- Что такое фаза, ноль, земля в электрике и зачем они нужны
- Что такое фаза и ноль в электрике: назначение, отличие
- Что такое ноль и фаза в электричестве и зачем он нужен?
- Фаза, ноль, заземление. Как их определить и что это такое
- Электрика – “фаза” и “ноль”
- Что такое фаза и ноль в электричестве
- Фаза и ноль в электрике
- Что такое нулевая фаза в электричестве. Что такое фаза ноль и земля и зачем они нужны. Определение фазы, нуля и земли по контрольной лампе
- | Объяснение трехфазного питания
- Знайте разницу между трехфазным и однофазным питанием
- Однофазное электричество – Инженерное мышление
- – обзор
- Что такое ток нулевой последовательности? Определение и объяснение
- Разница между нейтралью и заземляющим проводом в электротехнике
Что такое фаза, ноль, земля в электрике и зачем они нужны
Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.
Простое объяснение
Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза – это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке – выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.
Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов, чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!
Углубляемся в тему
Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.
Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению – это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.
Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.
Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.
К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.
Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.
Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:
Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе “Задать вопрос электрику“!
Рекомендуем также прочитать:
Что такое фаза и ноль в электрике: назначение, отличие
К такому явлению как электричество уже давно все привыкли. Многие термины мы употребляем в обиходе, обладая лишь поверхностным пониманием. Между тем, путь пройденный электричеством от электростанции до вашей розетки непрост.
Существует множество факторов, влияющих на бесперебойную подачу электроэнергии к конечному потребителю. Все нюансы рассматривать в данной статье не будем, ограничимся лишь такими терминами как “ФАЗА” и “НОЛЬ”.
Итак, для чего нужны фаза и ноль в электрике, и что это вообще такое. Для более полного понимания вернемся опять к электростанции. Берем в качестве примера некую электростанцию, на которой происходит следующее:
- 1. Трехфазные генераторы переменного тока вырабатывают ток
- 2. По линиям электропередач ток поступает на трансформаторные подстанции
- 3. С трансформаторных подстанций ток поступает в дома и т.д.
Теперь немного подробнее. Сначала напрашивается вопрос: почему мы используем именно переменный ток? Все очень просто: переменный ток можно передавать на большие расстояния, а с постоянным это довольно проблематично. Вопрос второй: как так получается, что к трансформатору приходит три фазы, а в квартире получается однофазная сеть?
Дело в том, что на электрощиток многоквартирного дома приходит три фазы, ноль и заземление. Далее, вводно-распределительные устройства (ВРУ) разделяют все три фазы, при этом каждый фазный провод получает свое заземление и свой ноль.
Понятное дело, что без подготовки эту информацию не усвоить, поэтому ниже мы остановимся и расскажем об этом более подробно.
Что представляет собой фаза и ноль в трехфазной сети
Как мы знаем из школьного курса физики – электрический ток движется только в замкнутом контуре. То есть по одному проводу он должен прийти, а по другому уйти. Чтобы не морочить голову, сразу даем определение:
- – Фаза – проводник, по которому к потребителю приходит ток;
- – Ноль – проводник, по которому ток уходит от потребителя.
Для правильной работы электрическому току всегда необходим замкнутый контур. Ток течет в одном направлении. Фазный провод – провод, по которому ток приходит к любой нагрузке, будь-то электрочайник или холодильник, неважно. Ноль – провод, по которому ток возвращается.
Кроме этого нулевой провод выполняет еще одну полезную функцию – выравнивает фазное напряжение. Заземление – провод, на котором нет напряжения. Он служит резервным проводом для того, чтобы в случае утечки тока защитить человека от удара.
Теперь возьмем трансформатор, который питает дом. Трансформатор – устройство, повышающее, либо понижающее напряжение в сети. Чтобы конечный потребитель получил питание, к обмоткам низкого напряжения подключаются четыре провода. К выводам трансформаторной обмотки подключаются три провода (это и есть наши фазы), а ноль (еще называют “общий”) берется из точки соединения трансформаторных обмоток.
Теперь рассмотрим еще два термина и сразу дадим им определения:
- 1. Линейное напряжение – напряжение, возникающее между фазными проводами в трехфазной электросети. Номинальное значение линейного напряжения – 380 вольт.
- 2. Фазное напряжение – напряжение между одним фазным проводом и нулем. Номинальное значение такого напряжения – 220 вольт.
Существуют системы, в которых заземление присоединяют именно к нулевому проводу. Такая система носит название “глухозаземленная нейтраль”.
Делается это так: обмотки в трансформаторе соединяются по типу “звезда” (есть еще и соединение “треугольник”, а такде различные сочетания этих соединений, но об этом в другой раз). После этого нейтраль заземляют. Тогда наш ноль одновременно служит и заземлением (совмещенный нейтральный проводник, PEN).
Такой тип заземления практиковали в советское время при постройке жилых домов. Проще говоря, в таких домах электрощиток зануляют. Однако такой метод достаточно опасен, поскольку в некоторых случаях ток может пройти через ноль, возникнет отличный от нуля потенциал, результат варьируется от удара током до небольшого опасного фейерверка.
В наше время к жилым домам также подводят три фазы, но помимо трех фазных проводов, между трансформатором и домом также присутствуют отдельно нулевой провод отдельно провод заземления. На каждой подстанции имеется контур заземления: в случае утечки тока в электросистеме жилого дома – ток возвращается к заземлению на подстанции.
При монтаже такой сети необходимо учитывать, что в электрощите должны присутствовать отдельные шины для фаз, отдельная шина для нуля, отдельная шина для заземления. Внимание, при монтаже заземления не забудьте о том, что шина заземления должна быть соединена металлически с корпусом электрощитка.
На самом деле, аварийные ситуации, так или иначе связанные с отсутствием заземления или с совмещением нуля и заземления, в трехфазных сетях происходят периодически, поэтому заземление действительно необходимо. Немного отвлечемся и посмотрим, какие ситуации наиболее часто распространены.
Для правильной эксплуатации вся нагрузка должна быть равномерно распределена между фазами. Такое бывает редко, да и неизвестно, что именно будет подключать потребитель. Если возникает ситуация, при которой нагрузка на одну из фаз увеличивается, на другую – уменьшается, а к третьей – вообще непонятно что подключают, тогда происходит смещение нейтрали.
Из-за этого смещения между нулевым проводом и проводом заземления появляется разность потенциалов. Если же нулевой провод имеет сечение, которого недостаточно, то пресловутая разность потенциалов увеличивается.
А когда фазы теряют связь с нейтральным проводником, получаются две следующих ситуации:
- 1. Если фазы нагружены до предела, то напряжение падает до нуля;
- 2. Если фазы наоборот не нагружены, то напряжение растет до 380.
Как видите, такое напряжение явно уничтожит бытовую технику, рассчитанную на сети в 220 вольт. Помимо этого, в таких ситуациях металлические корпуса электрооборудования тоже будут под напряжением.
Отсюда следует, что использование раздельного варианта нуля и заземления более предпочтительно, так как позволяет обойтись без таких аварийных случаев.
Назначение фазы и нуля
Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.
Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.
Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.
Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.
Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.
Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.
Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность. Тут хорошо работает правило: доверяй, но проверяй!
По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.
Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.
Способы определения фазы и нуля
Как вы уже поняли, фаза и ноль в электричестве отличаются с помощью цветовой маркировки, но этот способ может быть ошибочным из-за изначально неверного монтажа.
Для более точного определения фазного провода существует отвертка-индикатор. Просто прикоснитесь ею к проводам по очереди. На нулевой провод отвертка никак не отреагирует, но при прикосновении к фазному проводу индикатор загорится. Если же индикатор вообще не сработал, значит ваша электросеть вышла из строя, напряжение в сети отсутствует.
Если же индикатор отреагировал на оба провода, значит в нулевом проводе произошел обрыв.
«Фаза» в электрике обозначается латинской буквой «L» производная от «Line» (линия). Обычно это коричневый или белый провод. «Ноль» обозначается буквой «N» от английского – Neutral (нейтральный). Цвет нулевого провода, как правило, синий или белый но синими полосами по всей длине.
Заземляющий проводник в электрике маркируют как «PE» – Protective Earthing. Он имеет желто-зеленый цвет.
Фаза и ноль в электропроводке
Выше мы уже объяснили, что такое фаза и ноль в электрике, а также принцип их работы. В электропроводке фаза и ноль работают точно также. По фазному проводу производится подача тока, по нулевому – ток возвращается обратно.
Поэтому достаточно один раз понять принцип работы фазы и нуля, и тогда вас не смутит никакая электропроводка, а также вы сможете правильно объяснить соседу, что такое фаза и ноль в электропроводке.
Похожие материалы на сайте:
Понравилась статья – поделись с друзьями!
Что такое ноль и фаза в электричестве и зачем он нужен?
Очень немного людей понимают суть электричества. Такие понятия как “электрический ток”, “напряжение” “фаза” и “ноль” для большинства являются темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. Для обучения электричеству с “нуля” нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Электрический ток и электрический заряд
Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.
Заряд электрона – минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).
Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).
Кстати, о том, что такое ток, напряжение и сопротивление можно дополнительно почитать в нашей отдельной статье, посвященной закону Ома.
Электрический ток – это направленное движение заряженных частиц (носителей заряда) по проводнику. Само движение заряженных частиц возникает под действием электромагнитного поля – одного из фундаментальных физических полей.
Электрический ток может быть постоянным и переменным. При постоянном токе направление и величина тока не меняются. Переменный ток – это ток, изменяющийся во времени.
Источником постоянного тока является, например, батарейка. Но именно переменный ток используется в бытовых розетках, которые стоят в наших домах. Причина в том, что переменные токи гораздо проще получать и передавать на большие расстояния.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Основным видом переменного тока является синусоидальный ток. Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.
Непосредственно о таинственных фазе и нуле
Все мы слышали про фазу, три фазы, ноль и заземление.
Простейший случай электрической цепи – однофазная цепь. В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).
Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или “стекает” в землю.
Провод, по которому ток идет к прибору, называется фазой, а провод, по которому ток возвращается – нулем.
Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому – отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.
Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ – 50 Гц.
В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.
Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза – белого, черного или коричневого. Провод заземления также имеет свой окрас – желто-зеленый.
Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в студенческий сервис. С помощью наших специалистов даже самая дикая и сложная задача станет вам «по зубам».
