ним была проделана работа, чтобы поднять его вверх к терминалу с более высокой энергией. Электрохимическая ячейка выполняет полезную роль, поставляя энергию для работы с зарядом, чтобы накачать ее или переместить ее через ячейку от отрицательной клеммы к положительной. Таким образом, ячейка устанавливает разность электрических потенциалов на двух концах электрической цепи. (Концепция разности электрических потенциалов и ее применение к электрическим цепям подробно обсуждались в Уроке 1.)
В бытовых электрических цепях энергия поставляется местной коммунальной компанией, которая отвечает за обеспечение того, чтобы пластины hot и нейтральные в монтажной коробке вашего дома всегда имели разность электрических потенциалов около 110 вольт. 120 Вольт (в США). В типичной лабораторной деятельности электрохимический элемент или группа элементов (то есть батарея) используется для установления разности электрических потенциалов на двух концах внешней цепи около 1.5 Вольт (одна ячейка) или 4,5 Вольт (три ячейки в упаковке). Часто проводят аналогии между электрической цепью и водным контуром в аквапарке или поездкой на американских горках в парке развлечений. Во всех трех случаях что-то движется по полному циклу, то есть по цепи. И во всех трех случаях важно, чтобы схема включала участок, где энергия подводится к воде, каботажному кораблю или заряду, чтобы переместить его на вверх по склону против его естественного направления движения от низкопотенциальной энергии до высокая потенциальная энергия.В аквапарке есть водяной насос, который перекачивает воду с уровня земли на вершину горки. Поездка на американских горках оснащена цепью с приводом от двигателя, которая переносит состав вагонов для горок от уровня земли до вершины первого падения. А электрическая цепь имеет электрохимический элемент, батарею (группу ячеек) или какой-либо другой источник энергии, который перемещает заряд с уровня земли (отрицательный вывод) на положительный вывод. Путем постоянной подачи энергии для перемещения заряда от клеммы с низкой энергией и низким потенциалом к клемме с высокой энергией и высоким потенциалом можно поддерживать непрерывный поток заряда.
Устанавливая эту разницу в электрическом потенциале, заряд может течь вниз по внешней цепи. Это движение заряда естественно и не требует энергии. Подобно движению воды в аквапарке или американским горкам в парке развлечений, движение под уклон является естественным и происходит без потребности в энергии из внешнего источника. Разница в потенциалах – будь то гравитационный или электрический потенциал – заставляет воду, каботажную машину и заряд двигаться.Эта разность потенциалов требует ввода энергии от внешнего источника. В случае электрической цепи одним из двух требований для создания электрической цепи является источник энергии.
В заключение, есть два требования, которые должны быть выполнены, чтобы установить электрическую цепь. Требования:
- Должен быть источник энергии, способный выполнять работу на зарядке, чтобы переместить его из места с низким энергопотреблением в место с высоким энергопотреблением и, таким образом, установить разность электрических потенциалов на двух концах внешней цепи.
- Во внешней цепи должен быть замкнутый проводящий контур, который простирается от положительной клеммы с высоким потенциалом к отрицательной клемме с низким потенциалом.
1. Если электрическую схему можно сравнить с водным контуром в аквапарке, то …
… батарея будет аналогична ____.… положительный полюс аккумуляторной батареи будет аналогичен ____.
… ток аналогичен ____.
… заряд будет аналогичен ____.
… разность электрических потенциалов аналогична ____.
Выбор:
A. давление воды
млрд. Галлонов воды, стекающей по горке в минуту
С.вода
D. нижняя часть слайда
E. водяной насос
F. верх горки
2. Используйте свое понимание требований к электрической цепи, чтобы определить, будет ли проходить заряд через следующие устройства ячеек, лампочек, проводов и переключателей.Если нет расхода заряда то объясните почему нет.
а. | б. |
Поток заряда: да или нет? Пояснение: | Поток заряда: да или нет? Пояснение: |
c. | d. |
Поток заряда: да или нет? Пояснение: | Поток заряда: да или нет? Пояснение: |
3.На схеме справа показана лампочка, подключенная к автомобильному аккумулятору 12 В. Показаны клеммы + и -.
а. Когда + заряд проходит через батарею от D к A, он ________ (получает, теряет) потенциальную энергию и ________ (получает, теряет) электрический потенциал. Точка максимальной энергии в батарее – это клемма ______ (+, -).г. Когда + заряд движется по внешней цепи от A к D, он ________ (получает, теряет) потенциальную энергию и ________ (получает, теряет) электрический потенциал.Точка максимальной энергии во внешней цепи находится ближе всего к клемме ______ (+, -).
г. Используйте знаки>, <и = для сравнения электрического потенциала (В) в четырех точках цепи.
V A V B V C V D
4. В фильме « Танго и Кэш » Курт Рассел и Сильвестр Сталлоне сбегают из тюрьмы, прыгнув с вершины высокой стены по воздуху на высоковольтную линию электропередачи.Перед прыжком Сталлоне возражает против этой идеи, говоря Расселу: «Мы собираемся поджариться». Рассел отвечает: «Вы ведь не учились в школе физики. Пока вы касаетесь только одного провода и ваши ноги не касаются земли, вас не ударит током». Это правильное утверждение?
Обзор электрических схем– Ответы № 2
Обзор электрических цепейПереход к:
Главная страница сеанса обзора – Список тем
Electric Circuits – Главная || Версия для печати || Вопросы со ссылками
Ответы на вопросы: Все || # 1-7 || # 8-51 || # 52-59 || # 60-72
8.Если бы электрическая цепь была аналогична аквапарку, то аккумулятор был бы аналогичен ____.
а. трубы, по которым вода проходит через водяной контург. насос, который подает энергию для перемещения воды с земли на высоту
г. люди, которые текут с верха водного аттракциона на нижний водный аттракцион
г. скорость, с которой вода закачивается на горку
e. изменение потенциальной энергии гонщиков
ф.верх водной горки
г. дно водной горки
ч. длинные очереди в парке
и. скорость, с которой движутся гонщики при скольжении сверху вниз по траектории
Ответ: B Водный аттракцион в аквапарке аналогичен электрическому контуру. Во-первых, есть сущность, которая течет – вода течет в аквапарке и (условно) + течет заряд в электрической цепи.В каждом случае жидкость самопроизвольно течет из места с высокой энергией в место с низкой энергией. Поток идет по трубам (или горкам) в аквапарке и по проводам в электрической цепи. Если трубы или провода порваны, непрерывный поток жидкости через контур невозможен. Для установления цепи требуется полный цикл. Этот поток жидкости – будь то вода или заряд – возможен, когда создается разница давлений между двумя точками в контуре .В аквапарке перепад давления – это разница напора воды, создаваемая двумя локациями на разной высоте. Вода самопроизвольно течет из мест с высоким давлением (большая высота) в места с низким давлением (низкая высота). В электрической цепи разность электрических потенциалов между двумя выводами батареи или источника энергии обеспечивает электрическое давление, которое оказывает давление на заряд, чтобы переместить их из места высокого давления (высокого электрического потенциала) в место низкого давления (низкий электрический потенциал). потенциал). Энергия требуется для перемещения жидкости вверх по склону . В аквапарке водяной насос используется для работы с водой, чтобы поднять ее с небольшой высоты обратно на большую. Водяной насос не подает воду; вода, которая уже есть в трубах. Напротив, водяной насос подает энергию для перекачивания воды из места с низкой энергией и низким давлением в место с высокой энергией и высоким давлением. В электрической цепи аккумулятор является зарядным насосом, который прокачивает заряд через аккумулятор из места с низким электрическим потенциалом (клемма -) в место с высоким электрическим потенциалом (клемма +).Аккумулятор не подает электрический заряд; заряд уже в проводах. Аккумулятор просто поставляет энергию для работы над зарядом, перекачивая его на в гору . |
9. Если бы электрическая цепь была аналогична аквапарку, то положительный полюс батареи был бы аналогичен ____.
а. трубы, по которым вода проходит через водяной контург.насос, который подает энергию для перемещения воды с земли на высоту
г. люди, которые текут с верха водного аттракциона на нижний водный аттракцион
г. скорость, с которой вода закачивается на горку
e. изменение потенциальной энергии гонщиков
ф. верх водной горки
г. дно водной горки
ч. длинные очереди в парке
и.скорость, с которой движутся гонщики при скольжении сверху вниз по траектории
Водный аттракцион в аквапарке аналогичен электрическому контуру. Во-первых, есть сущность, которая течет – вода течет в аквапарке и (условно) + течет заряд в электрической цепи. В каждом случае жидкость самопроизвольно течет из места с высокой энергией в место с низкой энергией.Поток идет по трубам (или горкам) в аквапарке и по проводам в электрической цепи. Если трубы или провода порваны, непрерывный поток жидкости через контур невозможен. Для установления цепи требуется полный цикл. Этот поток жидкости – будь то вода или заряд – возможен, когда создается разница давлений между двумя точками в контуре . В аквапарке перепад давления – это разница напора воды, создаваемая двумя локациями на разной высоте.Вода самопроизвольно течет из мест с высоким давлением (большая высота) в места с низким давлением (низкая высота). В электрической цепи разность электрических потенциалов между двумя выводами батареи или источника энергии обеспечивает электрическое давление, которое оказывает давление на заряд, чтобы переместить их из места высокого давления (высокого электрического потенциала) в место низкого давления (низкий электрический потенциал). потенциал). Энергия требуется для перемещения жидкости вверх по склону .В аквапарке водяной насос используется для работы с водой, чтобы поднять ее с небольшой высоты обратно на большую. Водяной насос не подает воду; вода, которая уже есть в трубах. Напротив, водяной насос подает энергию для перекачивания воды из места с низкой энергией и низким давлением в место с высокой энергией и высоким давлением. В электрической цепи аккумулятор является зарядным насосом, который прокачивает заряд через аккумулятор из места с низким электрическим потенциалом (клемма -) в место с высоким электрическим потенциалом (клемма +).Аккумулятор не подает электрический заряд; заряд уже в проводах. Аккумулятор просто поставляет энергию для работы над зарядом, перекачивая его на в гору . |
10. Если бы электрическая цепь была аналогична аквапарку, то электрический ток был бы аналогичен ____.
а. трубы, по которым вода проходит через водяной контург.насос, который подает энергию для перемещения воды с земли на высоту
г. люди, которые текут с верха водного аттракциона на нижний водный аттракцион
г. скорость, с которой вода закачивается на горку
e. изменение потенциальной энергии гонщиков
ф. верх водной горки
г. дно водной горки
ч. длинные очереди в парке
и.скорость, с которой движутся всадники при скольжении сверху вниз по трассе
Ответ: D Поток воды в аквапарке аналогичен потоку заряда в электрической цепи. Скорость, с которой заряд проходит через точку в цепи, измеряемая в кулонах заряда в секунду (или некотором сопоставимом наборе единиц), называется током. В нашей аналогии текучая среда, которая течет, – это вода, а скорость, с которой жидкость проходит через любую заданную точку, – это течение. |
11. Потенциальная энергия единицы заряда в любом заданном месте называется электрической ___.
а. текущий
г. сопротивление
г. потенциал
г. мощность
Ответ: C Это определение электрического потенциала – понятие, которое вы должны усвоить. |
[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]
12. Один ампер – это величина тока, которая существует, когда ____ протекает через определенную точку в проводнике в ____.
а.один ватт; одна секунда
г. один джоуль; один час
г. один электрон; одна секунда
г. один электрон; один час
e. один вольт; одна секунда
ф. один вольт; один час
г.один кулон; одна секунда
ч. один кулон; один час
Ответ: G Ампер – единица измерения электрического тока. А электрический ток определяется как скорость, с которой заряд проходит через точку в цепи, измеряемую в стандартных единицах кулонов заряда в секунду. |
[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]
13.Если 6 кулонов заряда проходят мимо точки «A» в контуре за 4 секунды, то ____ кулонов заряда проходит мимо точки «A» за 8 секунд.
а. 0,67
г. 1,5
г. 2
г. 3
e. 4
ф.6
г. 8
ч. 12
и. 24
Ответ: H Ток (I) – это количество заряда, протекающего через точку (Q) за заданный промежуток времени (t). То есть I = Q / t. Таким образом, в этом случае ток в точке A равен (6 C) / (4 с) или 1.5 ампер. Таким образом, отношение Q / t составляет 1,5 независимо от времени. Решите уравнение 1,5 Кл / с = Q / (8 с)для Q, чтобы получить ответ. |
[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]
14.В какой из следующих ситуаций загорится лампочка? Перечислите все подходящие варианты.
Ответ: DF Для установления цепи должен быть замкнутый проводящий контур от положительной клеммы к отрицательной. Это будет означать, что цепи D, E и F будут цепями. Но чтобы лампочка загорелась, ее необходимо включить в электрическую цепь. Итак, в E лампочка не загорается, поскольку петля не проходит в лампочку и не проходит сквозь нее; заряд будет просто вытекать из + клеммы батареи и прямо обратно в отрицательную клемму батареи. |
Для вопросов № 15- № 17:
Простая схема, содержащая аккумулятор и лампочку, показана на схеме справа. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.
15. Ток через батарею ___.
