- Драйвер для светодиодов своими руками с питанием от 220 в
- Самодельный драйвер для светодиодов от сети 220В
- Схема драйвера для светодиодов 220
- Схемы подключения светодиодов к 220В и 12В
- Типы схем
- Обозначение на схеме
- Подключение светодиода к сети 220в, схема
- Подключение к постоянному напряжению
- Самый простой низковольтный драйвер
- Драйвера с питанием от 5В до 30В
- Включение 1 диода
- Параллельное подключение
- Последовательное подключение
- Подключение RGB LED
- Включение COB диодов
- Подключение SMD5050 на 3 кристалла
- Светодиодная лента 12В SMD5630
- Светодиодная лента RGB 12В SMD5050
- Драйвер питания светодиодов 7 х 1 Вт (220 В). Дёшево и качественно?! + Сюрприз от монтажников 🙂
- Самодельный драйвер для светодиодов: простая схема
- назначение, принцип работы, схема и ремонт
- Назначение.
- Принцип работы.
- Характеристики драйверов, их отличия от блоков питания LED ленты.
- Виды драйверов.
- Рекомендуемые производители светодиодных драйверов.
- Схема подключения драйвера к светодиодам.
- Схемы (микросхемы) светодиодных драйверов.
- Линейный светодиодный драйвер своими руками.
- Срок службы светодиодных драйверов.
- IntraLED- драйверы для светодиодов, источники питания для светодиодов, светодиодных лент
- Драйвер для мощного светодиода своими руками, LED driver 30w схема
- Драйвер для светодиодов своими руками: диммируемый драйвер, схема
- Драйвер для светодиодов и светодиодных светильников: виды и принципы работы.
- Сделать освещение своими руками проще, чем когда-либо
- 5 простых схем светодиодных драйверов мощностью 1 Вт
- Схема драйвера светодиодов питания
- Светодиодный драйвер 12 В для 3шт. 3 Вт светодиодных ламп высокой мощности MR16 DIY [BY-DR32DC]
- Лучшее соотношение цены и качества входной светодиодный драйвер 12 В – Отличные предложения на входной светодиодный драйвер 12 В от глобальных продавцов светодиодных драйверов 12 В
- Home, Furniture & DIY 30W 240V AC to 12V DC Power Supply Transformer for LED Strip Light Lighting
- uk – Совместима ли моя светодиодная лента с регулируемой яркостью с любым драйвером 12 В / 2 А?
Драйвер для светодиодов своими руками с питанием от 220 в
Главная » Статьи » Драйвер для светодиодов своими руками с питанием от 220 вСамодельный драйвер для светодиодов от сети 220В
Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».
Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.
Теория питания светодиодных ламп от 220В
Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.
Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.
Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.
Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.
Компоненты диодного светильника
Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.
- Светодиоды 3,3В 1Вт – 12 шт.;
- керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
- резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
- диод на 100В – 4 шт.;
- электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
- стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.
Изготовление драйвера светодиодов на 220В своими руками
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- Делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр.
Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.
В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Вариант драйвера без стабилизатора тока
В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.
Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.
На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.
Диаграмма напряжения в схеме без стабилизатора
Диаграмма в схеме со стабилизатором
Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.
Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.
Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.
Оцените, пожалуйста, статью. Мы старались:) (4 оценок, среднее: 5,00 из 5) Загрузка…
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
Схема драйвера для светодиодов 220
Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.
Для чего нужны драйверы?
Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.
Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.
Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:
- Номинальный ток потребления.
- Мощность.
- Выходное напряжение.
Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.
Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».
Мощность драйвера
Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:
Р = Р(св) х N,
где Р, Вт – мощность драйвера;
Р(св), Вт – мощность одного светодиода;
N – количество светодиодов.
Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.
Цвета светодиодов
Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.
Типы драйверов
Всего можно выделить два типа драйверов для светодиодов:
- Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
- Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.
Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.
На что обратить внимание при покупке?
Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.
Диммируемый драйвер
Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:
- Уменьшать интенсивность освещенности днем.
- Скрывать или же подчеркивать определенные элементы интерьера.
- Зонировать помещение.
Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.
Разновидности диммируемых драйверов
Типы диммируемых драйверов:
- Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
- Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.
Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.
Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:
- Регулирование яркости.
- Напряжение питания – 6-30 В.
- Выходной ток – 1,2 А.
- Допустимая погрешность при стабилизации тока – не более 5%.
- Защита от отключения нагрузки.
- Выводы для диммирования.
- КПД – 97%.
Обозначение выводов микросхемы:
- SW – подключение выходного коммутатора.
- GND – отрицательный вывод источников питания и сигнала.
- DIM – регулятор яркости.
- CSN – датчик входного тока.
- VIN – положительный вывод, соединяемый с источником питания.
Варианты схем драйверов
Варианты исполнения устройств:
- Если имеется источник питания с постоянным напряжением 6-30 В.
- Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.
Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).
Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.
Процесс сборки
Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).
Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:
- Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
- Провод типа ПЭЛ-0,35 в лаковой изоляции.
Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.
Вариант компоновки
Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.
Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.
Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.
Схемы подключения светодиодов к 220В и 12В
Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.
Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.
Содержание
- 1. Типы схем
- 2. Обозначение на схеме
- 3. Подключение светодиода к сети 220в, схема
- 4. Подключение к постоянному напряжению
- 5. Самый простой низковольтный драйвер
- 6. Драйвера с питанием от 5В до 30В
- 7. Включение 1 диода
- 8. Параллельное подключение
- 9. Последовательное подключение
- 10. Подключение RGB LED
- 11. Включение COB диодов
- 12. Подключение SMD5050 на 3 кристалла
- 13. Светодиодная лента 12В SMD5630
- 14. Светодиодная лента RGB 12В SMD5050
Типы схем
Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:
В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.
Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор. Расчет резистора для светодиода можно сделать на специальном калькуляторе.
Калькулятор учитывает 4 параметра:
- снижение напряжения на одном LED;
- номинальный рабочий ток;
- количество LED в цепи;
- количество вольт на выходе блока питания.
Разница кристаллов
Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.
Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.
Обозначение на схеме
Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.
Подключение светодиода к сети 220в, схема
Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.
Схема драйвера для светодиодов бывает двух видов:
- простая на гасящем конденсаторе;
- полноценная с использованием микросхем стабилизатора;
Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.
Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.
Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.
Подключение к постоянному напряжению
..Далее будут рассмотрены схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный полярным напряжением на выходе. Несколько примеров:
- 3,7В – аккумуляторы от телефонов;
- 5В – зарядные устройства с USB;
- 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
- 19В – блоки от ноутбуков, нетбуков, моноблоков.
Самый простой низковольтный драйвер
Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.
Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.
Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.
Драйвера с питанием от 5В до 30В
Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.
В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.
Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.
Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.
Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.
Включение 1 диода
Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.
Параллельное подключение
При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.
Рациональность применений каждого способа рассчитывают исходя из требований к изделию.
Последовательное подключение
Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.
Такое соединение применяют в любой светотехнике:
- светодиодные лампах для дома;
- led светильники;
- новогодние гирлянды на 220В;
- светодиодные ленты на 220.
В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.
Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.
Подключение RGB LED
Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.
Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.
Включение COB диодов
Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.
Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.
Подключение SMD5050 на 3 кристалла
От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.
При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.
При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.
Светодиодная лента 12В SMD5630
Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.
Светодиодная лента RGB 12В SMD5050
В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.
Драйвер питания светодиодов 7 х 1 Вт (220 В). Дёшево и качественно?! + Сюрприз от монтажников 🙂
- AliExpress
- Фонарики и светодиодные лампы
Самодельный драйвер для светодиодов: простая схема
Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо, для питания светодиодов следует использовать драйвер.