Фаза, ноль, заземление. Как их определить и что это такое
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)
Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.
В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.
Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).
Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля – N).
Еще момент – чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.
Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой – фазовым.
Отсюда следует еще один очевидный практический вывод: напряжение между “нулем” и “землей” будет близко к нулевому значению (определяется сопротивлением заземления), а “земля” – “фаза”, в нашем случае 220 Вольт.
Кроме того, если гипотетически (На практике так делать нельзя!) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение “фаза” – “ноль” у нас будет те же 220 Вольт.
Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.
При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.
При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и “землей” (рис.4).
Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.
Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток “уйдет” по цепи заземления.
Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.
Как это делается – тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.
КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ
Где фаза, где ноль – вопрос, возникающий при подключении любого электротехнического устройства.
Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).
Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.
Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.
Одним щупом мультиметра (каким – безразлично) касаемся участка измеряемой цепи, другим – естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).
Обращаю Ваше внимание – если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.
- Сейчас в точке 1 фазы нет.
- При замыкании выключателя S она появляется.
Поэтому следует проверить все возможные варианты.
Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.
Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.
© 2012-2021 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Электрика – “фаза” и “ноль”
В повседневной жизни человек очень часто встречается с электричеством. Более того, электрические приборы сопровождают нас каждый день. Помимо того, что мы постоянно пользуемся электрическим оборудованием, так еще и приходит время их поломки, следовательно, дальнейшей починки. И прежде чем приступить к работе с электричеством нужно, как минимум, знать теоретическую базу, не говоря уже о практике. Конечно, во избежание причинения вреда имуществу и вашему бесценному здоровью разумнее было бы обратиться за помощью к специалисту. Но если Вы хотите сами научиться понимать и разбираться в столь сложном деле как электричество, необходимо начать с самого главного.
Данные понятия нередко встречались каждому человеку, и каждый предполагал, что это каким-то образом связано с электричеством. Знать и понимать, что такое «фаза» и «ноль» крайне необходимо, чтобы заниматься электромонтажными работами (например, самая простая установка светильника, бра или люстры). Перед тем, как прикоснуться к электричеству, необходимо обязательно восполнить все пробелы в знаниях. Понимать, что такое фаза и ноль нужно хотя бы для того, чтобы правильно подсоединить провода.
Существует три главных провода: фаза, ноль и заземление. Определить где и какой проводок можно при помощи подручных средств или по цвету. Специалисты различают провода с первого взгляда, а обычному человеку нужно времени побольше, особенно, если отсутствуют необходимые для этого приборы. На самом деле, способов распознавания кабелей не очень много, тем более безопасных. Именно поэтому чаще всего провода различают по цвету.
Цвет – главный ориентир при распознавании проводовСамый простой и безопасный метод. Для того, чтобы правильно выделить фазу и ноль, нужно знать какой цвет чему принадлежит. Лучше всего найти достоверную информацию, где четко обозначены принятые в конкретной стране стандарты. Каждый проводок имеет свой определенный цвет, следовательно, найти ноль будет на так уж сложно. Все полученные при поиске информации знания пойдут на пользу и помогут быстро справиться с работой.
Данный метод очень актуален в новостройках, поскольку электропроводка протягивается квалифицированными специалистами, которые соблюдают все установленные стандарты. Например, в нашей стране в 2004 году был принят стандарт IEC 60446, в котором регламентируются все процессы деления фазы, заземления, нуля по цвету.
Обязательно нужно учитывать следующее:
- синий (сине-белый) цвет провода – рабочий ноль;
- желто-зеленый цвет – защитный ноль;
- иные цвета – фаза (красный, коричневый, белый, черный и др.).
Именно такие обозначения используются чаще всего. Если же проводка в Вашем доме плохая и старая и ее монтажом занимались непрофессионалы, то правильнее будет воспользоваться другими методами.
По мнению специалистов первоначально нужно найти фазу, чтобы облегчить дальнейшее определению. Данный метод возможно применять наряду с предыдущим.
Индикаторная отвертка – неотъемлемый инструмент в бытовом наборе любого домашнего умельца. Ее предназначение заключается как в проведении электромонтажных работ, так и в процессе обычной замены лампочек или при монтаже осветительных приборов.
Метод настолько простой, что справится с ним может абсолютно любой человек. В момент касания отверткой цветного провода под напряжением индикатор должен загореться. То есть, поступает сигнал о присутствии сопротивления, следовательно, исследуемый кабель – фаза.
Суть данного метода заключается в присутствии внутри отвертки лампочки и резистора. В момент замыкания электрической цепи сигнал загорается. Процедура проходит абсолютно безопасно для человека, поскольку в инструменте имеется сопротивление, которое понижает ток до минимума.
Контрольная лампа – еще один способ определения проводовДанный способ применим для распознавания кабелей в трехпроводной сети. При использовании этого метода нужно быть очень осторожным и внимательным, поскольку подразумевается создание контрольной лампы.
Процесс заключается в следующем:
- в патрон помещается обыкновенная лампа;
- в клеммах располагаются провода без изоляции на концах;
- поочередное присоединение проводов по цвету.
Если нет возможности создать подобную конструкцию, можно применить обычную настольную лампу с электрической вилкой. Нужно знать, что при таком методе можно определить лишь приблизительное присутствие среди проводов фазного. Сигнал контрольной лампы показывает, что с высокой вероятностью какой-то провод – ноль, а какой-то – фаза. Если свет не загорается, значит фазного провода среди исследуемых нет. Но может быть, что нет именно нулевого провода.
Таким образом, данный способ целесообразен в большей степени для того, чтобы определить правильность монтажа и рабочее состояние проводки.
Как определить сопротивление петли «фаза-ноль»Периодическое проведение замеров сопротивления петли «фаза-ноль» гарантирует бесперебойную работу электроприборов и проверку автоматов. Это необходимо делать, поскольку самыми главными предпосылками поломок являются перегрузки электрических сетей и короткие замыкания. Именно замеры сопротивления позволяют избежать подобных ситуаций.
Немногие знают, что такое петля «фаза-ноль», но понимать это крайне необходимо. Под этим понятием подразумевается обозначение контура, возникающего в итоге соединения нулевого провода, который располагается в заземленной нейтрали. Именно замыкание данной электросети и образует петлю.
Для измерения сопротивления в петле «фаза-ноль» существуют следующие методы:
- падение напряжения в отключенной цепи;
- падение напряжения при сопротивлении возрастающей нагрузки – самый часто используемый способ, поскольку выгодно отличается от других удобством, быстрым измерением, безопасностью;
- использование специального прибора, который интерпретирует замыкание в цепи.
Что такое фаза и ноль в электричестве
Электрическая фаза колебаний в электротехнике – это аргумент колебательной функции, то есть угол, на который смещены колебания значения ЭДС в пространстве относительно нуля.
Различают начальную фазу $φ_0$, описывающую начало колебательного процесса в нулевое время и полную фазу, описывающую состояние колебательного процесса в любой момент времени.
Пример уравнения c полной фазой, которое может описывать колебательный процесс: $cos(ωt + βx + φ_0)$. В момент времени, равный $t = 0$, угол колебаний составит $φ_0$, а если колебание начинается в точке с координатами $(0;0)$, то уравнение будет иметь вид типа $cos(φ_0)$.
Чаще всего для электроснабжения жилья используются трёхфазные системы электроснабжения, фазовый угол между генерируемыми ЭДС в которых равен $\frac{2π}{3}$ или $120°$.
Что такое фаза в электричестве — определение понятия
Фаза в электричестве – это разговорное название провода, находящегося под напряжением относительно другого, который называют нуль. Это название произошло из-за того что вырабатываемый на подстанциях ток, подающийся в дома, является переменным, то есть ЭДС, создаваемые на подстанциях, имеют одну и ту же частоту (для России и стран СНГ она составляет 50 Гц), но сдвинуты относительно друг друга во времени на определённый фазовый угол. В дома обычно подаются все три фазы и нет никакого значения, к какой фазе подключена ваша квартира.
Рисунок 1. Электрика и электричество – схематическое изображение фазы, нуля и земли
На рис. 1 схематично нарисована схема проведения электрического тока в квартиру от общей системы. Буквами $L1$, $L2$, $L3$ обозначены 1-3 фазы, а буквой $N$ – нулевой провод.
На рис. 2 показано схематическое подключение тока к квартире от трасформатора, буквой $L_T$ обозначена фаза на трансформаторе, буквой $L$ – фаза в квартире, а буква $R_H$ – это подключенный электроприбор, обладающий некоторым сопротивлением $R_H$.
От трансформатора идёт 2 провода, один – так называемый фазовый провод с напряжением, а другой – нулевой провод, от которого отведено заземление, осуществляемое помещением контакта в землю. Существуют и другие источники заземления помимо собственно земли, на данных рисунках заземление обозначено буквами $Змл$.
На рис. 3 изображён случай, когда нулевой заземлённый провод не проведён в квартиру от подстанции, а заземлён непосредственно в квартире. Напряжение $L_T$ между нулём и фазой будет одинаково для рисунков 2 и 3, однако, не рекомендуется заземлять напряжение от трансформатора непосредственно в квартире.
Что такое ноль в электричестве — определение
Ноль – это провод, необходимый для замыкания электрического контура, по нему ток возвращается к источнику.
Для чего нужен ноль в электричестве? Ноль в электричестве нужен для равномерного распределения напряжения между фазами. При отсутствии нулевого провода напряжение между фазовыми проводами будет распределяться неравномерно, в результате чего на одной фазе может быть повышенное напряжение, которое может привести к пожару, а на других – пониженное, с которым часть электроприборов может не работать или работать некорректно. Для ноля также используются другие названия – его называют нейтральным или нулевым контактом.
Что такое нулевая фаза в электричестве
Нулевая фаза – это ещё одно народное название нулевого провода, не стоит путать его с землёй.
Ток в нулевом проводе не всегда равен нулю, он будет ненулевым при подключении электроприборов.
Что такое «земля» в электричестве
«Земля» – это провод, отводимый от нулевого, используемый для безопасности. Суть в том, что в случае обрыва электрической цепи или отсутствия сопротивления ток направляется в землю, что помогает избежать удара током.
Напряжение $U$ между нулевым проводом и землёй равняется нулю, тогда как напряжение между нулём и фазой для обычной квартиры будет равно $220$ В.