а. больше, чем через лампочку
г.меньше, чем через лампочку
г. то же, что и через лампочку
г. больше, чем через каждый провод
e. меньше, чем через каждый провод
Ответ: C Начисление – это сохраняемая величина; он никогда не приобретается и не теряется.В электрической цепи заряд, присутствующий в проводах и проводящих элементах, – это то, что движется по цепи. Этот заряд заключен в провода и не может выйти (при условии, что в цепи нет неисправности). По мере того, как заряд течет, он не накапливается в данном месте. И заряд не израсходовал как бы расходный объем. При этом заряд не трансформируется в другой тип сущности. Учитывая все эти рассуждения, можно было бы заключить, что ток в одном месте в электрической цепи такой же, как ток в любом другом месте в электрической цепи. |
16. Заряд, протекающий по этой цепи, имеет наибольшее напряжение в ____. Выберите один лучший ответ.
а. + клемма аккумулятораг. – клемма аккумулятора
г. непосредственно перед входом в лампочку
г. сразу после выхода из лампочки
e. … бред какой то! Энергия заряда одинакова во всем контуре.
Ответ: A Клемма “+” батареи – это высокоэнергетическая клемма батареи. |
17. Роль или назначение батареи в этой цепи – ____. Выберите три.
а. подавать электрический заряд, чтобы мог существовать токг. подавать энергию к заряду
г.переместите заряд с – на + вывод аккумуляторной батареи
г. преобразовать энергию из электрической энергии в световую
e. установите разность электрических потенциалов между клеммами + и –
ф. восполнить потерянный в лампочке заряд
г. Обеспечьте сопротивление потоку заряда, чтобы лампочка могла нагреваться
Ответ: до н.э. Чтобы установить электрическую цепь, заряд должен быть переведен с низкой энергии на высокую.При достижении высокой энергии заряд самопроизвольно течет через проводящие провода и другие проводящие элементы схемы назад вниз к клемме с низким энергопотреблением. Роль батареи заключается в обеспечении энергией, необходимой для переноса заряда с клеммы – на клемму + батареи. Помещая большое количество одинакового заряда в одном месте, устанавливается электрическое давление или разность потенциалов, заставляя одинаковые заряды перемещаться от этого места к месту противоположного заряда (клемма -). |
18. Аккумулятор на 12 В будет обеспечивать ___. Перечислите все подходящие варианты.
а. 3 кулоны заряда с 4 джоулями энергииг. 4 кулоны заряда с 3 джоулями энергии
г. 12 кулонов заряда с 1 Джоуль энергии
г. 1 кулон заряда с энергией 12 джоулей
e. 0,5 кулонов заряда с энергией 24 джоулей
ф.24 кулоны заряда с 2 джоулями энергии
Ответ: D Электрический потенциал (или напряжение) определяется как электрическая потенциальная энергия на заряд. Это джоули энергии на кулон заряда, которым обладает некоторое количество заряда в некотором месте в электрической цепи. 12-вольтная батарея перемещает некоторое количество заряда с клеммы – на клемму +, передавая энергию заряда. Каждый кулон заряда потреблял бы 12 Джоулей энергии.Соотношение энергия / заряд будет 12 Дж / Кл. |
19. Заряды, протекающие по проводам в вашем доме ____.
а. хранятся в торговых точках у вас домаг. создаются при включении устройства
г. происходят в энергетической компании
г. берут начало в проводах между вашим домом и энергокомпанией
e. уже есть в проводах у вас дома
Ответ: E Этот вопрос направлен против распространенного заблуждения об электрических цепях.Заблуждение предполагает, что роль электрической розетки, аккумулятора или энергокомпании заключается в обеспечении заряда, необходимого для передвижения по дому. Но энергетическая компания является только источником энергии, необходимой для приведения заряда в движение, путем установления разности электрических потенциалов. Сам заряд присутствует в проводах и токопроводящих элементах вашего дома в виде мобильных электронов. |
20.Примерно сколько времени потребуется электрону, чтобы пройти от аккумуляторной батареи автомобиля до фары и обратно (полный цикл)?
а. секунды
г. часы
г.
летг. одна миллионная секунды
e. одна десятая секунды
Ответ: B Электрический заряд, проходящий по электрической цепи, движется довольно медленно.Довольно удивительно для многих, что расстояние, пройденное за единицу времени, составляет порядка 1 метра в час. |
21. Представленная справа электрическая схема состоит из аккумулятора и трех одинаковых лампочек. Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.
а. Ток через точку X будет больше, чем через точку Z.г. Ток через точку Z будет больше, чем через точку Y.
г. Ток будет одинаковым через точки X, Y и Z.
г. Ток через точку X будет больше, чем через точку Y.
e. Ток через точку Y будет больше, чем через точку X.
Ответ: C Как обсуждалось в вопросе № 15 выше, ток в электрической цепи везде одинаков. Таким образом, ток в этих трех местах одинаков. |
22. Представленная справа электрическая схема состоит из аккумулятора и трех одинаковых лампочек. Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.
а. Разность электрических потенциалов между X и Y больше, чем между Y и Z.г. Разность электрических потенциалов между X и Z больше, чем между Y и W.
г.Разность электрических потенциалов между X и Y такая же, как между Y и Z.
г. Разность электрических потенциалов между X и Z такая же, как между Y и W.
e. Разность электрических потенциалов между Y и W больше, чем между X и Y.
Ответ: DE Разность электрических потенциалов на лампочке (или на любом резисторе) в электрической цепи – это просто произведение тока в этой лампочке на ее сопротивление.Каждая лампочка имеет одинаковое сопротивление (поскольку они идентичны) и одинаковый ток (поскольку ток везде одинаковый). Таким образом, разность электрических потенциалов на каждой лампочке одинакова. И падение потенциала на любых двух последовательных лампочках одинаково. И падение потенциала на двух лампах будет больше, чем на одной лампочке. |
23. Электрическая схема, показанная справа, состоит из аккумулятора и трех одинаковых лампочек.Какие из следующих утверждений относительно этой схемы верны? Перечислите все подходящие варианты.
а. Обычный ток направляется по внешней цепи от точки X к Y, от Z к W.г. Обычный ток направляется через внешнюю цепь от точки W к Z, к Y к X.
г. Обычный ток направляется по внутренней цепи от точки W к точке X.
г. Обычный ток направляется по внутренней цепи из точки X в точку W.
e. Точка, в которой заряд обладает наименьшим количеством электрической потенциальной энергии, – это точка W.
Ответ: ACE Батарея называется внутренней схемой. Заряд перемещается по внутренней цепи от клеммы – к клемме + (в направлении от W к Z). Провода и лампочки составляют внешнюю цепь; заряд движется по внешней цепи от клеммы + к клемме – (в направлении от X к Y, от Z к W). |
24. Напряжение ____ в электрической цепи.
а. проходит через
г. выражается через
г. постоянно на протяжении
г. скорость, с которой расходы проходят через
Ответ: B Напряжение или электрический потенциал не движутся.Таким образом, варианты A и D не являются ответами, поскольку предполагают изменение напряжения. И напряжение или электрический потенциал заряда не является чем-то постоянным во всей цепи, как предполагает вариант C. Напряжение или электрический потенциал – это мера того, насколько заряжено количество заряда в данном месте относительно клеммы -. Часто это выражается как разница между двумя точками. Возможно, вы обратили внимание на эту формулировку «потенциал через …» в нескольких ответах в этом обзоре. |
25. Два или более из следующих слов и фраз означают одно и то же. Определите их, перечислив их буквы.
а. Напряжение
г. Мощность
г. Разница электрических потенциалов
г. Скорость движения платежей
e.Электрическое давление
ф. Энергия
Ответ: ACE Напряжение или разность электрических потенциалов являются синонимами. Напряжение не является синонимом энергии. В то время как напряжение (или разность электрических потенциалов) является мерой того, насколько заряжено количество заряда в данном месте, напряжение выражается как энергия на заряд (а не просто как энергия).По аналогии между аквапарком и электрической цепью, напряжение – это мера количества электрического давления, оказываемого на заряд, заставляя его перемещаться из одного места в другое. Мощность – это синоним мощности. Ток является синонимом скорости, с которой течет заряд. |
26. Высоковольтная батарея может ____.
а. много работать над каждым зарядом, с которым он сталкиваетсяг.выполнять много работы в течение срока службы
г. протолкнуть много заряда через цепь
г. длиться долго
Ответ: A Напряжение относится к энергии / заряду. Батарея, рассчитанная на высокое напряжение, может выполнять большую работу на каждый кулон заряда, с которым она сталкивается. В зависимости от размера батареи он может или не сможет выполнять большую работу в течение всего срока службы. |
27. Что из перечисленного происходит при перезарядке аккумуляторной батареи?
а. Батарея, мощность которой разряжена, восстанавливается.г. Батарея, у которой закончился ток, возвращается в нее.
г. Батарея, которая разрядилась, возвращается к ней.
г. Батарея, в которой закончились химические реактивы, подверглась химическому преобразованию.
Ответ: D Батареи выполняют свои задачи по энергоснабжению, используя энергию экзотермической окислительно-восстановительной реакции для работы при зарядке в электрической цепи. Когда батарея больше не работает, ее реагенты расходуются до такой степени, что электрический потенциал, который реагенты способны производить, невелик по сравнению с общим сопротивлением цепи. В такой момент времени способность индуцировать ток ограничена до такой степени, что элементы внешней цепи больше не работают. Не все батареи можно перезаряжать. Те, которые являются перезаряжаемыми, могут превращать продукты обратно в реагенты. Зарядное устройство использует электрическую энергию из розетки, чтобы обратить вспять ранее экзотермическую реакцию, превращая ее продукты обратно в реагенты. |
28. Птицы могут спокойно стоять на высоковольтных линиях электропередачи. Это потому что ____.
а.они имеют низкий потенциал по отношению к земле.г. они не оказывают сопротивления току.
г. они всегда выбирают неиспользуемые линии электропередач.
г. разность потенциалов между их ногами мала.
e. они идеальные изоляторы.
ф. они прекрасные дирижеры.
Ответ: D Чтобы заряд протекал между двумя точками, между этими двумя точками должна быть установлена разность электрических потенциалов.Если птица ставит левую ногу на линию электропередачи, а правую ногу на расстоянии нескольких сантиметров от той же линии электропередачи, то разницы потенциалов между его двумя ногами практически нет. Без разности электрических потенциалов заряд не будет проходить через птицу, и птица будет в безопасности. |
29. Когда лампочка в вашей лампе больше не работает, это потому, что в лампочке _____.
а. заканчивается энергия и больше не может качать зарядг.нет напряжения и необходимо зарядить
г. закончились электроны и поэтому нет больше тока
г. сгорел все ватты и больше не светит
e. сработал автоматический выключатель и должен быть закреплен на блоке предохранителей
ф. обрыв нити накала, что привело к обрыву цепи
г. … бред какой то! Лампочка в порядке; вашей семье просто нужно полностью оплатить счет за электроэнергию.
Ответ: F Самая частая причина неспособности лампочки зажигать – обрыв нити накала.Спиральная вольфрамовая проволока протягивается между двумя вертикальными опорами. Если потревожить в горячем состоянии или при износе, металлический вольфрам может сломаться и оставить зазор между двумя вертикальными опорами. Этот разрыв представляет собой разрыв цепи; замкнутый проводящий контур больше не устанавливается, и заряд не течет. |
30. В цепи вашего фонаря нужна батарейка, чтобы ____.
а.заряд предоставляется на проводаг. энергия света уравновешивается аккумулятором
г. возможна экзотермическая реакция, создающая свет
г. в цепи
поддерживается разность электрических потенциалов.e. подаются электроны, чтобы зажечь лампочку
Ответ: D Одна из функций батареи – просто установить разницу в электрическом потенциале между двумя ее выводами.Заряд с высоким потенциалом будет проходить через внешнюю цепь в место с низким потенциалом. |
31. При включении освещения в помещении они сразу загораются. Лучше всего это объясняется тем, что ____.
а. электроны очень быстро перемещаются от переключателя к нити накала лампочкиг. электроны, присутствующие повсюду в цепи, движутся мгновенно
Ответ: B Электроны очень медленно перемещаются из одного места в другое.Но как только цепь замыкается, они сразу начинают движение. Пока электроны движутся примерно на метр или за час, фактический сигнал, который говорит им начать движение, может двигаться со скоростью света. Таким образом, как только переключатель включен, по цепи циркулирует сигнал, чтобы электроны маршировали . Электроны присутствуют в нити накала цепи. |
32. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.
а. очень быстро; меньше, но очень близко к скорости светаг. быстрый; быстрее, чем самая быстрая машина, но далеко не скорость света
г. медленный; медленнее Майкла Джексона пробегает 220-метровую
г. очень медленно; медленнее улитки
Ответ: D Скорость дрейфа – это расстояние, на которое заряд перемещается за единицу времени.Это значение очень мало, так как электроны движутся очень и очень медленно. Двигаясь со скоростью около 1 метра в час, они буквально медленнее, чем улитка. |
33. Предположим, что ток в типовой цепи (постоянный ток) велик. Это показатель того, что ____.
а. мобильные носители заряда движутся очень быстрог. большое количество мобильных носителей заряда продвигается в секунду
г.и a, и b верны
Ответ: B Ток (скорость, с которой заряд движется мимо точки в цепи) и скорость дрейфа (расстояние, на которое заряд проходит за секунду) не следует путать (и часто это так). Если ток большой, можно быть уверенным только в одном: много зарядов перемещается вперед через точку в цепи каждую секунду. |
34.Какие из следующих утверждений представляют собой правильные эквиваленты единиц измерения? Перечислите все подходящие варианты.