Электрика для чайников: фаза и ноль – что это и как определить где что
В случае, когда вы имеете дело с проводкой, состоящей из двух проводов – один из них всегда будет фазой, а второй нулём. Для того чтобы определить где какой – достаточно воспользоваться специальной пластиковой отвёрткой с индикатором.
Для этого необходимо сначала отключить электричество и развести 2 имеющихся провода во избежание короткого замыкания.
Затем нужно включить электричество обратно и аккуратно, не прикасаясь голыми руками к оголённой части проводов, приложить конец индикаторной отвёртки к проводу. Тот, на котором сработает лампочка индикаторной отвёртки, является фазой, второй провод будет нулём.
В случае же если вам приходится иметь дело с трёхжильным проводом – определить где фаза, а где ноль будет несколько сложнее. Для этого используют специальные приборы, например, можно определить где земля, а где ноль с помощью вольтметра. Для этого сначала нужно измерить напряжение $U$ по очереди между каждым из двух неизвестных проводов и фазовым проводом. Напряжение $U$ на «земле» всегда будет больше, чем на нулевом. Также можно отличить замелю от нуля с помощью омметра – сопротивление на заземлении всегда будет достаточно небольшим и будет в районе 4 Ом.
Замечание 1
Также нулевой провод, фаза и заземление обычно имеют разную расцветку. Для обозначения фазы используют чаще всего чёрную, коричневую или серую обмотку, для земли – жёлтую или зелёную, а для ноля – синюю или белую.
Фаза и ноль в электрике
Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.
В чем отличие фазного проводника от нулевого?
Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.
Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.
Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.
Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.
Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.
В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.
В зависимости от назначения электропередающей линии она может иметь:
- Глухозаземленный нейтральный кабель.
- Изолированный нулевой провод.
- Эффективно-заземленный ноль.
Первый тип линий все чаще используется при обустройстве современных жилых зданий.
Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.
Наглядно про разницу между фазой и нолем на видео:
Для чего нужен заземляющий кабель?
Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.
На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.
Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.
Домашняя электропроводка: находим ноль и фазу
Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).
Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:
Проверка с помощью электролампы
Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.
Проверка индикаторной отверткой
Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:
- Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
- Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
- Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
- Контактная площадка, позволяющая при прикосновении к ней создать цепь.
Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.
Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.
При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.
Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.
Про определение фазы наглядно на видео:
Проверка мультиметром
Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.
Заключение
В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.
Что такое нулевая фаза в электричестве. Что такое фаза ноль и земля и зачем они нужны. Определение фазы, нуля и земли по контрольной лампе
Вам не нужно углубляться в технические детали электрической схемы, чтобы понять основы электротехники. Достаточно знать способы передачи электрического тока, которые бывают однофазными или трехфазными. Трехфазная сеть – это когда электричество течет по трем проводам, и еще один должен вернуться обратно к источнику тока, которым может быть трансформатор, электросчетчик.Однофазная сеть – это когда электричество проходит по одному проводу и возвращается обратно к источнику питания по другому. Такая система называется электрической схемой, и ее основы лежат на уроках физики.
В электроэнергетике вырабатывается трехфазный электрический ток для передачи по электрической сети для снабжения электроэнергией жилых домов, предприятий и промышленности. Большинство домов и малых предприятий используют только однофазное электричество, но фабрики часто используют трехфазное питание для больших двигателей и других целей.Трансформаторы, питающие трехфазное питание, имеют два разных способа подключения, которые называются треугольником и звездой. В зависимости от способа подключения существуют небольшие различия в напряжении.
Помните – электрическая цепь состоит из источника, потребителей, соединительных проводов и других элементов. В любом источнике тока «работают» положительно и отрицательно заряженные частицы. Они накапливаются на разных полюсах источника, один из которых становится положительным, а другой отрицательным. Если полюса источника соединены, возникает электрический ток.Под действием электростатической силы частицы приобретают движение только в одном направлении.
Проверить трехфазное напряжение довольно просто. Переведите выключатель двигателя в положение выключения. Выверните винты, крепящие крышку к переключателю, и снимите крышку. Если мультиметр не является автоматическим мультиметром, выберите диапазон напряжения выше, чем напряжение, которое вы планируете проверить. Посмотрите в блок выключателя остановки двигателя. Вы увидите один набор из трех проводов и один набор из трех проводов.
Функции поиска и устранения неисправностей
Показания напряжения должны быть одинаковыми для каждого теста. Переведите рычаг переключателя в положение «Вкл.». При любом испытании напряжение не должно изменяться более чем на несколько вольт. Однофазное напряжение составляет половину испытанного напряжения между парами линий. Трехфазный ток от реверсивного преобразователя фаз может иметь одну фазу с напряжением, отличным от двух других. Это напряжение также будет варьироваться в зависимости от условий нагрузки, например, при работающем двигателе.
Сначала рассмотрим пример однофазной сети: квартира, в которой электричество подается на чайник, микроволновую печь, стиральную машину по одному проводу, а обратно к источнику питания по другому. Если такую цепь разомкнуть, то электричества не будет. Провод, по которому подается ток, называется фазой или фазой, а провод, по которому ток возвращается, называется нулевым или нулевым.
Помните, что вы делаете в любое время. При испытании электрическим током вы подвергаетесь воздействию потенциально опасных для жизни напряжений и токов.Обращайте внимание на то, что вы делаете, и не позволяйте другим отвлекать вас. Выключатель остановки двигателя на некоторых двигателях также является выключателем “стоп-старт”. Обратите внимание, что при переводе выключателя двигателя в положение ВКЛ. Двигатель запускается в этом случае.
Фильтры могут иметь три типа фазовых характеристик: нулевая фаза, линейная фаза и нелинейная фаза. Пример каждого из них показан на рисунке 19. Как показано на рисунке, фильтр нулевой фазы имеет импульсную характеристику, симметричную относительно нулевой точки.Фактическая форма не имеет значения, только то, что образцы с отрицательными номерами являются зеркальным отображением образцов с положительными номерами. Когда преобразование Фурье берется из этого симметричного сигнала, фаза будет полностью равна нулю, как показано на рисунке.
Если сеть трехфазная, электричество будет проходить по трем проводам и возвращаться по одному. Трехфазные сети чаще встречаются в домах загородного типа. Если в такой сети разомкнуть один провод, то в других фазах останется ток.
То есть фаза в электрике – это провод, по которому подается ток от источника питания, а ноль – это провод, по которому ток возвращается к источнику питания. Если ток не обеспечен постоянной цепью – были аварии на линии, произошел обрыв проводов, то приборы могут просто перестать работать или сгореть от перенапряжения в электрической сети … В электротехнике это явление называется «фазовый дисбаланс». При обрыве нуля напряжение может измениться как в наибольшую, так и в наименьшую сторону.
Недостатком фильтра с нулевой фазой является то, что он требует отрицательных индексов, с которыми может быть неудобно работать. Линейный фазовый фильтр – лучший вариант. Импульсная характеристика идентична показанной, за исключением того, что она была сдвинута, чтобы использовать только образцы с положительными номерами. Импульсный отклик остается симметричным между левым и правым; однако положение симметрии смещено от нуля. Наклон этой линии прямо пропорционален величине сдвига.
Зачем нужна обнуление
Поскольку сдвиг импульсной характеристики ничего не дает, кроме идентичного сдвига выходного сигнала, фильтр с линейной фазой для большинства целей эквивалентен фильтру с нулевой фазой.На рисунке показан импульсный отклик, который не является симметричным между левым и правым. Соответственно фаза не прямая. Другими словами, он имеет нелинейную фазу. Не путайте термины нелинейная и линейная фаза с концепцией линейности системы, обсуждаемой в этой главе. Хотя в обоих словах используется линейность, они не связаны.
В наше время, когда практически любое здание оборудовано хотя бы простейшей электропроводкой, профессия электрика пользуется большим спросом, поэтому все больше и больше соискателей настроены на получение этой профессии.
Образование
Минимальное базовое образование для начала обучения на электрика – это неполное среднее образование. Это означает, что для того, чтобы начать изучать эту профессию, необходимо окончить не менее 9 классов средней школы. Найти специальность «электрик» можно в техникуме, профессионально-техническом училище или колледже практически любого города России областного значения. Также существуют специальные учебные центры, в которых готовят специалистов в этой области.Личные качества
Несмотря на кажущуюся доступность этой профессии, стать хорошим электриком не так-то просто.Вы должны обладать техническим складом ума, уметь работать руками и мыслить логически. Также, из-за высокого риска получения травмы на работе, потенциальный электрик должен соблюдать осторожность и иметь возможность хорошо сконцентрироваться во время работы.Группы электробезопасности и разряды
По окончании курса обучения по специальности «Электрик» студент, в зависимости от содержания курса и результатов итогового экзамена, получает либо вторую, либо третью квалификационную категорию.Всего у электриков шесть категорий, есть еще пять так называемых групп допусков (групп электробезопасности). Не путайте разряд электрика с группой допуска электрика. Разряд показывает квалификацию электрика, сколько трудных работ в своей области он способен выполнить. Группа допуска, в свою очередь, указывает на уровень опасности, с которой может справиться рабочий. Чем выше категория и группа приема у электрика, тем он востребован и тем выше зарплата, которую может ему предложить работодатель.Аттестат электрика
По результатам итоговых испытаний электрику выдается специальный аттестат электрика, в котором указывается присвоенная ему группа электробезопасности, а также оценка его квалификации по пятибалльной шкале. Квалификация электрика должна подтверждаться каждые пять лет, кроме того, возможно проведение внеочередной проверки квалификации, например, с целью повышения категории и (или) группы электробезопасности.Следует отметить, что электрик с группой допуска 2-5 при проведении работ, соответствующих данному диапазону групп, должен иметь при себе сертификат.Зачем кому нужна линейная фаза или нет? Цифры и показывают ответ. Это импульсные характеристики каждого из трех фильтров. Импульсный отклик – это не что иное, как положительная ступенчатая характеристика, за которой следует отрицательная ступенчатая характеристика. Здесь используется импульсная характеристика, поскольку она показывает, что происходит с нарастающим и спадающим фронтами сигнала.Вот важная часть: нулевой и линейный фазовые фильтры имеют левый и правый края, которые выглядят одинаково, тогда как нелинейные фазовые фильтры имеют левый и правый края, которые выглядят по-разному.
Во-первых, проверьте, есть ли у вас все необходимое, чтобы повесить люстру … Во-первых, у вас должна быть стремянка или другая устойчивая опора. Кроме того, вам понадобятся некоторые инструменты: плоскогубцы, кусачки, отвертка с индикатором напряжения, отвертка с узким наконечником и монтажные зажимы (так называемые лягушки).Не забудьте также убедиться, что комната достаточно хорошо освещена, так как вы не сможете использовать осветительные приборы во время работы. Очень желательно перед началом работы запастись фонариком.
Многие приложения не могут переносить левый и правый края, которые выглядят по-разному. Одним из примеров является дисплей осциллографа, где эта разница может быть неверно интерпретирована как индикация измеряемого сигнала. Другой пример – обработка видео. Это связано с тем, что импульсная характеристика напрямую задается в процессе проектирования.Создание ядра фильтра имеет симметрию слева и справа – это все, что нужно. Импульсная характеристика рекурсивного фильтра не симметрична между левым и правым, и поэтому имеет нелинейную фазу.
Подобные электронные схемы имеют одинаковую проблему с фазовой характеристикой. Представьте себе схему с резисторами и конденсаторами, стоящими на вашем столе. Если вход всегда равен нулю, выход всегда будет также равен нулю. Когда на вход подается импульс, конденсаторы быстро заряжаются до некоторого значения, а затем начинают экспоненциально спадать через резисторы.Импульсная характеристика представляет собой комбинацию этих различных воздействий распада. Импульсный отклик не может быть симметричным, потому что выходной сигнал был равен нулю до импульса, а экспоненциальный спад больше никогда не достигнет нуля.
Люстры обычно вешают на подготовленный крючок. Его необходимо аккуратно обернуть изолентой или другим непроводящим материалом. Изоленту желательно наклеивать минимум в два слоя – чтобы исключить непокрытую поверхность. Обязательно ознакомьтесь с инструкцией к вашему осветительному устройству и убедитесь, что его использование не требует обязательного заземления.В противном случае его нужно будет заземлить.
Разработчики аналоговых фильтров решают эту проблему с помощью фильтра Бесселя, представленного в этой главе. Фильтр Бесселя спроектирован так, чтобы быть максимально линейным; однако он намного ниже характеристик цифровых фильтров. Возможность обеспечить точную линейную фазу – явное преимущество цифровых фильтров.
К счастью, есть простой способ изменить рекурсивные фильтры для достижения нулевой фазы. На рис. 19-8 показан пример того, как это работает.Входной сигнал для фильтрации показан на рисунке. На рисунке показан сигнал после фильтрации однополюсным фильтром нижних частот. Поскольку это нелинейный фазовый фильтр, левый и правый края не выглядят одинаково; они являются перевернутыми версиями друг друга. Как описано выше, этот рекурсивный фильтр реализуется, начиная с шаблона 0 и воздействуя на шаблон 150, оценивая каждый шаблон на этом пути.
Теперь вы должны начать обесточивание комнаты. Для этого на электросчетчике выключите автоматический выключатель, а индикаторной отверткой проверьте отсутствие напряжения в сети.На потолке должно быть три конца провода (два конца – «фаза», а один конец – «ноль»). В дальнейшем «нулевой» наконечник будет направлен на распределительную коробку, а «фазные» – на выключатель. Все три конца зачищены (не менее 3–4 мм проводов) и разводятся так, чтобы они не соприкасались.
Предположим теперь, что вместо перехода от шаблона 0 к шаблону 150 мы начинаем с шаблона 150 и переходим к шаблону. Другими словами, каждая выборка в выходном сигнале вычисляется из входных и выходных выборок справа от обрабатываемой выборки.Это означает, что рекурсивное уравнение 19-1 изменится на.
На рисунке показан результат этой обратной фильтрации. Сама по себе обратная фильтрация бесполезна; у отфильтрованного сигнала все еще есть различный левый и правый края. Волшебство случается, когда есть комбинация прямой и обратной фильтрации. На рисунке показаны результаты прямой и обратной фильтрации. Это создает рекурсивный фильтр с нулевой фазой. Фактически, любой рекурсивный фильтр можно преобразовать в нулевую фазу с помощью этой технологии двунаправленной фильтрации.
Теперь нам нужно определить, какие из концовок являются «фазовыми», а какие – «нулевыми». Для этого переводим автоматический выключатель во включенное положение и проверяем концы проводов индикаторной отверткой. На тех проводах, где будет «фаза» загорится лампочка, на «нуле» – нет. Желательно промаркировать провода, чтобы потом их не перепутать. Следует отметить, что современные провода не нужно проверять на фазировку: они имеют обязательную маркировку. Провода с «фазой» отмечены черно-коричневым цветом, а «ноль» – синим.
Непосредственно о таинственной фазе и нуле
Единственным недостатком такой улучшенной производительности являются два фактора во времени выполнения и сложности программы. Как найти импульсную и частотную характеристику обычного фильтра? Величина АЧХ одинакова для каждого направления, а фазы противоположны по знаку. Когда два направления объединяются, величина становится квадратной, а фаза обращается к нулю. Во временной области это соответствует свертке исходной импульсной характеристики с наиболее инвертированной версией слева направо.
Такая же маркировка есть на проводах люстры. В противном случае фаза проводов проверяется следующим образом. Два провода подключаются к розетке. Часть лампочек должна загореться, пометьте провода, которые в этот момент были подключены к сети. Теперь меняем один из проводов на третий. Если загорается вторая часть лампочек, первый провод – «ноль», а второй и третий (поменявшие местами) – «фаза». Если
Например, импульсная характеристика однополюсного фильтра нижних частот является односторонней экспоненциальной.Импульсная характеристика соответствующего двунаправленного фильтра представляет собой одностороннюю экспоненту, которая убывает вправо, сложенная с односторонней экспонентой, которая убывает влево. Посредством математики выясняется, что это двусторонняя экспонента, которая затухает как слева, так и справа, с той же постоянной затухания, что и исходный фильтр.
Некоторые приложения имеют только часть сигнала на компьютере в определенное время, например, системы, которые постоянно меняют входные и выходные данные. В этих случаях можно использовать двунаправленную фильтрацию, комбинируя ее с методом перекрытия-добавления, описанным в предыдущей главе.Когда вы задаетесь вопросом, как долго длится импульсный отклик, не говорите «бесконечно». Если вы это сделаете, вам нужно направить каждый сегмент сигнала с бесконечным количеством нулей. Помните, что импульсная характеристика может быть усечена, когда она спадает ниже округленного уровня шума, то есть от 15 до 20 постоянных времени.
Начнем с основ.
Предположим, на электростанции вращается магнит (например, обычный, а на самом деле – электромагнит), называемый «ротором», а вокруг него на «статоре» закреплены три катушки (размазанные по статор).
Этот магнит вращает, скажем, поток воды на ГЭС.
Поскольку в этом случае магнитный поток, проходящий через катушки, изменяется, в катушках создается напряжение.
Каждая из трех катушек представляет собой отдельную цепь, и в каждой из этих трех цепей появляется одно и то же напряжение, смещенное на треть круга относительно друг друга.
Получается “трехфазный генератор”.
Можно было бы просто взять два провода от одной такой катушки и вывести их в дом, а потом запитать от них чайник.
Но можно сделать экономичнее: зачем тащить два провода, если можно просто заземлить один конец катушки прямо там, а с другого провести провод в дом.
Этот провод будет называться «фаза».
В доме подключите этот провод к одному контакту вилки чайника, а другой контакт вилки к заземлению.
Получаем такое же электричество.
Теперь, когда у нас есть три катушки, давайте сделаем это: (например) соединим левые концы катушек вместе прямо здесь и затем заземлим их.
А оставшиеся три провода потянем к потребителю.
Получается, что мы тянем к потребителю три «фазы».
Итак, мы получили «трехфазный ток».
Точнее генератор “трехфазного тока”.
Это “трехфазное” напряжение идет по проводам ЛЭП до нашего двора, на дворовую подстанцию (есть такой дом, рядом с детской площадкой).
«Трехфазный ток» изобрел Никола Тесла.
Передача электроэнергии по трехфазному току, некоторые говорят, что это более экономично (не знаю как), а там также говорят, что она имеет другие преимущества перед обычным током для промышленных приложений.
Например, все вращающееся оборудование на фабриках – машины, двигатели, насосы и так далее – созданы специально для трехфазного тока, поскольку на трехфазном токе гораздо проще построить вращающуюся хрень: вам просто нужно подключите эти три фазы к трем катушкам по кругу таким же образом, а в центр вставьте металлический стержень с рамкой – и он закрутится сам, как только протечет ток.
Этот агрегат называется «трехфазным двигателем».
Поскольку изначально электричеством занимались фабрики (в то время в домах не было компьютеров, холодильников и люстр), то исторически все исходит в первую очередь из промышленности.
Поэтому, видимо, ток от электростанции до ЛЭП всегда заводится по трехфазному, с напряжением между фазами 35 киловольт (а ток около трехсот ампер).
Такое высокое напряжение необходимо, потому что нужна большая сила тока: ведь весь город ест энергию.
Большая сила тока может быть получена либо за счет увеличения силы тока, либо за счет увеличения напряжения.
В этом случае, чем больше ток, тем больше энергии тратится на преодоление сопротивления проводов (потерянная энергия равна силе тока в квадрате, умноженной на сопротивление проводов).
Поэтому экономически целесообразно увеличивать мощность передаваемого тока за счет увеличения напряжения.
Потребитель потребляет электроэнергию из розетки (ток, умноженный на напряжение), а не из чего-то отдельного, поэтому ему все равно, как эта мощность попадет в его дом.
Кстати, интересный момент: у нас обычно нет контроля над силой тока в линии электропередачи: сила тока является мерой того, насколько сильно ток течет по проводам.
Это можно сравнить с силой протекания холодной воды по трубам: если в ванных комнатах будут открыты все краны, то сила протока воды будет очень большой, а если, наоборот, все их краны закрыты, то вода по трубам вообще не потечет, и мы не сможем справиться с этой силой тока.
А вот напряжение совершенно не имеет значения, потребляет кто-то ток или нет – это полностью в наших силах, и только мы можем им управлять.