а. 1 Ампер = 1 Кулон в секунду
г. 1 Джоуль = 1 В / кулон
г. 1 Ватт = 1 Джоуль • секунда
г. 1 Вт = 1 В • Кулон в секунду
e.1 Джоуль / Ом = 1 Ампер • Кулон
ф. 1 Джоуль • Ом = 1 В 2 • секунда
Ответ: ADEF Этот вопрос требует знания как единиц измерения электрических величин, так и уравнений, связывающих эти величины. При выборе a, ампер – это единица измерения тока (I), а кулон в секунду – это единица заряда в единицу времени (Q / t).Это согласуется с уравнением I = Q / t. При выборе b джоуль – это единица энергии (Э), а вольт / кулон – это единица измерения напряжения на единицу заряда (В / Кв). Поскольку напряжение – это энергия, приходящаяся на заряд, мы ожидаем, что энергия будет эквивалентна напряжению • заряда. Таким образом, неправильно приравнивать единицы энергии к единицам напряжения на заряд. При выборе c, ватт – это единица мощности (P), а джоуль • секунда – это единица энергии (E), умноженная на единицу времени (t).Но мощность – это энергия / время, а не энергия • время, так что это неправильный эквивалент единиц. При выборе d ватт – это единица мощности (P). Справа вольт – это единица измерения напряжения (В), а кулон в секунду – это единица измерения тока (I). Так как P = I • V, это правильная эквивалентность единиц. При выборе e джоуль / Ом – это единица энергии на единицу сопротивления (E / R). Ампер • Кулон – это единица измерения тока, умноженная на единицу заряда (I • Q).Таким образом, уравнение предполагает, что E / R = I • Q. Это можно переставить алгебраически, чтобы сказать, что E / Q = I • R. Поскольку напряжение – это энергия, приходящаяся на заряд (E / Q), уравнение можно переписать как V = I • R. Таким образом, это правильная эквивалентность единиц измерения. При выборе f джоуль • Ом – это единица энергии, умноженная на единицу сопротивления (E • R). Вольт 2 / секунда – это единица измерения напряжения 2 , умноженная на единицу времени (В 2 • t). Таким образом, это уравнение предполагает, что E • R = V 2 • t.Это можно переставить алгебраически, чтобы сказать, что E / t = V 2 / R. Правая часть уравнения эквивалентна мощности, поэтому уравнение можно переписать как P = V 2 / R. правильный способ записи уравнения мощности, эквивалентность данной единицы верна. |
35. На какой из следующих схем представлены последовательно включенные резисторы? Перечислите все подходящие варианты.
Ответ: B A и C представляют собой параллельные соединения, как показано разветвлением, которое происходит до и после резисторов.В варианте B нет разветвления, поэтому резисторы подключаются последовательно. |
Вопросы № 36- № 39:
На схеме справа показаны два идентичных резистора – R 1 и R 2 , включенные в цепь с 12-вольтовой батареей. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.
36. Эти два резистора соединены в ____.
а.серия
г. параллельно
г. ни
Ответ: A Можно начать с плюсовой клеммы аккумулятора и начать водить пальцем по проводу. Если когда-либо есть точка, в которой провод подходит к стыку и разветвляется в двух или более направлениях, тогда схема имеет параллельное соединение.В противном случае это последовательная цепь. На этой диаграмме нет разветвления. Таким образом, это последовательная схема. |
37. Разность электрических потенциалов (падение напряжения) на каждом резисторе составляет ___ Вольт.
а. 6
г. 12
г. 24
г…. бред какой то!. Разность электрических потенциалов зависит от фактического сопротивления резисторов
.
Ответ: A Заряд получает увеличение электрического потенциала на 12 вольт при перемещении по внутренней цепи (аккумулятор). Таким образом, когда заряд покидает аккумулятор и проходит через внешнюю цепь, общее падение электрического потенциала должно составлять 12 вольт.Это падение напряжения происходит в два этапа, когда заряд проходит через каждый из резисторов. Заряд потеряет 6 вольт на первом резисторе и 6 вольт на втором резисторе, вернув его к нулю к тому времени, когда он вернется на клемму – батареи. Диаграмма потенциальных возможностей справа является визуальным средством представления этой важной концепции. |
38. Если третий резистор (R 3 ), идентичный двум другим, добавлен последовательно с первыми двумя, то общее сопротивление будет ____, а общий ток будет ____.
а. прибавка, прибавка
г. уменьшение, уменьшение
г. увеличение, уменьшение
г. уменьшение, увеличение
e. увеличиваются, остаются прежними
ф. уменьшаются, остаются прежними
г.остаться прежним, увеличить
ч. остаются прежними, уменьшаются
и. остаются прежними, остаются прежними
Ответ: C Увеличение количества резисторов в последовательной цепи приведет к увеличению общего сопротивления этой цепи и уменьшению тока.(Обратное верно для параллельной схемы.) |
39. Если третий резистор (R 3 ), идентичный двум другим, добавлен последовательно с первыми двумя, то разность электрических потенциалов (падение напряжения) на каждом из трех отдельных резисторов будет ____.
а. увеличить
г.уменьшение
г. остаются прежними
Ответ: B Используя те же рассуждения, что и в вопросе № 37, мы можем сказать, что заряд приобретает 12 Вольт при прохождении через батарею. Он должен будет потерять эти 12 вольт в три этапа при прохождении через внешнюю цепь. Поскольку теперь во внешней цепи есть три падения напряжения вместо двух первоначальных, каждое падение должно быть меньше, чем раньше.Таким образом, на каждом резисторе будет падение напряжения на 4 В (вместо исходных 6 В). |
Вопросы № 40- № 43:
На схеме справа показаны два идентичных резистора – R 1 и R 2 , включенные в цепь с 12-вольтовой батареей. Используйте эту диаграмму, чтобы ответить на несколько следующих вопросов.
40. Эти два резистора соединены в ____.
а. серия
г. параллельно
г. ни
Ответ: B Можно начать с плюсовой клеммы аккумулятора и начать водить пальцем по проводу. Если когда-либо есть точка, в которой провод подходит к стыку и разветвляется в двух или более направлениях, тогда схема имеет параллельное соединение.В противном случае это последовательная цепь. На этой диаграмме есть некоторые разветвления. Когда заряд достигает точки разветвления, он проходит либо через резистор в левой ветви (R 1 ), либо через резистор в правой ветви (R 2 ). Таким образом, это параллельная схема. |
41. Разность электрических потенциалов (падение напряжения) на каждом резисторе составляет ___ Вольт.
а.6
г. 12
г. 24
г. … бред какой то!. Разность электрических потенциалов зависит от фактического сопротивления резисторов
.
Ответ: B Заряд получает увеличение электрического потенциала на 12 вольт при перемещении по внутренней цепи (аккумулятор).Таким образом, когда заряд покидает аккумулятор и проходит через внешнюю цепь, общее падение электрического потенциала должно составлять 12 вольт. Это падение напряжения происходит за один шаг, поскольку заряд проходит только через один резистор на обратном пути к батарее. Таким образом, поскольку для заряда выбирается либо левая, либо правая ветвь (но не обе), любая ветвь должна обеспечивать падение напряжения на 12 В. В параллельных цепях разность электрических потенциалов на батарее равна разности электрических потенциалов на любой ветви.Диаграмма потенциальных возможностей справа является визуальным средством представления этой важной концепции. |
42. Если третий резистор (R 3 ), идентичный двум другим, добавить параллельно с первыми двумя, то общее сопротивление будет ____, а общий ток будет ____.
а. прибавка, прибавка
г.уменьшение, уменьшение
г. увеличение, уменьшение
г. уменьшение, увеличение
e. увеличиваются, остаются прежними
ф. уменьшаются, остаются прежними
г. остаться прежним, увеличить
ч.остаются прежними, уменьшаются
и. остаются прежними, остаются прежними
Ответ: D Добавление идентичного резистора в отдельную ветвь обеспечит больше путей, по которым заряд может проходить через петлю цепи. Это было бы эквивалентом добавления еще одной будки на пункте взимания платы на платной дороге параллельно с существующей будкой.Открытие другой полосы движения снизит общее сопротивление и вызовет увеличение скорости потока автомобилей. То же самое происходит с зарядом в параллельных цепях. Больше ответвлений означает меньшее сопротивление и повышенный ток. |
43. Если третий резистор (R 3 ), идентичный двум другим, добавить параллельно с первыми двумя, то разность электрических потенциалов (падение напряжения) на каждом из трех отдельных резисторов будет ____.
а. увеличить
г. уменьшение
г. остаются прежними
Ответ: C Разность электрических потенциалов на любой ветви равна напряжению батареи. Добавление новой ветви может изменить общее сопротивление и общий ток, но не изменит разность электрических потенциалов ни на батарее, ни на ветвях. |
[# 8 | # 9 | # 10 | # 11 | # 12 | # 13 | # 14 | # 15 | # 16 | # 17 | # 18 | # 19 | # 20 | # 21 | # 22 | # 23 | # 24 | # 25 | # 26 | # 27 | # 28 | # 29 | # 30 | # 31 | # 32 | # 33 | # 34 | # 35 | # 36 | # 37 | # 38 | # 39 | # 40 | # 41 | # 42 | # 43 | # 44 | # 45 | # 46 | # 47 | # 48 | # 49 | # 50 | # 51]
44. Сопротивление токонесущего провода увеличится на ____. Выберите все, что подходит.
а. длина провода увеличенаг.сечение провода увеличено
г. температура проволоки повышена
г. напряжение на концах провода увеличивается
e. провод ставим все ближе и ближе к + клемме цепи
Ответ: AC Сопротивление провода увеличивается с увеличением длины и (в меньшей степени) с повышением температуры.Увеличение длины провода увеличивает количество столкновений заряда атома и, следовательно, величину сопротивления. Повышение температуры увеличивает удельное сопротивление материала и, таким образом, увеличивает общее сопротивление. |
45. При подключении к розетке на 120 В лампочка потребляет 300 джоулей энергии в течение 5 секунд. Мощность лампочки ____ Вт.
а.0,0167
г. 0,50
г. 2,0
г. 2,50
e. 60
ф. 600
г. 1500
ч. 7200
Ответ: E Мощность – это просто скорость, с которой энергия подается в цепь или преобразуется в ней.В этом случае мощность – это энергия, потребляемая за раз. P = (300 Дж) / (5 секунд) = 60 Вт |
46. Определенная электрическая цепь содержит аккумулятор, провода и лампочку. Если потенциальная энергия приобретается за счет заряда в месте расположения батареи, тогда заряды теряют потенциальную энергию ____.
а. только в проводахг. в лампочке только
г. поровну в проводах и лампочке
г.в основном в проводах но немного в лампочке
e. в основном в лампочке, но немного в проводах
ф. никуда
Ответ: E Charge теряет энергию при прохождении через зоны сопротивления. При последовательном соединении участки с наибольшим сопротивлением преобразуют электрическую энергию в другие формы с большей скоростью. Таким образом, энергия будет потеряна в лампочке и в проводах в гораздо меньшей степени. |
47. Электрическая лампочка с высоким сопротивлением и лампочка с низким сопротивлением последовательно подключены к 6-вольтовой батарее. Какая из двух лампочек будет светить ярче всего?
а. У них будет одинаковая яркость.г. Лампа с низким R будет светиться ярче.
г. Лампа с высоким R будет светиться ярче.
г. Невозможно сделать такой прогноз, поскольку яркость лампы не зависит от сопротивления лампы.
Ответ: C Поскольку две лампочки включены последовательно, каждая из них испытывает одинаковый ток (i). Мощность будет отдана продуктом i 2 • R. Поскольку i одинаково для каждой лампочки, лампа с наибольшим сопротивлением будет иметь наибольшую мощность. Таким образом, лампочка с высоким R будет преобразовывать электрическую энергию в энергию света с максимальной скоростью и, таким образом, будет светить наиболее ярко. |
48.Лампочка с высоким сопротивлением и лампочка с низким сопротивлением подключены параллельно и питаются от 6-вольтовой батареи. Какая из двух лампочек будет светить ярче всего?
а. У них будет одинаковая яркость.г. Лампа с низким R будет светиться ярче.
г. Лампа с высоким R будет светиться ярче.
г. Невозможно сделать такой прогноз, поскольку яркость лампы не зависит от сопротивления лампы.
Ответ: B Поскольку две лампочки включены параллельно, каждая из них испытывает одинаковое падение напряжения (В).Мощность будет отдана продуктом i 2 • R. Поскольку V одинаково для каждой лампочки, лампа с наибольшим сопротивлением будет иметь наименьший ток. Ток имеет наибольшее значение при определении мощности лампочки, поскольку в уравнении он возведен в квадрат. Таким образом, лампочка с низким сопротивлением будет иметь наибольший ток и, таким образом, преобразовывать электрическую энергию в энергию света с наибольшей скоростью; он будет сиять наиболее ярко. |
49.Три одинаковые лампочки подключены к батарее, как показано справа. Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Включите все, что применимо.
а. увеличить сопротивление одной из лампочекг. увеличить сопротивление двух лампочек
г. уменьшить сопротивление двух лампочек
г. увеличить напряжение АКБ
e. уменьшить напряжение АКБ
ф.снимаем одну из лампочек
Ответ: CDF Ток в последовательной цепи (как полный ток, так и ток через отдельные резисторы) напрямую зависит от напряжения батареи и обратно пропорционально полному сопротивлению цепи. Этот ток можно увеличить, увеличив напряжение аккумулятора. Его также можно увеличить, уменьшив общее сопротивление. Удаление лампы уменьшило бы общее сопротивление, а уменьшение сопротивления любой отдельной лампы уменьшило бы общее сопротивление. |
50. Три одинаковые лампочки (обозначенные X, Y и Z) подключены к батарее, как показано справа. Какие настройки можно внести в схему ниже, чтобы увеличить ток в точке P? Перечислите все подходящие варианты.