Следовательно, в ЛЭП за основу берется именно текущее напряжение, и именно с ним работают: перед передачей тока по проводам избыточный ток, генерируемый электрогенератором, перегоняется в напряжение, а когда ток поступает на «подстанцию» во дворе вашего дома, наоборот, избыточное напряжение перегоняется обратно до силы тока, так как весь путь был успешно пройден током с минимальными потерями.
Прямо накачать весь ток в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить изоляцию например, или поджарить человека, проходящего под проводом, или что-то еще).
Кстати, забавное видео про короткое замыкание в ЛЭП:
А теперь подробнее рассмотрим «трехфазный ток».
Это три провода, по которым протекает один и тот же ток, но со сдвигом на 120 градусов (одна треть окружности) относительно друг друга.
Какое напряжение у этого тока?
Напряжение всегда измеряется между чем-то и чем-то.
Трехфазное напряжение – это напряжение между двумя его фазами («линейное» напряжение).
Там, где мы соединили все три фазы вместе в одной точке (это называется звездой), мы получили «нейтраль» (G на рисунке).
В нем, как несложно догадаться (или рассчитать по формулам тригонометрии), напряжение равно нулю.
А пока попробуем подключить генератор к нагрузке рядом с ним.
Если все три выходящие из генератора линии через сопротивления соединить со второй «нейтралью» (точка G), то мы получим так называемый «нейтральный провод» (от G к M).
Зачем нужен нейтральный провод?
Можно было бы дома просто подключить одну из фаз к одному штырю вилки, а второй штырь штепсельной вилки заземлить, и чайник закипел.
В общем, насколько я понимаю, так и делают в старых советских домах: в квартирах только фаза и земля.
В новых домах в квартирах уже включено три провода: фаза, земля и этот «ноль».
Это европейский стандарт.
И правильно подключить именно фазу к нулю, а землю вообще оставить в покое, отдав ей лишь роль защиты от поражения электрическим током («заземление»).
Потому что, если все тоже пошлют ток на землю, то само заземление станет опасным – это будет абсурд.
Еще несколько мыслей о том, зачем нужны все три провода, в конце статьи, можете сразу пролистать и прочитать.
Теперь попробуем рассчитать напряжение между фазой и «нейтралью».
Вот еще ссылка с расчетами.
Пусть напряжение между каждой фазой и «нейтралью» будет U.
Тогда напряжение между двумя фазами будет:
U sin (a) – U sin (a + 120) = 2 U sin ((- 120) / 2 ) cos ((2a + 120) / 2) = -√ 3 U cos (a + 60).
То есть, напряжение между двумя фазами в √ 3 раза больше напряжения между фазой и «нейтралью».
Поскольку наш трехфазный ток на подстанции имеет напряжение между фазами 380 вольт, напряжение между фазой и нулем равно 220 вольт.
Для этого нужен «ноль» – чтобы всегда, при любых условиях, при любых нагрузках в сети было напряжение 220 Вольт – ни больше, ни меньше.
Если бы не нейтральный провод, то при разной нагрузке на каждой из фаз был бы «перекос» (подробнее об этом ближе к концу статьи), и кто-то мог бы что-нибудь сжечь.
Еще один момент: выше мы рассмотрели введение нейтрали на генераторе.
А где взять нейтраль на дворовой подстанции?
На подстанции во дворе трехфазное напряжение снижается (трехфазным) трансформатором до 380 В на каждой фазе.
Это будет похоже на генератор: тоже три катушки, как на картинке.
Следовательно, их тоже можно соединить между собой, и получить «нейтраль» на подстанции. А от нейтрали – «нейтральный провод».
Таким образом, «фаза», «ноль» и «земля» покидают подстанцию, идут к каждому входу (к каждому входу, наверное, своя фаза), к каждой лестнице, к электрораспределительным щитам.
Итак, у нас есть все три провода, выходящие из подстанции: «фаза», «ноль» («нейтраль») и «земля».
«Фаза» – это любая из фаз трехфазного тока (уже уменьшенная до 380 вольт).
«ноль» – провод от «нейтрали» (заземлен – воткнут в землю – на подстанции).
«Земля» – это провод от земли (скажем, припаянный к длинной трубе с очень низким сопротивлением, проложенной глубоко в земле).
На подъездах получается следующая планировка (при условии, что подъезд = квартира):
На подстанции фазы с левой стороны все соединены и заземлены, образуя ноль, а на конечных точках – в конце подъезда, после того, как пройдут все квартиры – они вообще нигде не связаны.
Потому что, если бы в конце каждая фаза была бы замкнута на «ноль», то ток прошел бы по этому пути наименьшего (нулевого) сопротивления и вообще не попадал бы в квартиры (под нагрузкой).
В противном случае ему придется пройтись по квартирам.
И он будет разделен по правилу параллельного тока: напряжение пойдет на каждую квартиру одинаковое, а ток будет тем больше, чем больше нагрузка.
То есть ток пойдет в каждую квартиру «по его потребностям» (и пройдет через счетчик, который все это посчитает).
Но для того, чтобы ток был постоянным при включении и выключении новых потребителей, необходимо, чтобы ток в общем проводе сам каждый раз подстраивался под подключенную нагрузку.
Что делать, если все включают обогреватели зимним вечером?
Ток в ЛЭП может превысить допустимые пределы, и либо провода могут загореться, либо сгорит электростанция (что было несколько раз в Москве, но летом).
Есть еще один вопрос: зачем протягивать в дом все три провода, если можно было протянуть только два – фазу и ноль или фазу и землю?
Фазу и землю тянуть нельзя (в общем случае).
Это то, что мы вычислили выше, что напряжение между фазой и нулем всегда составляет 220 вольт.
Но какому равно напряжение между фазой и землей – не факт.
Если бы нагрузка на всех трех фазах была всегда одинаковой (см. Диаграмму «звезда»), то напряжение между фазой и землей всегда было бы 220 Вольт (такое совпадение).
Если на одной из фаз нагрузка значительно больше, чем на других фазах (скажем, кто-то включает суперсварщик), то будет «дисбаланс фаз», а на слабо нагруженных фазах напряжение относительно земли может подскочить до 380 Вольт…
Естественно, оборудование (без «предохранителей») в этом случае горит, и незащищенные провода тоже, что может привести к возгоранию.
Точно такой же дисбаланс фаз произойдет, если «нулевой» провод обрывается или перегорает на подстанции.
Следовательно, в домашней сети нужен ноль.
Тогда зачем нам в доме «заземляющий» провод?
Для «заземления» корпусов электроприборов (компьютеров, чайников, стиральных и посудомоечных машин) от поражения электрическим током.
Устройства тоже иногда ломаются.
Что будет, если где-то внутри устройства фазовый провод отвалится и упадет на корпус устройства?
Если вы заранее заземлили корпус устройства, то возникнет «ток утечки» (ток в проводе основной фазы-ноль упадет, потому что почти все электричество устремится по пути меньшего сопротивления – почти прямым короткое замыкание фазы на ноль).
Этот ток утечки будет обнаружен устройством остаточного тока (УЗО), и оно откроет цепь.
УЗО контролирует ток, поступающий в квартиру (фазу) и ток, выходящий из квартиры (ноль), и размыкает цепь, если эти токи не равны.
Если эти токи разные, значит, где-то «течет»: где-то фаза имеет какой-то контакт с землей.
Если эта разница резко подскакивает, то где-то в квартире фаза замкнулась на массу.
Если бы в щите не было УЗО, и упомянутый выше фазный провод внутри корпуса, скажем, компьютера, упал бы и приблизился к корпусу компьютера, и лежал бы так себе, а затем через пару дней , человек будет стоять рядом и разговаривать по телефону, опираясь одной рукой на корпус компьютера, а другой – на радиатор, а затем гадать, что станет с этим человеком.
Значит “земля” тоже нужна.
Следовательно, нужны все три провода: «фаза», «ноль» и «земля».
В квартире каждая розетка имеет свои три провода «фаза», «ноль», «земля».
Например, вот эти три провода выходят из приборной панели на лестничной площадке (вместе с ними еще есть телефон, витая пара для интернета и какое-то кабельное телевидение) и идут в квартиру.
В квартире есть внутренний щит на стене.
Там на каждую «точку доступа» к электричеству стоит «автомат».
У каждой машины свои, отдельные, три провода, уже идущие к «точке доступа»: три к плите, три к посудомоечной машине, три к розеткам в холле и свету в люстре и т. Д.
Каждая «машина» – это изготавливаются на заводе на определенную максимальную силу тока.
Поэтому “вырубается”, если на “точку доступа” слишком сильно нагружать (например, в розетках в холле включили слишком много мощного хлама).
Также автомат «отключится» при «коротком замыкании» (замыкание фазы на ноль), что убережет вашу квартиру от пожара.
Не спасет (слишком медленно). Только УЗО вас спасет.
Напоследок просто так напишу немного про “трансформер” (читать не обязательно).
Я несколько раз пытался разобраться, как это работает, но так и не понял …
Ток в цепи всегда подстраивается под подключенную нагрузку.
Если мы не будем отводить ток оттуда, то входная катушка будет сама по себе, и она создает магнитный поток, который, в свою очередь, создает «напряжение сопротивления» (это называется «ЭДС самоиндукции»), равное напряжение во входной цепи и доведение его до нуля…
Это «естественное» свойство катушки («индуктивность») – она всегда сопротивляется любому изменению напряжения.
А по подключенному участку входной цепи тока практически нет (этот участок отведен от ЛЭП параллельно, так что если в нем пропадет ток, то ток есть у всех остальных), да и практически нет потери на этом “холостом” трансформаторе.
Будет потеряно лишь небольшое количество энергии, включая энергию, потраченную на «гистерезис» сердечника и на нагрев сердечника вихревыми токами (поэтому особенно мощные трансформаторы погружаются в масло для постоянного охлаждения).
Магнитный поток, распространяющийся по сердечнику внутри выходной катушки, создает в нем напряжение, которое может вызвать протекание тока, но так как в этом случае мы ничего не подключали к выходной цепи, тока там не будет. .
Если мы начинаем выводить ток – мы замыкаем выходную цепь – тогда ток начинает течь через выходную катушку, и он также начинает создавать свое собственное магнитное поле в сердечнике, противоположное магнитному полю, создаваемому вводной катушкой. Из-за этого ЭДС самоиндукции входной катушки уменьшается и больше не компенсирует напряжение во входной цепи, и через входную цепь начинает течь ток.Ток увеличивается до тех пор, пока магнитный поток «не станет прежним». Как это – я хз, в Википедии написано, но я сам так и не понял, как работает этот трансформер.
Следовательно, получается, что ток на выходе трансформатора регулируется сам: если нет нагрузки, значит, нет и тока, протекающего там; если есть нагрузка, то ток течет в соответствии с нагрузкой.
А если мы смотрим телевизор, а потом соседи включают пылесос, то у нас обоих ничего не «вырубается», так как сила тока сразу подстраивается под нас – потребителей электроэнергии.
Каждый сегмент должен быть дополнен нулями слева и справа, чтобы обеспечить расширение во время двунаправленной фильтрации. Прежде чем приступить к правильной работе, необходимо знать состояние системы во время сбоев. Знание статуса электрических неисправностей необходимо для того, чтобы найти соответствующие различные реле защиты в разных местах энергосистемы. Информация о значениях максимального и минимального токов короткого замыкания с этими погрешностями по величине и соотношению фаз для токов в различных частях энергосистемы должна быть собрана для правильного применения системы в этих различных частях электрической системы.
Объяснение трехфазного питания| Объяснение трехфазного питания
В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает. Трехфазную мощность можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока. Это разновидность многофазной системы, которая является наиболее распространенным методом передачи электроэнергии в электрических сетях по всему миру.
Дополнительные ресурсы Raritan
Расшифровка стенограммы:
Добро пожаловать в это анимированное видео, которое быстро объяснит трехфазное питание.Я также объясню загадку того, почему 3 линии электропередачи разнесены на 120 градусов, потому что это важный момент для понимания трехфазного питания.
Питание, которое поступает в центр обработки данных, обычно представляет собой трехфазное питание переменного тока, что означает трехфазное питание переменного тока.
Давайте посмотрим на упрощенный пример того, как генерируется трехфазная мощность.
Этот пример отличается от того, что я использовал бы для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита мимо одного провода заставляет ток течь вперед и назад.Теперь мы собираемся повернуть магнит мимо трех проводов и посмотреть, как он влияет на ток в каждом проводе.
В этом трехфазном примере северный положительный конец магнита направлен прямо вверх по линии один.
Чтобы облегчить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в позиции двенадцати часов. Электроны в строке 1 будут течь к северному полюсу магнита. Что происходит, когда магнит теперь поворачивается на 90 градусов?
Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться.Затем, когда магнит поворачивается более чем на 90 градусов, южный полюс магнита приближается к линии один, и электроны меняют направление, что означает, что направление тока изменится. Это было подробно описано в видео по переменному току. Если вы нажали на это видео, не понимая, что такое переменный ток, сначала просмотрите это видео.
Глядя на диаграмму, вы можете понять, почему я выбрал аналоговый циферблат. Круг составляет 360 градусов, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 – 120 градусов.
При генерации трехфазного питания медные провода расположены на расстоянии 120 градусов друг от друга. Итак, когда вы находитесь в позиции «четыре часа» в нашем примере, это 120 градусов от первой линии. А в положении «восемь часов» он находится на 120 градусах от обоих положений: «4 часа» и «12 часов». Три линии равномерно расположены по кругу.
Если северный полюс находится ближе к одному из трех проводов, электроны движутся в этом направлении.Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из трех линий электроны движутся вперед и назад, но не всегда в том же направлении или с той же скоростью, что и две другие линии.
Давайте еще раз посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 часа, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, привлеченные более близким северным полюсом, и они движутся по линии 3, которую отталкивает южный полюс.Когда северный полюс магнита смотрит на 2 часа, тогда на линии 1 и [линию] 2 воздействует северный полюс, но южный полюс находится прямо напротив линии 3, так что теперь у него пиковый ток. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 – южный полюс, поэтому ток течет по линиям 2 и 3.
Надеюсь, , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между 3 линиями при вращении магнита по кругу.Когда магнит вращается вокруг циферблата, на каждую из 3 линий будет воздействовать либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.
Давайте сосредоточимся на линии 1. Это пик тока, когда северный полюс указывает на 12 и 6 часов. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку есть 3 линии, есть 3 положительных пика и 3 отрицательных пика для каждого цикла.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 – это чередующиеся пики линии 1, позиции 2 и 8 – чередующиеся пики линии 3, а 4 и 10 – чередующиеся пики линии 2.
Теперь давайте объясним те запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример формы сигнала, вы увидите первую строку синего цвета, которая начинается с нуля. Это означает, что магнит перпендикулярен этой линии. По мере движения магнита вы можете видеть, как ток достигает своего пика.Затем, когда положительный полюс вращается мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой линии.
Для того, чтобы двухмерная диаграмма показывала взаимосвязь между линиями, теперь на ней отображается зазор, который означает время, за которое магнит вращается на 120 градусов.Это когда красная линия имеет нулевой ток. По мере того как магнит продолжает вращаться, красная линия будет двигаться к пиковому положительному току, затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начнется при нулевом токе через 120 градусов после второй строки. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но они не на полную мощность, то есть они не на пике. Таким образом, когда электроны перетекают от положительного пика к отрицательному, ток отображается как переходящий от положительного значения к отрицательному.Помните, что положительные и отрицательные стороны не отменяют друг друга. Положительная и отрицательная коннотации используются только для описания того, как меняется ток.
В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий. Одно исключение из этого описано в видео “Дельта-звезда”.
В качестве примера возьмем трехфазную линию на 208 В. Каждая из 3 линий будет передавать 120 вольт. Если вы посмотрите на диаграмму, вы легко увидите выходную мощность любых двух линий.Если одна линия на пике, другая линия не на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.
Итак, если вам интересно, почему у вас дома есть 110/120 вольт для обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Что ж, это не трехфазное питание. Фактически это 2 однофазные линии.
Итак, как вы рассчитываете мощность объединения двух линий в трехфазную цепь? Формула рассчитывается как умножение вольт на квадратный корень из 3, который округляется до 1.732. Для 2 линий, каждая на 120 вольт, вычисление для этого составляет 120 вольт, умноженное на 1,732, и результат округляется до 208 вольт.
Вот почему мы называем это трехфазной цепью на 208 вольт или трехфазной линией на 208 вольт. Трехфазная цепь на 400 вольт означает, что на каждую из трех линий подается 230 вольт.
Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?
А сейчас позвольте дать вам простой обзор. Для трехфазного подключения вы подключаете линию 1 к линии 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод может выдавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженное на 30 ампер, умноженное на 1,732, при общей доступной мощности 10,8 кВА.
Для сравнения, для однофазной 30-амперной цепи с напряжением 208 В вы получите только 6,2 кВА. Обычно 3 фазы обеспечивают большую мощность.
Существуют и другие факторы, по которым гораздо лучше подавать трехфазное питание в стойку центра обработки данных, чем использовать однофазное питание, и эти факторы обсуждаются в видео в зависимости от напряжения и силы тока, а также в видео с напряжением 208 и 400 вольт.
Знайте разницу между трехфазным и однофазным питанием
По всей Северной Америке дома питаются от однофазной электросети напряжением 120 вольт. Типичная коробка автоматического выключателя в жилых помещениях показывает четыре провода, идущие в наши дома: два «горячих» провода, нейтральный провод и заземление. Два «горячих» провода несут 240 В переменного тока, который используется для тяжелых бытовых приборов, таких как электрические плиты и сушилки. Однако напряжение между горячим проводом и нейтральным проводом составляет 120 В переменного тока, от которого питается все остальное в наших домах.
Однако производственные предприятия по производству электроэнергии в Северной Америке передают трехфазную энергию сверхвысокого напряжения в диапазоне от 230 кВ до 500 кВ. При внимательном рассмотрении линий электропередач высокого напряжения можно обнаружить три отдельных проводника, каждый из которых проводит ток, а также нейтральный провод. Распределение трехфазной энергии обходится дешевле, поскольку для линий передачи трехфазной энергии не требуются такие же толстые медные провода, как для однофазной линии передачи. Кроме того, трехфазный режим обеспечивает гибкость при подключении к сервису и может предоставить клиентам не только обычную услугу 120 В переменного тока, но также и 208 В переменного тока.Практически каждое промышленное здание, включая ваше, получает трехфазное питание, так как оно имеет много преимуществ перед однофазным.
Проектирование или переоборудование центра обработки данных для использования трехфазного питания окупается, но некоторые центры не понимают преимуществ, которые дает трехфазное питание. Давайте посмотрим на различия между однофазным и трехфазным питанием, чтобы понять, почему трехфазное питание не только обеспечивает реальную экономию затрат, но и создает более эффективный центр обработки данных.
Проблема с однофазным двигателем
Обычная однофазная сеть на 120 В переменного тока, работающая при 60 Гц, не может обеспечить непрерывное питание.На этой частоте синусоидальная волна переменного тока пересекает нулевую точку 120 раз в секунду. Лучше всего понимать, что мощность измеряется в ваттах, а ватты – это произведение приложенного напряжения на амперы тока, протекающего в цепи (W = V x A).
Когда напряжение или ток пересекает нулевую точку, подаваемая электрическая мощность падает до нуля. На практике эти мгновенные падения до нуля не оказывают заметного влияния на оборудование в цепи. Например, если оборудование представляет собой двигатель, механическая инерция его вращающегося якоря «проезжает» через нулевые точки.(Однако эти пересечения нулевой точки действительно складываются. Двигатели, работающие от однофазного источника питания, имеют более короткий срок службы, чем двигатели, рассчитанные на трехфазное питание). Точно так же, если оборудование под нагрузкой представляет собой твердотельную электронику, сглаживающие конденсаторы в фильтре источника питания «буферизуют» эти нулевые точки.
Трехфазное питание, с другой стороны, состоит из трех синусоид, разделенных на 120 градусов. Эта форма мощности создается генератором переменного тока с тремя независимыми обмотками, каждая из которых разнесена точно на 120 градусов.Каждый ток (фаза) проходит по отдельному проводнику. Из-за фазового соотношения ни напряжение, ни ток, приложенные к IT-нагрузке, никогда не падают до нуля. Это означает, что трехфазное питание при заданном напряжении может обеспечить большую мощность. Фактически, это примерно в 1,7 раза больше мощности однофазного источника питания.