а. увеличить сопротивление одной из лампочекг. увеличить сопротивление двух лампочек
г. уменьшить сопротивление двух лампочек
г.увеличить напряжение АКБ
e. уменьшить напряжение АКБ
ф. снимаем одну из лампочек
Ответ: CD Точка P представляет собой место, где можно измерить полный ток этой параллельной цепи. Полный ток будет напрямую зависеть от общего напряжения и обратно пропорционально общему сопротивлению. Увеличение напряжения батареи приведет к увеличению тока в точке P.Уменьшение общего сопротивления приведет к увеличению тока в точке P. Общее сопротивление можно уменьшить, добавив еще один резистор в отдельную ветвь или уменьшив сопротивление любой из ветвей. |
51. Три одинаковые лампочки (обозначенные X, Y и Z) подключены к батарее, как показано справа. Какие настройки можно внести в схему ниже, чтобы уменьшить ток в лампе Z? Перечислите все подходящие варианты.
а. увеличить сопротивление лампы Xг. уменьшить сопротивление лампы X
г. увеличить сопротивление лампы Z
г. уменьшить сопротивление лампы Z
e. увеличить напряжение АКБ
ф. уменьшить напряжение АКБ
г. снять лампу Y
Ответ: CF Ток в лампе Z зависит от падения напряжения на лампе Z и сопротивления лампы Z.В форме уравнения: Я Z = V Z / R ZУвеличение напряжения батареи приведет к увеличению падения напряжения на лампе Z (V Z ) и, таким образом, обеспечит больший ток через лампу. Уменьшение сопротивления лампы Z также приведет к увеличению тока через лампу. Однако изменение положения лампы X или Y не повлияет на соотношение V Z / R Z . |
Переход к:
Главная страница сеанса обзора – Список тем
Electric Circuits – Главная || Версия для печати || Вопросы со ссылками
Ответы на вопросы: Все || # 1-7 || # 8-51 || # 52-59 || # 60-72
Вам тоже может понравиться…
Пользователи The Review Session часто ищут учебные ресурсы, которые предоставляют им возможности для практики и обзора, которые включают встроенную обратную связь и инструкции. Если это то, что вы ищете, то вам также может понравиться следующее:- Блокнот калькулятора
Блокнот калькулятора включает текстовые задачи по физике, организованные по темам. Каждая проблема сопровождается всплывающим ответом и аудиофайлом, в котором подробно объясняется, как подойти к проблеме и решить ее.Это идеальный ресурс для тех, кто хочет улучшить свои навыки решения проблем.
Посещение: Панель калькулятора На главную | Блокнот для калькулятора – электрические схемы
- Minds On Physics App Series
Minds On Physics the App («MOP the App») представляет собой серию интерактивных модулей вопросов для учащихся, которые серьезно настроены улучшить свое концептуальное понимание физики. Каждый модуль этой серии посвящен отдельной теме и разбит на подтемы.«Опыт MOP» предоставит учащемуся сложные вопросы, отзывы и помощь по конкретным вопросам в контексте игровой среды. Он доступен для телефонов, планшетов, Chromebook и компьютеров Macintosh. Это идеальный ресурс для тех, кто желает усовершенствовать свои способности к концептуальному мышлению. Четвертая часть серии включает темы «Электрические схемы».
Посетите: MOP the App Home || MOP приложение – часть 4
Цепей: один путь к электричеству – Урок
Быстрый просмотр
Уровень оценки: 4 (3-5)
Требуемое время: 45 минут
Зависимость урока: Нет
Тематические области: Физические науки
Ожидаемые характеристики NGSS:
Резюме
Учащиеся начинают понимать явление электричества, изучая электрические цепи.Учащиеся используют основную дисциплинарную идею использования доказательств для построения объяснения, поскольку они узнают, что движение заряда по цепи зависит от сопротивления и расположения компонентов схемы. Студенты также изучают основные дисциплинарные идеи и сквозные концепции энергии и передачи энергии в контексте энергии от батареи. В одном из связанных практических занятий студенты создают и исследуют характеристики последовательных цепей. В другом упражнении студенты конструируют и собирают фонарики. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).Инженерное соединение
Принципиальная схема – это язык электрического проектирования и инженерии. Эти диаграммы представляют собой карты, которые каждый может прочитать, чтобы увидеть, как построить схему. Когда инженеры проектируют или строят любую электрическую схему, они либо создают новую принципиальную схему, либо используют существующую. Интерпретация принципиальных схем – важный навык для инженеров-электриков и многих других инженеров.После постройки эти электрические цепи используются для освещения наших домов, питания компьютеров, запуска автомобилей и почти всех современных устройств, использующих электричество.
Цели обучения
После этого урока учащиеся должны уметь:
- Опишите, как изменяется ток в последовательной цепи, когда лампочка или аккумулятор добавляются или удаляются из цепи
- Поймите, что химическая энергия в батарее преобразуется в электрическую энергию в цепи, которая преобразуется в тепловую энергию и свет в лампочке.Кроме того, звуковая энергия может вырабатываться из электричества посредством движущегося диффузора динамика. В этом примере электричество преобразуется в механическое движение (для перемещения динамика), которое затем производит звуковую энергию в виде движущихся воздушных волн.
- Опишите связи между представлениями символов схем.
- Найдите напряжение последовательно соединенных батарей, суммируя напряжения отдельных батарей.
Образовательные стандарты
Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).
Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов достижений (ASN) , проект D2L (www.achievementstandards.org).
В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .
NGSS: научные стандарты нового поколения – наукаОжидаемые характеристики NGSS | ||
---|---|---|
4-ПС3-2. Проведите наблюдения, чтобы доказать, что энергия может передаваться с места на место с помощью звука, света, тепла и электрического тока.(4 класс) Вы согласны с таким раскладом? Спасибо за ваш отзыв! | ||
Нажмите, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов. | ||
Этот урок посвящен следующим аспектам трехмерного обучения NGSS: | ||
Наука и инженерная практика | Основные дисциплинарные идеи | Пересекающиеся концепции |
Использовать доказательства (e.g., измерения, наблюдения, закономерности) для построения объяснения. Соглашение о выравнивании: Спасибо за отзыв! | Энергия может передаваться с места на место с помощью движущихся объектов, звука, света или электрического тока. Соглашение о выравнивании: Спасибо за отзыв! Свет также передает энергию с места на место.Соглашение о выравнивании: Спасибо за ваш отзыв! Энергия также может передаваться с места на место с помощью электрического тока, который затем может использоваться локально для создания движения, звука, тепла или света.С самого начала токи могли быть созданы путем преобразования энергии движения в электрическую.Соглашение о выравнивании: Спасибо за ваш отзыв! | Энергия может передаваться различными способами и между объектами. Соглашение о выравнивании: Спасибо за ваш отзыв! |
- Показать, что электричество в цепях требует замкнутого контура, по которому может проходить ток.
(Оценка
4) Подробнее
Посмотреть согласованную учебную программу
Вы согласны с таким раскладом? Спасибо за ваш отзыв!
- Опишите преобразование энергии, происходящее в электрических цепях, в которых возникают световые, тепловые, звуковые и магнитные эффекты.
(Оценка
4) Подробнее
Посмотреть согласованную учебную программу
Вы согласны с таким раскладом? Спасибо за ваш отзыв!
Какое альтернативное выравнивание вы предлагаете для этого контента?
Больше подобной программы
СхемыСтуденты знакомятся с несколькими ключевыми понятиями электронных схем.Они узнают о некоторых физических принципах схем, ключевых компонентах схемы и их распространении в наших домах и повседневной жизни.
Параллельная схема и закон Ома: много путей для подачи электричестваСтуденты изучают состав и практическое применение параллельной схемы по сравнению с последовательной схемой.Студенты проектируют и строят параллельные схемы, исследуют их характеристики и применяют закон Ома.
Электроны в движенииСтуденты узнают о текущем электричестве и необходимых условиях для существования электрического тока. Учащиеся конструируют простую электрическую схему и гальванический элемент, чтобы помочь им понять напряжение, ток и сопротивление.
Сила едыСтуденты воображают, что они застряли на острове и должны создать как можно более яркий свет с помощью скудных принадлежностей, которые у них есть под рукой, чтобы привлечь внимание спасательного самолета. В небольших группах ученики создают схемы, используя предметы из своих «наборов для выживания», чтобы создать максимальное напряжение, измеряемое…
Предварительные знания
Батарея, простая схема, ток электричества, сопротивление, напряжение, ток
Введение / Мотивация
Рис. 1. Схема простой схемы. Авторское право
Copyright © 2012 Карли Самсон, Университет Колорадо в Боулдере
Спросите студентов, были ли у них когда-нибудь электронная игра или игрушка, для которых требуются батарейки? (Многие ответят утвердительно.) Спросите сколько батареек нужно для игры или игрушки? (Возможные ответы: одна, две, три или четыре батарейки.) Попросите учащихся подумать, почему для некоторых электронных игр или игрушек требуется больше батарей, чем для других игр или игрушек? (Возможные ответы: некоторым игрушкам нужно больше энергии, некоторым играм нужно больше электричества.) Три батареи AA, подключенные последовательно, могут обеспечить большее напряжение, чем одна батарея AA. Это связано с тем, что химическая энергия в батарее преобразуется в электрическую в цепи, и в цепи с тремя батареями AA «последовательно» доступно больше химической энергии, чем в цепи только с одной батареей AA.Электрические цепи, а также батареи могут быть «последовательно» или «параллельно». В ходе сегодняшнего урока мы узнаем, что означает «последовательно» и «параллельно».
Откуда инженеры-электрики знают, сколько батарей необходимо для работы электронной игры или игрушки? Один из способов определить необходимое напряжение и ток – это создать карту цепи. Инженеры-электрики могут использовать карту или принципиальную схему , чтобы определить, сколько энергии требуется устройству для работы.
Спросите студентов, почему в некоторых устройствах используются батареи, а в других – розетка? (Ответ: Батареи вырабатывают ток другого типа, чем стенная розетка.) Ток, который исходит от батареи, называется постоянный ток (DC). Ток, который идет от розетки в наших домах или школах, называется переменным током (AC). Объясните учащимся, что многие телевизоры, компьютеры, DVD-плееры и стереосистемы имеют внутри устройства оборудование (оборудование), которое преобразует переменный ток (AC) в постоянный (DC) для работы устройства.
Предпосылки и концепции урока для учителей
Что такое принципиальные схемы?
Принципиальные схемы – это графические изображения цепей или электрических устройств.Каждому компоненту схемы соответствует соответствующий стандартный символ (см. Рисунок 2). При отрисовке эти символы соединяются вместе, чтобы показать построение цепи; получившаяся диаграмма представляет собой карту, которую каждый может прочитать, чтобы увидеть, как построить схему. Фактически, принципиальная схема – это язык электрического проектирования и инженерии. Когда инженеры проектируют или строят любую электрическую схему, они либо создают, либо используют существующую принципиальную схему. Интерпретация принципиальных схем – важный навык для инженеров-электриков и многих других инженеров.
Рис. 2. Выбор графических символов принципиальной схемы. Авторское право
Авторское право © Дарья Котис-Шварц, Лаборатория ITL, Университет Колорадо в Боулдере, 2004 г.
Провода с очень низким сопротивлением представлены прямыми или угловыми линиями, соединяющими электрические компоненты. Резистор – это устройство, используемое для регулирования силы тока в цепи. Существует множество различных резисторов с сопротивлением от нескольких Ом до миллионов Ом.Резистор обозначен зигзагообразной линией. Есть разные способы изобразить лампочку в цепи. В этом устройстве символ, используемый для лампочки, представляет собой круг с «x», как показано на рисунке 2. Ячейка, или электрохимическая ячейка, представлена двумя линиями разной длины, расположенными перпендикулярно проводной линии, чтобы показать, что между положительной и отрицательной клеммами есть напряжение; более короткая линия – отрицательная клемма аккумулятора. Батарея состоит из нескольких ячеек.Обратите внимание, что символ батареи выглядит как две ячейки подряд или последовательно. Символ переключателя показывает, что электрическое соединение может быть разомкнутым и замкнутым на контакте.
Чтобы нарисовать принципиальную схему существующей последовательной цепи, нарисуйте макет схемы и соответствующий символ по мере того, как вы встречаетесь с каждым элементом схемы. Хотя провода в цепи обычно изогнуты, нарисуйте провода на принципиальной схеме в виде прямых или угловых, изогнутых линий.
Как электрические элементы соединяются в цепи?
В схемах можно использовать множество компонентов: батареи, лампочки, провода и переключатели.Части схемы могут быть соединены двумя разными способами. Когда они соединены так, что между ними есть один проводящий путь, они, как говорят, соединены последовательно. Схема слева на Рисунке 3 показывает два последовательно включенных резистора. Когда элементы схемы соединены через общие точки, так что через цепь проходит более одного проводящего пути, они подключаются параллельно . Схема справа на рисунке 3 показывает два резистора, включенных параллельно.Обратитесь к упражнению «Лампочки и батарейки в ряд», чтобы научить студентов строить свои собственные схемы из нескольких компонентов. Типичное электрическое устройство состоит из множества более мелких последовательных и параллельных частей. В общем, только очень простые цепи могут быть полностью последовательными. Рисунок 3. Два резистора, включенных последовательно (слева) и два резистора, включенных параллельно (справа). Авторское право
Авторские права © 2012 Карли Самсон, Университет Колорадо в Боулдере
Закон Ома и последовательные цепи
Закон Ома – это фундаментальное математическое уравнение, описывающее взаимосвязь между напряжением, током и сопротивлением.Фактически, закон Ома определяет сопротивление: R = V / I, где R = сопротивление элемента схемы, V = общее напряжение, подаваемое в схему источником питания (например, аккумулятором), а I = ток через схема. Уравнение можно изменить (V = I * R), чтобы спрогнозировать падение напряжения на элементе схемы с известным сопротивлением и известным током, проходящим через него. Напряжение, подаваемое в цепь, V, и полное падение напряжения во всей цепи V T должны быть одинаковыми и противоположными.Это означает, что V + V T = 0. Общее падение напряжения в цепи равно: I * R T = V T , где R T – полное сопротивление в цепи. Мы рассмотрим, как найти полное сопротивление R T , в этом уроке для последовательных цепей, а также в следующем уроке и упражнениях в этом модуле для цепей с параллельными элементами.