В последние годы увеличилась вычислительная мощность, которую можно сконфигурировать в одной стойке. Не так давно в стойке могло быть до десяти серверов, потребляющих 5 кВт. Теперь, из-за непрекращающейся миниатюризации и непрекращающегося развития технологий, одна и та же стойка может вмещать четыре или пять десятков серверов и потреблять более 15 кВт.
Для однофазного питания стойки мощностью 15 кВт при 120 В переменного тока требуется 125 А. Медь, необходимая для безопасного проведения этого тока, AWG 4, имеет диаметр почти четверть дюйма. [1] С ним сложно работать, и это дорого. Ясно, что однофазный режим для таких нагрузок нецелесообразен. Однако в трехфазной системе каждый проводник AWG 11 диаметром всего 0,09 дюйма может выдерживать только около 42 ампер. Если вы заинтересованы в более подробном изучении арифметики, стоящей за этим, прочтите наш блог «Трехфазные разветвители питания на 208 В (стоечные блоки распределения питания), раскрытие тайны, часть II: понимание емкости».
Как трехфазное питание может помочь
Ваш выбор энергосистемы может принести вам эффективность и экономию или негибкость и чрезмерные затраты. Однофазное питание идеально подходит для бытовых пользователей, у которых наибольшая нагрузка приходится на сушилку или электрическую плиту. Однако центрам обработки данных необходимо учитывать преимущества трехфазного питания. К ним относятся:
- Может работать как с устройствами на 120 В переменного тока, так и на 208 В переменного тока от одного источника питания, при необходимости смешивая и согласовывая блоки PDU.
- Трехфазный режим позволяет вам сегодня использовать все ваши устройства при напряжении 120 В переменного тока, но можно выполнить обновление до 208 В переменного тока, просто заменив блоки распределения питания, что можно сделать быстро и без значительных простоев.
- Стоимость кабельной разводки резко снижается, если трехфазное питание подается непосредственно в серверные шкафы.
- Уменьшается как работа электриков, устанавливающих кабели переменного тока, так и общее время установки.
Если вы ищете способы обеспечить соответствие вашего центра обработки данных требованиям будущего, используя трехфазное питание, узнайте, как блоки распределения питания вписываются в набор необходимых вам решений.
Спонсором этого сообщения в блоге является Raritan.
Однофазное электричество – Инженерное мышление
Однофазное электричество.В этом уроке мы рассмотрим типичный однофазный источник электричества в жилом доме. Мы собираемся рассмотреть распределительные кабели и трансформатор, фазу, нейтраль и землю. Главный предохранитель, счетчик электроэнергии, разъединительный выключатель, потребительский блок, а также УЗО и автоматические выключатели.
Прокрутите вниз, чтобы просмотреть учебное пособие по однофазной электроэнергии на YouTube.
Однофазный источник питания – это обычная конструкция, используемая в Великобритании, Европе, Индии, Австралии, Новой Зеландии и т. Д., Есть некоторые незначительные различия, и компоненты могут выглядеть немного по-разному в разных странах, но по сути они очень похожи.
Однако Северная Америка немного отличается, потому что в них используется два напряжения (120/240 В) в доме, поэтому мы рассмотрим это подробно в отдельном руководстве, но вы все равно можете следовать и понимать основы.
Я буду использовать европейские цветовые коды для этого видео, которое может отличаться от вашего местного законодательства. Помните, что электричество опасно и может привести к летальному исходу, вы должны быть квалифицированными и компетентными для выполнения электромонтажные работы.
Электроэнергия вырабатывается далеко на электростанции, она покидает электростанцию, и напряжение повышается в повышающем трансформаторе, где оно затем распределяется по линиям передачи на большие расстояния.Мы генерируем и распределяем переменный ток переменного тока, потому что это более экономично и удобно, чем постоянный ток. Как только он достигнет города, напряжение снизится на понижающем трансформаторе подстанции. Если вы хотите узнать, как работают трансформаторы, мы рассмотрели это в этой статье.
От подстанции электричество будет либо распространяется локально по воздушным или подземным кабелям.
В зависимости от местной конструкции и используемого напряжения дом может быть подключен напрямую к небольшому трансформатору, расположенному рядом с собственность, или, альтернативно, группа домов будет разделять трансформатор большего размера.
Электричество распределяется по трем фазам, но собственность подключена к одной фазе.Электричество распределяется по трем фазам, но в данном случае мы рассматриваем однофазную установку, что означает, что объект подключен только к одной из трех фаз и нейтрали.
Как работает трехфазное электричество? Узнайте здесь
Каждый дом на улице может быть поочередно подключен к разным фазам, или разные улицы могут быть подключены к разным фазам.Это просто для того, чтобы сбалансировать нагрузку на трансформатор.
Сервисный кабель меньшего размера снимается с распределительного кабеля и накормит имущество. Этот служебный кабель снова будет над головой или под землей в зависимости от местной установки.
Примечание: Сноп должен быть написан как ножны.Сервисный кабель содержит фазный и нейтральный провода, в большинстве случаев вокруг кабеля также есть металлическая защитная оболочка, особенно если он закопан в землю.
Сервисный кабель входит, фаза и нейтраль проходят через сервисную головку в счетчик, а затем в потребительский блок.
Электроэнергия будет течь из фазы, пройти через главный предохранитель, затем через счетчик и в блок потребителей.
Сервисная головка или вырез удерживает главный предохранитель или сервисный предохранитель. Этот предохранитель обеспечивает защиту собственности и гарантирует, что только определенное количество тока может течь в собственность. Например, в Великобритании типичный предохранитель составляет от 60 до 100 ампер. Электрораспределительная компания также может удалить этот предохранитель, чтобы изолировать собственность, и сделает это, например, для замены счетчика.Обычно этот предохранитель и сервисная головка принадлежат электроэнергетической компании, и владелец собственности не имеет права снимать или заменять их.
Затем фаза и нейтраль поступают в счетчик электроэнергии, который определяет количество потребляемой энергии. В более старых объектах этот счетчик может быть механическим, цифровым или даже цифровым интеллектуальным счетчиком. Много вариаций дизайна для них.
После этого фаза и нейтраль покинут счетчик электроэнергии. и войдите в блок потребителей или плату предохранителей.Размер различается в зависимости от размер собственности и количество участков.
Внутри потребительского блока сначала находится главный выключатель или главный двухполюсный выключатель. Это контролирует подачу электричества к остальной части потребителя и всем его цепям, питающим собственность. Этот переключатель перекидывается вручную, чтобы отключить питание. Этот переключатель одновременно отключает фазу и нейтраль. Кабели обычно входят в главный выключатель через верхние клеммы. Внизу мы находим нейтральный провод, который подключается к нейтральному блоку.Мы можем обнаружить, что один или несколько фазовых проводов выходят из нижней части главного переключателя для питания УЗО, если УЗО не используются, то шина будет питать автоматические выключатели, и мы рассмотрим это в ближайшее время.
Фаза поступает в УЗО или УЗО, снова обычно вход через верх. Этот переключатель УЗО постоянно контролирует электрический ток. Он проверяет, равен ли ток в фазовой линии ток в нейтральной линии, если его нет, то есть электрическая неисправность и устройство быстро и автоматически отключит питание всего, что было раньше. выключатель.Обычно УЗО разрывает цепь, если измеряет разницу 30 мА, поскольку все, что выше этого значения, опасно для человека. Например, если вы коснетесь живого провода, и электричество пройдет через вас на землю, тогда ток проходит в обход нейтрального провода, поэтому фазный и нейтральный токи не будет равным, и УЗО отключит цепь, чтобы снизить риск поражение электрическим током или смерть.
В настоящее время все чаще используется два или более УЗО в потребительском блоке. В таком случае УЗО будет отключать питание только тех цепей, которые подключены непосредственно после него, поэтому другое УЗО по-прежнему будет получать питание, и только некоторые части собственности будут терять питание.УЗО сработает, если считает, что ток небезопасен даже на долю секунды. Для восстановления питания его необходимо сбросить вручную, но сначала вы должны найти и удалить неисправное устройство или приспособление.
Снизу УЗО у нас шина. Это просто некоторые проводящий металл, по которому течет электричество, и соединяется с каждым из автоматические выключатели, которые просто упрощают установку, чем использование большого количества кабелей.
Автоматический выключатель или автоматический выключатель управляет отдельными меньшие схемы.Например, при подключении к одному УЗО, возможно, у нас будет один MCB для освещение нижнего этажа, другое освещение верхнего этажа и одно освещение кухни розетки. На другом УЗО может быть один для освещения лестничного колодца, один для освещения наверху и один для розеток внизу. Эти переключатели будут быстро и автоматически отключаться, чтобы отключить питание, но должны быть сбросить вручную для восстановления питания.
MCB защищает цепи двумя способами: от перегрузки и короткого замыкания. MCB рассчитан на пропускание определенного количества тока, проходящего через него, например 32 А для штепсельных розеток.Если это значение будет превышено в этой цепи, например, из-за постепенного подключения слишком большого количества устройств, MCB отключится и отключит питание для защиты.
Другая защита, которую он предлагает, – это защита от короткого замыкания. В случае короткого замыкания, например, если ток касается нейтрали, тогда цепь будет обойдена, и будет большое и мгновенное увеличение Текущий. Это создаст магнитное поле внутри MCB, которое сократит сила, чтобы защитить себя.
Фаза выходит через верхнюю часть MCB и течет. через цепь например через некоторые лампы.Затем он возвращается через нейтральный кабель и в нейтральный блок. Все схемы делают это с фазой выходя из автоматического выключателя и двигаясь вокруг собственности и нейтральные линии возвращаются и встречаются в нейтральном блоке.
Затем нейтральный блок подключается к УЗО, которое проверяет, равен ли текущий ток току, текущему обратно.
Нейтраль затем течет от УЗО к главной нейтрали. блок и оттуда обратно к главному выключателю, который подключен к счетчик электроэнергии и начальник службы.
Таким образом, электричество может течь от главной распределительной фазовой линии вверх через служебную головку и главный предохранитель. Затем он проходит через счетчик электроэнергии и попадает в главный выключатель потребительского блока.