Последовательная цепь и ее схема согласования показаны на рисунке 4. Поскольку существует только один путь для движения заряда по цепи, ток во всей цепи одинаков.Когда электроны движутся по цепи, их потоку препятствует каждая лампочка, так что полное сопротивление движению заряда является суммой всех сопротивлений на пути. Из закона Ома (записанного в виде I = V / R) мы знаем, что полный ток равен напряжению, деленному на общее сопротивление. На каждой лампочке есть падение напряжения. Сумма падений напряжения равна напряжению источника питания, которым в данном случае является аккумулятор. Поскольку ток одинаков во всей последовательной цепи, падение напряжения на каждой лампочке прямо пропорционально сопротивлению этой лампочки (путем перестановки уравнения закона Ома V = I * R).
Рисунок 4. Последовательная схема (слева) и соответствующая принципиальная схема (справа). Авторское право
Авторские права © Джо Фридрихсен, Программа и лаборатория ITL, Университет Колорадо в Боулдере, 2003.
Когда батареи соединены последовательно, общее напряжение является суммой напряжений каждой батареи. Итак, если мы сделаем схему с тремя последовательно включенными батареями 1,5 В в качестве источника напряжения, общее напряжение составит 4,5 В, как показано на рисунке 5. Вот как производители батарей делают батареи с более высоким напряжением; они просто соединяют несколько батарей (с одинаковым потенциалом) последовательно.
Рис. 5. Когда батареи соединены последовательно, общее напряжение является суммой напряжений каждой батареи. Авторское право
Авторские права © 2012 Карли Самсон, Университет Колорадо в Боулдере
В чем разница между постоянным и переменным током?
Постоянный ток или постоянный ток означает движение заряда в цепи только в одном направлении. Батареи, фотоэлементы и некоторые генераторы обеспечивают постоянный ток. Например, в фонарике с батарейным питанием электроны покидают отрицательную клемму батареи и перемещаются по цепи фонарика к положительной клемме.Попросите учащихся построить свой собственный фонарик с помощью действия «Осветите свой путь: проектирование-создание серийного фонаря». Многие повседневные портативные устройства работают на постоянном токе. Предложите учащимся применить свои знания о таких устройствах для проектирования и сборки своих собственных игрушек в упражнении «Построить мастерскую игрушек».
В переменном или переменном токе электроны движутся вперед и назад по цепи. Из-за этого электроны перемещаются только на небольшое расстояние вокруг относительно фиксированного положения в цепи.Хотя генераторы переменного и постоянного тока похожи, переменный ток оказался более эффективным способом передачи электроэнергии. Каждый раз, когда вы подключаете электрическое устройство к розетке, вы используете переменный ток. Направление тока меняется, потому что направление напряжения на электростанции меняется. В США мы используем ток, который меняет направление 60 раз в секунду, называемый током 60 Гц.
Сопутствующие мероприятия
Закрытие урока
На классной доске нарисуйте пример последовательной цепи, которая включает в себя несколько компонентов (например, см. Рисунок 4).Качественно сравните ток и напряжение в разных частях схемы. Попросите учащихся сравнить ток в трех последовательно соединенных лампочках с увеличивающимся сопротивлением. (Ответ: ток везде одинаковый во всей последовательной цепи.) Затем сравните напряжение на каждой из этих трех лампочек. (Ответ: напряжение падает, когда оно встречается с сопротивлением лампочки, поэтому первая лампочка будет иметь наибольшее напряжение, а каждая последующая лампочка будет испытывать меньшее напряжение.) Что происходит с общим напряжением при последовательном подключении аккумуляторов? (Ответ: общее напряжение – это сумма напряжений каждой батареи.)
Рисунок 4. Последовательная принципиальная схема, показывающая провод, три лампочки, батарею и выключатель. Авторское право
Авторские права © Джо Фридрихсен, Программа и лаборатория ITL, Университет Колорадо в Боулдере, 2003.
Словарь / Определения
переменный ток: электрический ток, который меняет направление на регулярные промежутки времени.Сокращенно AC.
принципиальная схема: графическое представление схемы с использованием стандартных символов для представления каждого компонента схемы.
постоянный ток: электрический ток только в одном направлении. Сокращенно DC.
передача энергии: движение энергии в системе. Может включать преобразование одного вида энергии в другой (с некоторыми потерями). Соответствующие примеры включают электричество для движения (вентилятор), электричество для света и тепла (лампочки) и электричество для звука и движения (звуковая система).
нагрузка: устройство или сопротивление устройства, на которое подается электричество.
параллельная цепь: электрическая цепь, обеспечивающая более одного проводящего пути.
резистор: устройство, используемое для управления током в электрической цепи путем обеспечения сопротивления.
последовательная цепь: электрическая цепь, обеспечивающая единственный проводящий путь, так что ток проходит через каждый элемент по очереди без разветвлений.
Оценка
Оценка перед уроком
Вопрос для обсуждения: Запрашивайте, объединяйте и обобщайте ответы студентов:
- Почему в некоторых устройствах используются батареи, а в других – розетка? (Ответ: Батареи вырабатывают ток [постоянный ток], отличный от стенной розетки [переменного тока])
Оценка после введения
Голосование: Задайте вопрос «правда / ложь» и попросите учащихся проголосовать, подняв палец вверх за истину и вниз за ложь.Подсчитайте голоса и запишите итоги на доске. Дайте правильный ответ.
- Верно или неверно: три батареи AA, соединенные последовательно, обеспечивают большее напряжение, чем одна батарея AA. (Ответ: Верно.)
- Верно или неверно: Батареи могут быть включены «последовательно» или «параллельно». (Ответ: Верно.)
- Верно или неверно: инженеры-электрики используют принципиальную схему, чтобы определить, сколько энергии требуется устройству для работы. (Ответ: Верно.)
- Верно или неверно: батареи вырабатывают ток того же типа, что и настенная розетка.(Ответ: Неверно. Батареи вырабатывают ток [постоянный] другого типа, чем стенная розетка [переменный ток].)
- Верно или неверно: ток, который исходит от батареи, называется переменным током. (Ответ: Неверно. Ток, который выходит из розетки в наших домах или школах, называется переменным током [AC]. Батареи имеют постоянный ток [DC].)
- Верно или неверно: (Звуковая энергия может быть получена от электричества или удара по столу? Ответ: Верно, что электрические источники, такие как батареи, могут питать небольшие динамики, и ваша рука может создавать звуковые волны, ударяясь о твердую поверхность стола.)
Итоги урока Оценка
Быстрый опрос: Дайте студентам лист бумаги и попросите их записать ответы на следующие три вопроса.
- Что вам больше всего понравилось в уроке?
- Что можно сделать лучше?
- Что вы узнали, чего не знали раньше?
Нумерованные главы: Попросите учащихся каждой команды выбрать числа (или числа), чтобы у каждого члена был свой номер.Задайте учащимся вопросы, указанные ниже (при желании, дайте им временные рамки для решения). Члены каждой команды должны работать вместе над вопросом. Все в команде должны знать ответ. Позвоните по номеру наугад. Студенты с этим номером должны поднять руки, чтобы ответить на вопрос. Если не все ученики с этим номером поднимают руки, дайте командам поработать еще немного. Спросите у студентов:
- Если вы удалите одну лампочку из последовательной цепи с тремя лампочками, цепь станет (n) _________ цепью.Открытый или закрытый? (Ответ: Открытый.)
- Что произойдет с другими лампочками в последовательной цепи, если одна лампочка перегорит? (Ответ: Все гаснут.)
- При добавлении дополнительных ламп к последовательной цепи каждая лампа становится _____________. Ярче или тусклее? (Ответ: Диммер.)
- При последовательном соединении аккумуляторов напряжение на них ____________. Увеличивается, уменьшается или остается неизменным? (Ответ: Увеличивается.)
- Нарисуйте принципиальную схему последовательной цепи с двумя батареями и тремя лампочками.(Ответ: он должен выглядеть, как на Рисунке 4, с переключателем, замененным на вторую батарею.)
Рисунок Рисунок Гонки: Напишите символы схемы на доске. Разделите класс на команды по четыре человека так, чтобы у каждого члена команды был другой номер, от одного до четырех. Позвоните по номеру и попросите учащихся с этим номером поспешить к доске, чтобы нарисовать правильную принципиальную схему. Дайте очко команде, чей товарищ по команде первым закончит розыгрыш правильно. Попросите учащихся нарисовать принципиальные схемы следующего:
- Последовательная цепь с одной батареей и двумя лампочками
- Последовательная цепь с двумя батареями, одной лампочкой и одним выключателем
- Последовательная цепь с одной батареей, одной лампочкой и одним резистором
- Последовательная цепь с тремя батареями, двумя лампочками и двумя резисторами
- Последовательная цепь с одной батареей, двумя резисторами, двумя лампочками и одним переключателем
- Последовательная цепь с тремя батареями, четырьмя лампочками и одним выключателем
- Последовательная цепь с одной батареей, тремя переменными лампочками и резисторами и одним переключателем
Домашнее задание / Самостоятельная практика:
- Попросите учащихся подсчитать количество трансформаторов в их домах.Дополнительную информацию о трансформаторах см. В разделе «Действия по расширению урока».
Мероприятия по продлению урока
Изучите историю развития фонарика. В Музее фонарей есть много фотографий старинных фонариков и портативных осветительных приборов по адресу: http://www.flashlightmuseum.com/.
Узнайте о трансформаторах: трансформатор – это электрическое устройство, используемое для преобразования мощности переменного тока с определенным уровнем напряжения в мощность переменного тока с другим напряжением, но с той же частотой.Значительное количество энергии теряется при передаче энергии по распределительной сети. Дополнительная энергия потребляется трансформаторами на подстанциях. Для многих бытовых электронных устройств требуются трансформаторы, которые всегда включены и потребляют электроэнергию, даже если никто не использует электрическое устройство.
- Попросите учащихся подсчитать количество трансформаторов, имеющихся у них дома . Трансформаторы могут быть присоединены к компьютерам, принтерам, сканерам, динамикам, автоответчикам, беспроводным телефонам, зарядным устройствам для мобильных телефонов, электрическим отверткам, электродрелям, радионяням, модемам и видеокамерам.Трансформеры не всегда легко распознать; Очевидно, трансформаторы выглядят как коробки большего размера (обычно того же цвета, что и шнур), прикрепленные к концу шнуров в том месте, где вы подключаете устройство к электрической розетке.
- Если вы дотронетесь до трансформатора, и он теплый, вы почувствуете, что электрическая энергия (потраченная впустую) превращается в тепловую. Попросите учащихся подсчитать количество энергии, ежегодно теряемой трансформаторами в их доме. . Потребляемая мощность невелика – от 1 до 5 Вт на трансформатор, но в сумме.Допустим, у вас есть пять трансформаторов, каждый из которых потребляет 5 Вт. Это означает, что 25 Вт постоянно тратятся впустую. Если в вашем районе киловатт-час стоит 10 центов, это означает, что вы тратите 10 центов на каждые 1000 ватт-часов / 25 Вт = 40 часов. В году 8760 часов, поэтому 8760 часов / 40 часов = 21,90 доллара в год.
- Попросите учащихся подсчитать общее количество энергии, теряемой трансформаторами по всей стране . В Америке 100 миллионов семей. Если каждое домохозяйство тратит на эти трансформаторы 25 Вт, это 2.5 миллиардов ватт. По цене 10 центов за киловатт-час, это 2 500 000 000 ватт / 1000 ватт или 250 000 долларов в час. Это 2 190 000 000 долларов (2 миллиарда долларов), потраченных впустую каждый год.
Рекомендации
Берг, Эрик. Старший специалист по машиностроению, Колорадская горная школа, “Как работает трансформатор?” http://www.physlink.com/ Проверено 28 апреля 2004 г.
Хьюитт, Пол Г. Концептуальная физика . 8-е издание. Нью-Йорк, штат Нью-Йорк: Addison Publishing Co., 1998. Ралофф, Джанет. “Мы должны вытащить вилку?” Новости науки. 25 октября 1997 г.
Ропейк, Дэвид. MSNBC – Как сеть поддерживает континент . 23 января 2001 г. MSNBC News. http://www.msnbc.msn.com/id/3077316/ns/technology_and_science-science/t/how-grid-powers-continent/#.T4M6w_WfzTo, по состоянию на 7 апреля 2004 г.
Шнайдер, Стюарт. Музей фонарей . Wordcraft.net. По состоянию на 7 апреля 2004 г.
Зильберман, Стив. Wired News: подготовка к электросети . 14 июня 2001 г. Журнал Wired. www.wired.com По состоянию на 7 апреля 2004 г.