От главного выключателя течет через УЗО по шине бар и в MCB
Затем он течет вверх по разделенным цепям MCB. В затем электричество может вернуться через нейтральные провода к нейтральным блокам, а затем протекает через УЗО в главный блок, обратно в главный выключатель, затем счетчик электроэнергии, затем через сервисную головку и предохранитель и обратно в нейтральная линия главных распределительных кабелей.
Вы могли заметить, что есть и другие кабели с зеленые и желтые полосы. Они называются заземляющими кабелями.
Этот кабель заземления обычно проходит вместе с фазой и нейтральные провода в светильники, такие как выключатели и розетки. Некоторый приборы также будут использовать заземляющий провод для дополнительной защиты, как правило, если В устройстве используется металлический корпус. Провода заземления будут подключаться от этих приспособлений к нейтральный блок внутри потребительского блока.
Все заземляющие кабели для каждой цепи затем подключаются к блок заземления в агрегате.
Другой кабель заземления будет подключаться от этого заземления. блока потребителя к главному зажиму защитного заземления, который обычно находится рядом со счетчиком электроэнергии.
Другие заземляющие провода будут подключаться от этого основного заземления. терминал над металлическими трубами, такими как водопровод и газопровод.
Таким образом, если человек коснется провода под напряжением и металлической трубы в собственности, электричество будет проходить через заземляющий провод и должно быть обнаруживается УЗО, которое отключит питание.
Есть несколько способов подключения главного зажима защитного заземления. подключен к земле.
Первый вариант, как показано здесь, с основным заземлением. клемма, подключенная к нейтральному проводу сервисного кабеля в пределах руководитель службы. Это означает, что фаза замыкания на землю теперь фактически фаза на нейтраль вместо этого.
Другой вариант – использовать металлическую защитную связку вокруг служебный кабель в качестве заземляющего проводника, поэтому основная клемма заземления подключен к металлической связке, и это переносит фазу на землю обратно к трансформатор.
Другой вариант заключается в том, что поставщик электроэнергии не предоставляет заземляющий провод.
а вместо этого главный зажим заземления соединен со стержнем электрода, который
устанавливается в землю и обеспечивает прямой грунтовый путь.
Трехфазный источник
– обзор
7.2.3 Метод модуляции прямого матричного преобразователя
В этом разделе представлена матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и метод модуляции трехфазного преобразователя. будет описан преобразователь прямой матрицы, использующий матрицу рабочего цикла.Напряжение на входе и ток на выходе прямого матричного преобразователя даны как независимые переменные в формуле. (7.12).
(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.
В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.
(7,13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,
где cos (2 90 ϕ ) и cos ( ϕ i ) – коэффициенты мощности нагрузки и входного каскада, соответственно, а ω i и ω o – входная и выходная угловые частоты соответственно.Опорный потенциал выходного фазного напряжения v oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3 . Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o . (7.14) VimIimcosϕi = VomIomcosϕo. Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = V om / V im , Eq. (7.15) определяется как (7.15) Vom = qVim, Iim = qIomcosϕocosϕi. Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица заполнения T , которая удовлетворяет ограниченному условию продолжительности включения, как в формуле. (7.11) рассчитывается по формуле. (7.16). (7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1’d2’d3’d2’d3’d1’d3’d1’d2 ‘, , где d1’d3’d1’d2′, , где d 1 , d 1 ‘, d 2 ‘ и d 3 ‘выражены в уравнении. (7.17). (7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qω2t + 2π3, , где ω 1 и ω 2 составляют ω o – ω i и ω o + ω 352, соответственно p 1 и p 2 являются переменными управления коэффициентом мощности положительного и отрицательного направления, соответственно, которые выражены в формуле.(7.18). (7.18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo. Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 – p 2 = p . Кроме того, p – это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды. Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19). (7,19) djk = 131 + 2vojvskVim2j = ABCk = abc. На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения.Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение управляющего параметра q составляет 0,5 в матрице заполнения уравнения. (7.16). Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5). На рис. 7.11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, поскольку опорные потенциалы выходного фазного напряжения v oA , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада. Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q макс. = 0.866) с использованием синфазного напряжения в модуляции. Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как (7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt, , где v cm – синфазное напряжение и выражается в уравнении . (7.21) как (7.21) vcmt = −16cos3ωot + 36cos3ωit. В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Кроме того, q max = 0.866 – это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя. Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22). (7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3. В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления напряжения q выбирается из уравнения. (7.23). (7,23) 2qp⋅1 − signλ3 + sgnλ3≤1, , где λ и sgn ( λ ) выражаются следующим образом в уравнении. (7.24). (7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0. На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p контролируется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12. Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p . Если требуется, чтобы q max было> 0,5, диапазон p должен быть ограничен в диапазоне – 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18). На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения . Т матричного преобразователя.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v tri треугольного форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25): Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А). (7.25) sAasAbsAc = 100,0≤vtri , где s ij = 0 представляет состояние выключения переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду фазы B и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы. Определение: Несбалансированный ток, протекающий в цепи во время замыкания на землю, известен как ток нулевой последовательности или постоянная составляющая тока короткого замыкания. Нулевая последовательность фаз означает, что величина трех фаз имеет нулевое смещение фаз. линии представляют ток нулевой последовательности, и он обнаруживается путем сложения вектора трехфазного тока. Уравнение ниже выражает ток нулевой последовательности, Обмотка, соединенная треугольником, показана на рисунке ниже.Ток нулевой последовательности фаз a, b и c равны по величине и синфазны друг с другом. Он циркулирует в фазных обмотках соединения треугольником, как показано на рисунке ниже. Токи нулевой последовательности возникают из-за наличия напряжения нулевой последовательности. По KCL в узле a получаем Аналогичным образом, применяя KCL в узлах B и C, мы получаем Приведенное выше уравнение показывает, что в соединении треугольником отсутствует ток нулевой последовательности из-за отсутствия обратных путей этого тока. Поскольку в линии нет обратного пути для тока нулевой последовательности, полное сопротивление цепи становится бесконечным. Это бесконечное сопротивление показано разомкнутой цепью в точке P в однофазной эквивалентной цепи нулевой последовательности для схемы, соединенной треугольником. с полным сопротивлением нулевой последовательности Z 0 . Но для тока нулевой последовательности существует замкнутый путь в схеме треугольника. На это указывает соединение импеданса нулевой последовательности Z 0 с током нулевой последовательности. Рассмотрим обмотку, соединенную звездой, без возврата нейтрали, как показано на рисунке ниже. В данном случае Приведенное выше уравнение показывает, что ток нулевой последовательности равен нулю в трехфазной трехпроводной системе без нейтрали. На рисунке ниже показана обмотка, соединенная звездой с заземленной нейтралью. Здесь, Следовательно, Приведенное выше уравнение показывает, что для трехфазной системы с заземлением ток нулевой последовательности будет течь как от фазной обмотки, так и по линиям. Нейтральный и заземляющий провода часто путают вне электроснабжения, так как оба провода имеют нулевое напряжение. На самом деле, если вы по ошибке подключите заземляющий провод как нейтраль, большинство устройств будет работать правильно.Однако такое соединение противоречит нормам, поскольку каждый проводник выполняет свою функцию в электрической установке. Национальный электротехнический кодекс (NFPA 70 NEC) устанавливает цвета изоляции для нейтрального и заземляющего проводов. Стандартные цвета упрощают электромонтаж , делая его более безопасным . Эти цвета изоляции разрешены только для нейтрального и заземляющего проводов, и их использование для любой из фаз под напряжением противоречит правилам.Электрики работают с предположением, что проводка этих цветов находится под нулевым напряжением, и использование белой или зеленой изоляции для проводника под напряжением было бы смертельной ловушкой (и в первую очередь против норм). Чтобы наглядно представить, как работает нейтральный проводник, представьте, что электроэнергия доставляется в виде тока через разность напряжений.Напряжение передается по токоведущему проводнику, но нейтральный провод также необходим для двух важных функций: Если к электрическому устройству подключен только токоведущий провод, он не активируется, потому что ток не может циркулировать независимо от приложенного напряжения. Это похоже на то, как гидроэлектрической турбине требуется выход для движения: если выход турбины заблокирован, вода не может течь и турбина не может вращаться. Когда установка использует трехфазное питание , могут быть случаи, когда нейтральный проводник не требуется. Даже если некоторые нагрузки не используют нейтральный провод в трехфазной установке, он необходим для однофазных нагрузок, которые используют только одно из линейных напряжений. Теоретически, когда к трем фазам подключены одинаковые нагрузки, их токи нейтрализуются, и нейтральный проводник проводит нулевой ток. Однако это невозможно в реальных установках, и нейтральный проводник несет дисбаланс тока между тремя фазами. Заземляющий провод имеет нулевое напряжение, как и нейтральный проводник, но выполняет другую функцию. Как следует из названия, этот проводник обеспечивает заземленное соединение для всех приборов и оборудования. Без заземления приборы и оборудование будут находиться под напряжением, если их случайно коснется токоведущий провод. Неисправность не отключается, поскольку защитные устройства могут среагировать только при наличии тока короткого замыкания в заземляющем проводе. В этом случае любой, кто прикоснется к поверхности под напряжением, получит удар электрическим током. Поскольку замыкание на землю может повлиять на любую цепь, заземляющий провод необходим даже при отсутствии нейтрального провода.Например, если в двигателе используются три токоведущих провода и нет нейтрали, заземление все равно требуется, потому что любой из токоведущих проводов может вызвать неисправность. Провода под напряжением подбираются с учетом ожидаемого тока, и то же самое относится к нейтральным проводам в однофазных цепях (они пропускают тот же ток, что и провод под напряжением). Однако для трехфазных цепей применяются другие правила: обычно используется тот же размер провода, что и для фазных проводов, но в некоторых случаях требуется больший размер провода для нейтрального проводника. Что такое ток нулевой последовательности? Определение и объяснение
Обмотка, соединенная треугольником
Обмотка, соединенная звездой с нейтралью, изолированной от земли
Звезда подключена без нейтрали
Разница между нейтралью и заземляющим проводом в электротехнике
Получите профессиональный электрический дизайн для вашего следующего строительного проекта.
Роль нейтрального проводника в электрических цепях
Роль заземляющего проводника в электрических цепях
Правильный выбор размеров нейтрального и заземляющего проводов