Авторские права
© 2004 Регенты Университета КолорадоАвторы
Ксочитл Замора Томпсон; Сабер Дурен; Джо Фридрихсен; Дарья Котыс-Шварц; Малинда Шефер Зарске; Дениз В. Карлсон; Карли СамсонПрограмма поддержки
Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в БоулдереБлагодарности
Содержание этой учебной программы по электронной библиотеке было разработано за счет грантов Фонда улучшения послесреднего образования (FIPSE), U.S. Департамент образования и Национальный научный фонд (грант ГК-12 № 0338326). Однако это содержание не обязательно отражает политику Министерства образования или Национального научного фонда, и вам не следует предполагать, что оно одобрено федеральным правительством.
Последнее изменение: 1 мая 2021 г.
Рекомендации по проектированию коммутаторов и мультиплексоровдля агрессивных сред
Введение
Враждебные среды, встречающиеся в автомобильной, военной и авионике, подталкивают интегральные схемы к их технологическим пределам, требуя от них выдерживать высокое напряжение и ток, экстремальные температуры и влажность, вибрацию, излучение и множество других нагрузок.Системные инженеры быстро внедряют высокопроизводительную электронику для обеспечения функций и функций в таких областях применения, как безопасность, развлечения, телематика, управление и человеко-машинные интерфейсы. Более широкое использование прецизионной электроники происходит за счет более высокой сложности системы и большей уязвимости к электрическим помехам, включая перенапряжения, условия фиксации и события электростатического разряда (ESD). Поскольку электронные схемы, используемые в этих приложениях, требуют высокой надежности и высокой устойчивости к системным сбоям, проектировщики должны учитывать как окружающую среду, так и ограничения компонентов, которые они выбирают.
Кроме того, производители указывают абсолютные максимальные значения для каждой интегральной схемы; эти характеристики должны соблюдаться для обеспечения надежной работы и соответствия опубликованным спецификациям. При превышении абсолютных максимальных значений рабочие параметры не могут быть гарантированы; и даже внутренняя защита от электростатического разряда, перенапряжения или защелкивания может выйти из строя, что приведет к повреждению или отказу устройства (и, возможно, в дальнейшем).
В этой статье описываются проблемы, с которыми сталкиваются инженеры при проектировании аналоговых коммутаторов и мультиплексоров в модули, используемые во враждебных средах, и даются предложения по общим решениям, которые разработчики схем могут использовать для защиты уязвимых частей.Он также представляет некоторые новые интегрированные переключатели и мультиплексоры, которые обеспечивают повышенную защиту от перенапряжения, устойчивость к защелкиванию и защиту от сбоев для работы в обычных условиях нагрузки.
Стандартная архитектура аналогового коммутатора
Чтобы полностью понять влияние условий неисправности на аналоговый коммутатор, мы должны сначала взглянуть на его внутреннюю структуру и эксплуатационные ограничения.
Стандартный переключатель CMOS (рис. 1) использует полевые МОП-транзисторы с N- и P-каналом для переключающего элемента, логики цифрового управления и схемы драйвера.Параллельное соединение полевых МОП-транзисторов с N- и P-каналом обеспечивает двунаправленную работу, позволяя аналоговому входному напряжению распространяться на шины питания, сохраняя при этом довольно постоянное сопротивление во всем диапазоне сигнала.
Рисунок 1. Стандартная схема аналогового переключателя.Исток, сток и логические клеммы включают в себя ограничивающие диоды для источников питания, чтобы обеспечить защиту от электростатического разряда, как показано на рисунке 1. С обратным смещением в нормальном режиме работы диоды не пропускают ток, если сигнал не превышает напряжение питания.Диоды различаются по размеру в зависимости от процесса, но, как правило, они небольшие, чтобы минимизировать ток утечки при нормальной работе.
Аналоговый переключатель управляется следующим образом: N-канальное устройство – на для положительных напряжений затвор-исток и выкл. для отрицательных напряжений затвор-исток; устройство с P-каналом переключается дополнительным сигналом, так что это на одновременно с устройством с N-каналом. Переключатель поворачивается на на и на на , приводя ворота к противоположным рельсам питания.
При фиксированном напряжении на затворе эффективное напряжение возбуждения для любого транзистора изменяется пропорционально полярности и величине аналогового сигнала, проходящего через переключатель. Пунктирные линии на рисунке 2 показывают, что, когда входной сигнал приближается к источникам питания, канал одного или другого устройства начинает насыщаться, вызывая резкое увеличение сопротивления включения этого устройства. Однако параллельные устройства компенсируют друг друга в непосредственной близости от напряжений на шинах, поэтому в результате получается полностью переключение с шины на рельсы с относительно постоянным сопротивлением во всем диапазоне сигнала.
Рисунок 2. График RON стандартного аналогового переключателя.Абсолютные максимальные рейтинги
Требования к мощности коммутатора, указанные в технических характеристиках устройства, должны соблюдаться, чтобы гарантировать оптимальную производительность, работу и срок службы. К сожалению, отказы источника питания, скачки напряжения в суровых условиях окружающей среды, а также сбои системы или пользователя, возникающие в ходе реальной эксплуатации, могут сделать невозможным постоянное выполнение рекомендаций технических данных.
Когда входное напряжение аналогового переключателя превышает напряжение питания, внутренние диоды защиты от электростатического разряда смещаются в прямом направлении, позволяя протекать большим токам, даже если источники питания отключены, что приводит к превышению номинальных значений.При прямом смещении диоды не рассчитаны на пропускание токов, превышающих несколько десятков миллиампер; они могут быть повреждены, если этот ток не ограничен. Кроме того, повреждение, вызванное неисправностью, не ограничивается переключателем, но также может повлиять на схему ниже по потоку.
В разделе «Абсолютные максимальные номинальные характеристики» спецификации (рис. 3) описаны условия максимальной нагрузки, которые может выдержать устройство; Важно отметить, что это только стресс-рейтингов . Воздействие условий абсолютного максимума номинальных значений в течение длительного времени может повлиять на надежность устройства.Проектировщик всегда должен следовать хорошей инженерной практике, добавляя маржу в проект. Пример здесь взят из листка технических данных стандартного коммутатора / мультиплексора.
Рисунок 3. Раздел «Абсолютные максимальные рейтинги» в таблице данных.В этом примере параметры V DD – V SS имеют номинальное значение 18 В. Номинальное значение определяется производственным процессом и архитектурой конструкции коммутатора. Любое напряжение выше 18 В должно быть полностью изолировано от переключателя, в противном случае внутреннее напряжение пробоя элементов, связанных с процессом, будет превышено, что может привести к повреждению устройства и ненадежной работе.
Ограничения напряжения, которые применяются к входам аналогового переключателя – с источниками питания и без них – часто возникают из-за схемы защиты от электростатического разряда, которая может выйти из строя в результате условий отказа.
Рисунок 4. Аналоговый переключатель – диоды защиты от электростатического разряда.Характеристики аналогового и цифрового входного напряжения ограничены 0,3 В сверх V DD и V SS , в то время как цифровые входные напряжения ограничены 0,3 В сверх V DD и заземления. Когда аналоговые входы превышают запасы, внутренние диоды защиты от электростатического разряда смещаются в прямом направлении и начинают проводить.Как указано в разделе «Абсолютные максимальные номиналы», перенапряжения на IN, S или D ограничиваются внутренними диодами. Хотя токи, превышающие 30 мА, могут пропускаться через внутренние диоды без каких-либо очевидных эффектов, надежность и срок службы устройства могут быть снижены, а эффекты электромиграции, постепенное смещение атомов металла в проводнике, могут наблюдаться с течением времени. Когда сильный ток течет по металлическому пути, движущиеся электроны взаимодействуют с ионами металлов в проводнике, заставляя атомы двигаться вместе с потоком электронов.Со временем это может привести к обрыву или короткому замыканию.
При проектировании коммутатора в систему важно учитывать потенциальные отказы, которые могут возникнуть в системе из-за отказа компонентов, ошибки пользователя или воздействия окружающей среды. В следующем разделе будет обсуждаться, как условия отказа, превышающие абсолютные максимальные значения стандартного аналогового переключателя, могут повредить переключатель или вызвать его неисправность.
Общие условия отказа, системные нагрузки и методы защиты
Условия отказа могут возникать по разным причинам; Некоторые из наиболее распространенных системных напряжений и их реальные источники показаны в Таблице 1:
Таблица 1.
Тип неисправности | Причины неисправности |
Повышенное напряжение: | • Отключение питания • Неисправность системы • Горячая замена подключает и отключает • Проблемы с последовательностью источников питания • Неправильное подключение • Ошибка пользователя |
Latch-Up: | • Условия перенапряжения (как указано выше) • Превышение номинальных значений процесса • SEU (одиночные сбои) |
ESD: | • Хранение / сборка • Сборка печатной платы • Пользовательское управление |
Некоторый стресс невозможно предотвратить.Независимо от источника стресса, более важный вопрос – как справиться с его последствиями. Приведенные ниже вопросы и ответы относятся к этим состояниям неисправностей: перенапряжениям, срабатыванию фиксации и ESD-событиям, а также к некоторым распространенным методам защиты.
Повышенное напряжение
Что такое состояние перенапряжения?
Условия перенапряжения возникают, когда условия аналогового или цифрового входа превышают абсолютные максимальные значения. Следующие три примера подчеркивают некоторые общие проблемы, которые проектировщики должны учитывать при использовании аналоговых переключателей.
1. Потеря мощности при наличии сигналов на аналоговых входах (Рисунок 5).
В некоторых приложениях питание модуля пропадает, хотя входные сигналы из удаленных мест все еще могут присутствовать. При отключении питания шины источника питания могут попасть на землю – или одна или несколько из них могут «всплыть». Если источники питания идут на землю, входные сигналы могут смещать внутренний диод в прямом направлении, и ток от входа переключателя будет течь на землю, что приведет к повреждению диода, если ток не ограничен.
Рисунок 5. Пути сбоя.Если потеря питания приводит к тому, что блоки питания «плавающие», входные сигналы могут питать деталь через внутренние диоды. В результате коммутатор и, возможно, любые другие компоненты, работающие от источника питания V DD , могут быть включены.
2. Условия повышенного напряжения на аналоговых входах.
Когда аналоговые сигналы выходят за пределы источников питания (V DD и V SS ), источники питания могут быть задействованы в пределах диодного падения сигнала неисправности.Внутренние диоды смещены в прямом направлении, и токи текут от входного сигнала к источникам питания. Сигнал перенапряжения также может пройти через переключатель и повредить расположенные ниже части. Объяснение этому можно увидеть, рассматривая полевой транзистор с P-каналом (рисунок 6).
Рисунок 6. Переключатель на полевом транзисторе.P-канальный полевой транзистор требует отрицательного напряжения затвор-исток для его включения. С затвором переключателя, равным V DD , напряжение затвор-исток положительное, поэтому переключатель выключен. В цепи без питания, с затвором переключателя на 0 В или когда входной сигнал превышает V DD , сигнал будет проходить через переключатель, поскольку теперь имеется отрицательное напряжение затвор-исток.
3. Биполярные сигналы, подаваемые на коммутатор, питаемый от одного источника.
Эта ситуация аналогична описанному ранее состоянию перенапряжения. Неисправность возникает, когда входной сигнал опускается ниже земли, вызывая прямое смещение диода между аналоговым входом и землей и протекание тока. Когда сигнал переменного тока, смещенный на 0 В постоянного тока, подается на вход переключателя, паразитные диоды могут быть смещены в прямом направлении в течение некоторой части отрицательного полупериода входного сигнала.Это происходит, если входная синусоида опускается ниже примерно –0,6 В, включается диод и ограничивается входной сигнал, как показано на рисунке 7.
Рисунок 7. Отсечение.Как лучше всего справиться с условиями перенапряжения?
Три приведенных выше примера являются результатом превышения напряжения аналоговыми входами – V DD , V SS или GND. Простые методы защиты для противодействия этим условиям включают добавление внешних резисторов, диодов Шоттки к источникам питания и блокирующих диодов к источникам питания.
Резисторыдля ограничения тока подключаются последовательно к любому каналу переключения, который подвергается воздействию внешних источников (рисунок 8). Сопротивление должно быть достаточно высоким, чтобы ограничить ток примерно до 30 мА (или как указано в абсолютных максимальных номиналах). Очевидным недостатком является увеличение R ON , ∆R ON на канал и, в конечном итоге, общая ошибка системы. Кроме того, для приложений, использующих мультиплексоры, сбои на источнике выключенного канала могут появиться на стоке, создавая ошибки на других каналах.
Рисунок 8. Схема резисторно-диодной защиты.Диоды Шоттки, подключенные от аналоговых входов к источникам питания, обеспечивают защиту, но за счет утечки и емкости. Диоды работают, предотвращая превышение входным сигналом напряжения питания более чем на 0,3–0,4 В, гарантируя, что внутренние диоды не смещают в прямом направлении и не течет ток. Отвод тока через диоды Шоттки защищает устройство, но необходимо соблюдать осторожность, чтобы не перегрузить внешние компоненты.
Третий метод защиты заключается в размещении блокирующих диодов последовательно с источниками питания (рис. 9), блокирующих ток, протекающий через внутренние диоды. Неисправности на входах приводят к тому, что источники питания «плавающие», и наиболее положительные и отрицательные входные сигналы становятся источниками питания. До тех пор, пока расходные материалы не превышают абсолютные максимальные характеристики процесса, устройство должно допускать неисправность. Обратной стороной этого метода является уменьшение диапазона аналогового сигнала из-за диодов на источниках питания.Кроме того, сигналы, подаваемые на входы, могут проходить через устройство и влиять на схему ниже по потоку.
Рисунок 9. Блокирующие диоды, включенные последовательно с источниками питания.Хотя эти методы защиты имеют свои преимущества и недостатки, все они требуют внешних компонентов, дополнительной площади на плате и дополнительных затрат. Это может быть особенно важно в приложениях с большим количеством каналов. Чтобы исключить необходимость во внешних схемах защиты, проектировщикам следует искать интегрированные решения защиты, которые могут выдерживать эти отказы.Analog Devices предлагает ряд семейств переключателей / мультиплексоров со встроенной защитой от отключения питания, перенапряжения и отрицательных сигналов.
Какие готовые решения доступны?
ADG4612 и ADG4613 от Analog Devices обладают низким сопротивлением и искажениями, что делает их идеальными для систем сбора данных, требующих высокой точности. Профиль активного сопротивления очень плоский во всем диапазоне аналогового входа, что обеспечивает превосходную линейность и низкий уровень искажений.
Семейство ADG4612 предлагает защиту от отключения питания, защиту от перенапряжения и обработку отрицательного сигнала – все условия, с которыми не может справиться стандартный переключатель CMOS.
При отсутствии источников питания переключатель остается в выключенном состоянии. Входы переключателя имеют высокий импеданс, ограничивающий ток, который может повредить переключатель или схему ниже по потоку. Это очень полезно в приложениях, где аналоговые сигналы могут присутствовать на входах переключателя до включения питания или где пользователь не может контролировать последовательность подачи питания. В выключенном состоянии блокируются уровни сигналов до 16 В. Также переключатель выключается, если уровень аналогового входного сигнала превышает V DD на V T .
Рисунок 10. Архитектура коммутатора ADG4612 / ADG4613.На рисунке 10 показана блок-схема архитектуры защиты от отключения питания в семействе. Входы истока и стока переключателя постоянно контролируются и сравниваются с напряжениями питания, V DD и V SS . В нормальном режиме работы коммутатор ведет себя как стандартный КМОП-коммутатор с полным режимом работы от шины к шине. Однако во время состояния отказа, когда вход истока или стока превышает подачу на пороговое напряжение, схема внутренней неисправности определяет состояние перенапряжения и переводит переключатель в режим изоляции.
Analog Devices также предлагает мультиплексоры и устройства защиты каналов, которые могут выдерживать условия перенапряжения +40 В / –25 В вне источников питания (± 15 В), подаваемых на устройство, и +55 В / –40 В без питания. Эти устройства специально разработаны для устранения неисправностей, вызванных отключением питания.
Рисунок 11. Архитектура переключателя с защитой от высоковольтных сбоев.Эти устройства состоят из последовательно подключенных N-канальных, P-канальных и N-канальных полевых МОП-транзисторов, как показано на рисунке 11. Когда один из аналоговых входов или выходов превышает мощность источника питания, один из полевых МОП-транзисторов отключается, вход мультиплексора или выход) выглядит как разомкнутая цепь, а выход зажимается в пределах шины питания, что предотвращает повреждение перенапряжением любой схемы, следующей за мультиплексором.Это защищает мультиплексор, схемы, которыми он управляет, а также датчики или источники сигналов, которые управляют мультиплексором. Когда источники питания теряются (например, из-за отключения батареи или сбоя питания) или мгновенно отключаются (например, в стоечной системе), все транзисторы выключаются, а ток ограничивается уровнями субнаноампер. ADG508F, ADG509F и ADG528F включают мультиплексоры 8: 1 и дифференциальные 4: 1 с такой функциональностью.
Одно- и восьмеричные устройства защиты каналов ADG465 имеют ту же защитную архитектуру, что и эти защищенные от сбоев мультиплексоры, без функции переключения.При подаче питания канал всегда находится во включенном состоянии, но в случае неисправности выход ограничивается в пределах напряжений питания.
Защелка
Что такое фиксирующее состояние?
Защелкивание может быть определено как создание пути с низким сопротивлением между шинами источника питания в результате срабатывания паразитного устройства. Фиксация происходит в устройствах CMOS: внутренние паразитные устройства образуют структуру PNPN SCR, когда один из двух паразитных переходов база-эмиттер на мгновение смещен в прямом направлении (рисунок 12).SCR включается, вызывая продолжающееся короткое замыкание между источниками питания. Срабатывание состояния фиксации является серьезным: в «лучшем» случае это приводит к неисправности устройства, при этом для восстановления нормальной работы устройства требуется повторное включение и выключение питания; в худшем случае устройство (и, возможно, источник питания) может быть разрушено, если ток не ограничен.
Рисунок 12. Структура паразитного тринистора: а) устройство б) эквивалентная схема.Состояния неисправности и перенапряжения, описанные ранее, являются одними из распространенных причин срабатывания состояния фиксации.Если сигналы на аналоговых или цифровых входах превышают допустимые значения, включается паразитный транзистор. Коллекторный ток этого транзистора вызывает падение напряжения на эмиттере базы второго паразитного транзистора, который включает транзистор и приводит к образованию самоподдерживающегося пути между источниками питания. На рисунке 12 (b) четко показана структура схемы SCR, образованная между Q1 и Q2.
События не должны длиться долго, чтобы вызвать фиксацию. Кратковременных переходных процессов, всплесков или электростатических разрядов может быть достаточно, чтобы устройство перешло в состояние фиксации.
Блокировка может также произойти, когда напряжения питания превышают абсолютные максимальные номинальные значения устройства, что приводит к выходу из строя внутренних переходов и срабатыванию тиристора.
Второй механизм срабатывания срабатывает, если напряжение питания повышается до уровня, достаточного для разрушения внутреннего перехода, подающего ток в тиристор.
Как лучше всего бороться с защемлением?
Методы защиты от защелкивания включают те же методы защиты, которые рекомендуются для защиты от перенапряжения.Добавление токоограничивающих резисторов в тракт прохождения сигнала, диодов Шоттки к источникам питания и диодов, включенных последовательно с источниками питания – как показано на рисунках 8 и 9 – все помогает предотвратить протекание тока в паразитных транзисторах, тем самым предотвращая прохождение SCR. срабатывание.
Коммутаторыс несколькими источниками питания могут иметь дополнительные проблемы с последовательностью источников питания, которые могут нарушать абсолютные максимальные характеристики. Неправильная последовательность подачи питания может привести к включению внутренних диодов и срабатыванию защелкивания.Внешние диоды Шоттки, подключенные между источниками питания, будут в достаточной мере предотвращать проводимость тиристора, гарантируя, что при подаче на переключатель нескольких источников питания напряжение V DD всегда находится в пределах диодного падения (0,3 В для Шоттки) этих источников питания, тем самым предотвращая нарушение максимальные оценки.
Какие готовые решения доступны?
В качестве альтернативы использованию внешней защиты некоторые ИС производятся с использованием процесса с эпитаксиальным слоем, который увеличивает сопротивление подложки и N-лунок в структуре SCR.Более высокое сопротивление означает, что для срабатывания SCR требуется более сильное напряжение, в результате чего устройство становится менее восприимчивым к защелкиванию. Примером может служить процесс Analog Devices iCMOS ® , который сделал возможным создание семейств коммутаторов / мультиплексоров ADG121x, ADG141x и ADG161x.
Для приложений, требующих решения с защитой от защелкивания, новые изолированные переключатели и мультиплексоры гарантируют предотвращение защелкивания в высоковольтных промышленных приложениях, работающих при напряжении до ± 20 В. Семейства ADG541x и ADG521x предназначены для контрольно-измерительной аппаратуры, автомобилей и авионики. , и другие суровые условия, которые могут способствовать защелкиванию.В процессе используется изолирующий оксидный слой (траншея), расположенный между транзисторами с каналом N и P каждого КМОП-переключателя. Оксидные слои, как горизонтальные, так и вертикальные, обеспечивают полную изоляцию между устройствами. Паразитные переходы между транзисторами в переключателях с изолированным переходом устраняются, что приводит к полностью устойчивому к фиксации переключателю.
Рис. 13. Изоляция траншеи для предотвращения защелкивания.Промышленная практика состоит в том, чтобы классифицировать восприимчивость входов и выходов к защелкиванию с точки зрения величины избыточного тока, который вывод ввода / вывода может генерировать или понижать в условиях перенапряжения до того, как внутренние паразитные сопротивления разовьют достаточное падение напряжения для поддержания состояние фиксации.
Обычно считается достаточным значение 100 мА. Устройства семейства ADG5412 с защитой от фиксации без сбоев выдерживали нагрузку до ± 500 мА с импульсом длительностью 1 мс. Тестирование с фиксацией в Analog Devices выполняется в соответствии с EIA / JEDEC-78 (IC Latch-Up Test).
ESD — Электростатический разряд
Что такое электростатический разряд?
Обычно наиболее распространенный тип переходного напряжения, которому подвергается устройство, ESD, можно определить как однократную быструю сильноточную передачу электростатического заряда между двумя объектами с разными электростатическими потенциалами .Мы часто испытываем это после прогулки по изолирующей поверхности, такой как коврик, накопления заряда и последующего прикосновения к заземленной части оборудования, что приводит к разряду через оборудование, при котором за короткий промежуток времени протекают высокие токи.
ИСмогут быть повреждены высоким напряжением и высокими пиковыми токами, возникающими в результате электростатического разряда. Последствия электростатического разряда на аналоговом коммутаторе могут включать снижение надежности с течением времени, снижение производительности коммутатора, повышенную утечку канала или полный отказ устройства.
ESD-события могут происходить на любом этапе жизненного цикла ИС, от производства до тестирования, обработки, использования OEM-пользователем и конечным пользователем. Чтобы оценить устойчивость ИС к различным событиям электростатического разряда, были идентифицированы электрические импульсные схемы, моделирующие следующие моделируемые стрессовые среды: модель человеческого тела (HBM), модель заряженного устройства, индуцированного полем (FICDM), и модель машины . (ММ).
Как лучше всего справляться с событиями ОУР?
Методы защиты от электростатических разрядов, такие как поддержание статической безопасности на рабочем месте, используются для предотвращения любого накопления во время производства, сборки и хранения.Эти среды и людей, работающих в них, обычно можно тщательно контролировать, но среды, в которых устройство позже оказывается, могут быть чем угодно, но только не контролируемыми.
Аналоговый переключатель Защита от электростатических разрядов обычно выполняется в виде диодов от аналоговых и цифровых входов к источникам питания, а защита источника питания в виде диодов между источниками питания – как показано на рисунке 14.
Рисунок 14. Аналоговый переключатель ESD-защита.Защитные диоды фиксируют переходные процессы напряжения и отводят ток к источникам питания.Обратной стороной этих защитных устройств является то, что они увеличивают емкость и утечку на пути прохождения сигнала при нормальной работе, что может быть нежелательным в некоторых приложениях.
Для приложений, требующих большей защиты от электростатических разрядов, обычно используются дискретные компоненты, такие как стабилитроны, металлооксидные варисторы (MOV), ограничители переходных напряжений (TVS) и диоды. Однако они могут привести к проблемам с целостностью сигнала из-за дополнительной емкости и утечки в сигнальной линии; это означает, что инженерам-разработчикам необходимо тщательно продумать компромисс между производительностью и надежностью.
Какие готовые решения доступны?
В то время как подавляющее большинство коммутаторов / мультиплексоров ADI соответствуют уровням HBM не менее ± 2 кВ, другие превосходят это по надежности, достигая значений HBM до ± 8 кВ. Члены семейства ADG541x достигли номинальных значений HBM ± 8 кВ, FICDM ± 1,5 кВ и MM ± 400 В, что делает их лидерами отрасли, сочетая характеристики высокого напряжения и надежность.
Заключение
Когда входы коммутатора или мультиплексора поступают от удаленных источников, существует повышенная вероятность возникновения неисправностей.Условия перенапряжения могут возникать из-за систем с плохо спроектированной последовательностью источников питания или там, где требуется установка горячей замены. В жестких электрических условиях переходные напряжения из-за плохого соединения или индуктивной связи могут повредить компоненты, если они не защищены. Неисправности также могут возникать из-за отказов источника питания, когда соединения питания теряются, а входы переключателей остаются подверженными аналоговым сигналам. Эти неисправности могут привести к серьезным повреждениям, которые могут вызвать повреждение и потребовать дорогостоящего ремонта.Хотя для устранения неисправностей используется ряд методов защитного проектирования, они увеличивают стоимость и площадь платы и часто требуют компромисса в характеристиках переключателя; и даже при наличии внешней защиты цепи ниже по потоку не всегда защищены. Поскольку аналоговые переключатели и мультиплексоры часто являются наиболее вероятными электронными компонентами модуля, которые могут выйти из строя, важно понимать, как они ведут себя в условиях, превышающих максимально допустимые значения.
Коммутаторы / мультиплексоры, такие как устройства, упомянутые здесь, доступны со встроенной защитой, что позволяет разработчикам исключить внешние схемы защиты, уменьшая количество и стоимость компонентов в конструкции плат.Экономия еще более значительна в приложениях с большим количеством каналов.
В конечном итоге, использование переключателей с защитой от сбоев, защитой от перенапряжения, устойчивостью к защелкиванию и высоким рейтингом ESD дает надежный продукт, который соответствует отраслевым нормам и повышает удовлетворенность клиентов и конечных пользователей.
Приложение
Продукты для защиты коммутаторов / мультиплексоров Analog Devices
Высоковольтные переключатели с защитой от защелкивания (все доступны в пакетах CSP и SOP)
Номер детали | Конфигурация | Количество функций переключателя | R ВКЛ (Ом) | Макс.диапазон аналогового сигнала | Впрыск заряда (пКл) | На утечку при 85 ° C (нА) | Напряжение питания |
ADG5212 | SPST / NO | 4 | 160 | V SS по V DD | 0.07 | 0,25 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5213 | SPST / NO-NC | 4 | 160 | V SS по V DD | 0,07 | 0,25 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5236 | SPST / NO-NC | 2 | 160 | V SS по V DD | 0.6 | 0,4 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5412 | SPST / NO | 4 | 9 | V SS по V DD | 240 | 2 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5413 | SPST / NO-NC | 4 | 9 | V SS по V DD | 240 | 2 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5433 | SPST / NO-NC | 3 | 12.5 | V SS по V DD | 130 | 4 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5434 | SPST / NO-NC | 4 | 12,5 | V SS по V DD | 130 | 4 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5436 | SPST / NO-NC | 2 | 9 | V SS по V DD | 0.6 | 2 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
Высоковольтный мультиплексор с защитой от защелкивания (все доступны в пакетах CSP и SOP)
Номер детали | Конфигурация | R ВКЛ (Ом) | Макс.диапазон аналогового сигнала | Впрыск заряда (пКл) | Емкость (пФ) | На утечку при 85 ° C (нА) | Напряжение питания |
ADG5204 | (4: 1) × 2 | 160 | V SS по V DD | 0.6 | 30 | 0,5 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5408 | (8: 1) × 1 | 14,5 | V SS по V DD | 115 | 133 | 4 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5409 | (4: 1) × 2 | 12.5 | V SS по V DD | 115 | 81 | 4 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
ADG5404 | (4: 1) × 1 | 9 | V SS по V DD | 220 | 132 | 2 | Двойной (± 15 В), Двойной (± 20 В), одиночный (+12 В), одиночный (+36 В) |
Низковольтные мультиплексоры с защитой от сбоев (4 функции переключения для каждого)
Номер детали | Конфигурация | Макс.диапазон аналогового сигнала | Время реакции на ошибку (нс) | Время восстановления после сбоя (мкс) | –3 дБ Полоса пропускания (МГц) | Пакеты |
ADG4612 | SPST / NO | –5.От 5 В до В DD | 295 | 1,2 | 293 | СОП |
ADG4613 | SPST / NO-NC | –5,5 В по V DD | 295 | 1,2 | 294 | CSP, SOP |
Высоковольтные мультиплексоры с защитой от КЗ (все доступны в пакетах DIP и SOIC)
Номер детали | Конфигурация | R ВКЛ (Ом) | Макс.диапазон аналогового сигнала | t Переход (нс) | Напряжение питания (В) | Рассеиваемая мощность (мВт) |
ADG438F | (8: 1) × 1 | 400 | В SS + 1.От 2 В до В DD – 0,8 В | 170 | Двойной (± 15 В) | 2,6 |
ADG439F | (4: 1) × 2 | 400 | В SS + 1,2 В до V DD – 0,8 В | 170 | Двойной (± 15 В) | 2,6 |
ADG508F | (8: 1) × 1 | 300 | В SS + 3 В к V DD – 1.5 В | 200 | Двойной (± 12 В), двойной (± 15 В) | 3 |
ADG509F | (4: 1) × 2 | 300 | В SS + 3 В к V DD – 1,5 В | 200 | Двойной (± 12 В), двойной (± 15 В) | 3 |
ADG528F | (8: 1) × 1 | 300 | В SS + 3 В к V DD – 1.5 В | 200 | Двойной (± 12 В), двойной (± 15 В) | 3 |
Защитные устройства для каналов высокого напряжения
Номер детали | Конфигурация | Количество функций переключателя | R ВКЛ (Ом) | Макс.питание положительного полюса (В) | Макс.отрицательное питание (В) | Пакеты |
ADG465 | Защитное устройство канала | 1 | 80 | 20 | 20 | СОИК, СОТ |
ADG467 | Защитное устройство канала | 8 | 62 | 20 | 20 | СОИК, СОТ |
Электрические цепи и ток | Передача энергии в электрических системах
Вероятно, вы уже знакомы с компонентами электрической цепи из предыдущих классов.Вы помните, что у нас есть особый способ рисования компонентов цепи на электрической схеме? У каждого компонента есть свой символ.
Рассмотрим подробнее источники энергии в электрических цепях.
Ячейки
Электрические элементы являются источником энергии для электрической цепи. Откуда эта энергия?
Внутри клетки находится ряд химикатов. Эти химические вещества хранят потенциальной энергии .Когда ячейка находится в замкнутом контуре, химические вещества вступают в реакцию друг с другом. В результате электронам дается потенциальная энергия, необходимая для того, чтобы начать движение по цепи. Когда электроны движутся, они обладают как потенциальной, так и кинетической энергией. Электрический ток – это движение электронов по проводящим проводам.
Ячейки бывают разных размеров. Ячейки разного размера обеспечивают электрическую цепь разным количеством энергии. Типы ячеек, которые вы будете использовать в игрушках, фонариках и других небольших приборах, варьируются по размеру от AAA, AA, C, D до 9-вольтных размеров.Элементы AAA, AA, C и D обычно имеют номинальное напряжение 1,5 В, но элементы большего размера имеют большую емкость. Это означает, что более крупные клетки прослужат дольше, прежде чем станут «плоскими». Клетка становится плоской, когда она больше не может поставлять энергию посредством своих химических реакций.
Батареи разного размера.Когда мы покупаем элементы в магазине, их обычно называют батареями. Это может немного сбивать с толку, потому что на самом деле батарея состоит из двух или более ячеек, соединенных вместе. Поэтому, когда мы ссылаемся на батарею на принципиальных схемах, нам нужно нарисовать две или более ячейки, соединенные вместе.
Это задание – хорошая возможность как для групповой, так и для индивидуальной работы. Учащиеся могут проводить исследования в группе, а затем писать свои абзацы индивидуально. Разные учащиеся в одной группе могут иметь разные центры утилизации, расположенные ближе всего к месту их проживания. Вы можете оценить как качество их письменного ответа, так и точность их информации.
Не работающие аккумуляторы нельзя выбрасывать в мусорные баки.Их нужно утилизировать.
ИНСТРУКЦИЯ:
Узнайте, почему батареи нельзя выбрасывать в обычные мусорные баки. Напишите абзац, чтобы объяснить, почему.
Батареи содержат токсичные химические вещества, которые могут просачиваться в почву и загрязнять окружающую среду.Разные батареи содержат разные вещества. Свинцово-кислотные батареи, используемые в легковых и других транспортных средствах, особенно вредны для окружающей среды.
Узнайте, где можно утилизировать аккумуляторы в вашем районе. Запишите подробные сведения о центрах, ближайших к вашему месту жительства.
Этот ответ будет полностью зависеть от того, где живет ученик.В некоторых районах будет практически нет доступа к специализированным пунктам сбора, но в большинстве магазинов Pick ‘n Pay, Spar и Woolworths теперь есть контейнеры для утилизации аккумуляторов, и в стране есть различные компании, которые также предлагают эту услугу. Большинство городских свалок также перерабатывают батареи отдельно.
Резисторы
Что такое резисторы? Чтобы разобраться, что это такое, давайте сначала вспомним о проводниках и изоляторах.
Мы специально изучаем электричество, поэтому теперь мы можем говорить о электрических проводниках и изоляторах . Электрический проводник – это вещество, которое позволяет электрическому заряду проходить через него. Изолятор – это вещество, которое не позволяет электрическому заряду проходить через него.
Вспомните нашу модель металлической проволоки и то, как электроны могут перемещаться по ней. Металлический провод – проводник электричества. Запишите некоторые материалы, которые не проводят электричество.
Некоторые материалы, не проводящие электричество, – это пластик, стекло и керамика.
Как вы думаете, почему большинство проводящих проводов окружено пластиком?
Это связано с тем, что пластик является электрическим изолятором и поэтому изолирует провод.
Резисторы немного того и другого.Они позволяют электронам проходить через них, но не облегчают задачу. Говорят, что противодействуют движению электронов. Следовательно, резисторы влияют на электрический ток в цепи.
Принесите в школу чайник, чтобы учащиеся могли видеть элемент внутри чайника. Также используйте большую лампу накаливания, чтобы показать им нить накаливания в лампе в качестве примера резисторов.
Но зачем нам сопротивляться движению электронов? Резисторы могут быть чрезвычайно полезными.Подумайте о чайнике. Если вы заглянете внутрь, то увидите большую металлическую катушку.
Заглядывая внутрь чайника.Эта металлическая спираль является нагревательным элементом. Если вы включите чайник, элемент нагревается и нагревает воду. Элемент представляет собой большой резистор. Когда электроны проходят через резистор, они затрачивают много энергии на преодоление сопротивления. Эта энергия передается окружающей среде в виде тепла. Это тепло полезно для нас, поскольку оно нагревает нашу воду.
Первый электрический свет был сделан в 1800 году человеком по имени Хэмфри Дэви. Он изобрел электрическую батарею, и когда он подключил к ней провода и кусок углерода, углерод засветился, как углеродный резистор, производящий свет.
Изобретатель Томас Эдисон экспериментировал с тысячами различных материалов резисторов, пока в конце концов не нашел подходящий материал, чтобы лампочка светилась более 1500 часов.
Хороший пример использования резисторов – лампочки. Давайте подробнее рассмотрим различные части лампочки, чтобы увидеть, как она работает.
Постарайтесь приготовить несколько ламп накаливания, чтобы учащиеся могли подержать их и посмотреть. В качестве дополнения вы можете попросить учащихся изучить использование аргона, а не обычного воздуха в качестве газа внутри лампочки.Аргон используется потому, что он является инертным газом и предотвращает окисление нити накала, тем самым продлевая срок ее службы.
Вопросы этого задания будут обсуждаться и отвечать на них в процессе их выполнения в классе. Учащиеся могут не знать ответов, но после обсуждения того, как с ними работает электрическая лампочка, они должны написать свои собственные ответы.
Лампа накаливания.МАТЕРИАЛЫ:
ИНСТРУКЦИЯ:
- Если у вас есть лампочки, внимательно изучите различные детали, в противном случае посмотрите фотографии, представленные здесь.
- Прочтите информацию о том, как работает лампочка, и определите пронумерованные детали.
- Ответьте на следующие вопросы.
Лампа накаливания означает излучение света в результате нагрева.
Схема частей лампочки.Как работает лампочка.
Лампочка представляет собой герметичный закрытый стеклянный корпус (номер 1).В основании лампы находятся два металлических контакта (цифры 7 и 10), которые подключаются к концам электрической цепи. Металлические контакты прикреплены к двум жестким проводам (номера 3 и 4).
Эти провода прикреплены к тонкой металлической нити. Посмотрите на лампочку. Можете ли вы идентифицировать нить накала? Это номер 2 на диаграмме. Нить накала сделана из вольфрамовой проволоки. Это элемент с высоким сопротивлением.
ВОПРОСЫ:
Когда электроны движутся через нить накала, они испытывают высокое сопротивление.Это означает, что они передают большую часть своей энергии нити накала, когда проходят через нее. Энергия передается окружающей среде в виде тепла и яркого света. Опишите передачу энергии в этой лампочке.
Электрическая энергия передается в тепло и свет.
Какова полезная выходная энергия и каковы потери энергии в этой лампочке?
Свет – это полезная мощность, а тепло – потерянная мощность.
Вы видите, что нить намотана на катушку? Как вы думаете, почему это так? Обсудите это со своим классом и учителем.
ПРИМЕЧАНИЕ: Это дополнительный вопрос, так как учащиеся будут рассматривать только факторы, влияющие на сопротивление позже, поэтому обсудите это в классе.Это сделано для того, чтобы вольфрам большей длины поместился в небольшом пространстве, чтобы увеличить сопротивление и, следовательно, яркость лампы.
Нить накала закреплена на стеклянной ножке (номер 5). Есть два небольших опорных троса, чтобы удерживать нить (номер 6). Как вы думаете, почему ножка сделана из стекла?
Стекло – это электрический изолятор, поэтому он не проводит электричество, и весь ток проходит через нить накала.
Внутренняя часть цоколя лампы сделана из изоляционного материала. Это желтая часть, обозначенная цифрой 8. С внешней стороны металлический проводящий колпачок, к которому прикреплен провод под номером 7. Почему прикреплен провод? на 7 контактирует с металлическим проводящим колпачком?
Это сделано для того, чтобы электрический ток мог проходить через электрический контакт под номером 10, а затем через провод под номером 7, который касается внутренней части металлического изоляционного колпачка.
Если у вас в классе есть лампа, вкрутите лампу в лампу и включите ее, чтобы наблюдать за свечением нити накала и за тем, как она нагреется.
Ссылка в поле «Посетить» представляет собой интерактивное руководство и набор заданий и викторин для проверки электрических цепей и принципиальных схем.
Сопротивление, которое вещество оказывает цепи, измеряется в омах (Ом). Если мы хотим использовать резисторы для управления током, нам нужно знать величину сопротивления. На фото показано несколько распространенных резисторов.
Некоторые общие резисторы.Вы видите, что на резисторах есть полосы разного цвета? Это не только для того, чтобы они выглядели приятными для глаз. Цветные полосы на самом деле являются кодом, который сообщает нам сопротивление резистора.У нас также есть резисторы, в которых мы можем сами регулировать сопротивление. Это называется переменным резистором. Вы уже видели символ для рисования резистора на принципиальной схеме. Нарисуйте электрическую схему в пространстве ниже с двумя лампочками, двумя ячейками, открытым выключателем и резистором.
Схема ученика должна выглядеть следующим образом:
Электрический ток может иметь различные эффекты.Давайте узнаем больше о том, что это такое.
.