Довольно часто для подключения светодиодов в автомобиле, тех же «ангельских глазок» на COB кольцах, требуется драйвер, сделать его можно самостоятельно и обойдётся он вам сущие копейки.
У нас есть автомобильная сеть 12 V, считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.
Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт.
Напряжение в автомобиле 12 Вольт.
Получаем 420 милиампер потребляемого тока таким колечком.
Дальше на любом онлайн калькуляторе, как вот этом — ledcalc.ru/lm317
рассчитаем:
- Расчетное сопротивление.
- Ближайшее стандартное.
- Ток при стандартном резисторе.
- Мощность резистора.
Вводим требуемый ток 420 милиампер и получаем:
- Расчетное сопротивление: 2.98 Ом
Ближайшее стандартное: 3.30 Ом
Ток при стандартном резисторе: 379 мА
Мощность резистора: 0.582 Вт.
ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!
К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂
Дальше идем в магазин и покупаем:
-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.
Его распиновка.
Резистор, который посчитали выше, и подключаем это всё дело в режиме токового стабилизатора.
В итоге получили на выходе стабилизированный ток.
Но это для идеального случая. Что касается случая с реальным автомобилем, где скачки до 14 Вольт с копейками бывают, то рассчитывайте резистор для худшего случая с запасом.
Видео обзор схемы светодиодного драйвера на LM317, включенной по схеме с ограничением тока.
Поделиться в соц. сетях
назначение, принцип работы, схема и ремонт
Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.
Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.
Назначение.
Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.
Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.
Принцип работы.
Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.
В простейшем и самом дешевом случае просто ставят ограничительный резистор.
Питание диода через ограничивающий резистор.
Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.
Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:
Пример.Импульсная стабилизация (упрощенно)
При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.
Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.
Характеристики драйверов, их отличия от блоков питания LED ленты.
Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.
Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.
Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.
Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.
При выборе драйвера нужно учесть:
- Мощность,
- Напряжение,
- Предельный ток.
Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.
Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.
Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.
Сила тока через линейку будет рассчитываться по аналогичной формуле.
Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.
Схема простого led-драйвера без гальванической развязки.
Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.
Как выбрать драйвер для светодиодов.От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.
В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.
Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.
Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.
Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.
На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:
- класс защищенности от пыли и жидкости,
- мощность,
- номинальный стабилизированный ток,
- рабочее входное напряжение,
- диапазон выходного напряжения.
Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.
Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.
Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.
Виды драйверов.
По типу их можно подразделить на:
Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.
Внутреннее устройство драйвера
Внешний вид и схема драйвера LED 1338G7.
Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.
ШИМ-драйвер Recom.
Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.
Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.
Драйвер с диммером.
LED драйвер на 220 В.
Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:
- блок питания (БП),
- источник тока,
- адаптер питания,
- источник питания.
Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.
Рекомендуемые производители светодиодных драйверов.
Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.
Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.
Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.
Led-драйвер Helvar.
Led-драйвер Mean Well.
Led-драйвер DEUS.
Led-драйвер «Ирбис».
Led-драйвер MOSO.
Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.
Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги.
Схема подключения драйвера к светодиодам.
Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.
Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.
Выводы светодиода.
Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.
Выводы светодиодов в SMD-исполнении.
В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.
Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.
При использовании источника тока схема драйвера для светодиодов будет следующая:
Схема подключения светодиода.
Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.
Схема подключения светодиода к источнику
напряжения через ограничитель.
Классическая светодиодная лента построена по такой схеме:
Схема светодиодной линейки.
В этом случае расчет производится по формулам:
Формула связи тока, напряжения, сопротивления.
При подключении важно учитывать:
- При малой силе тока, мы теряем в яркости, при большой в сроке службы.
- Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
- Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.
Схемы (микросхемы) светодиодных драйверов.
Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.
Использовании микросхем для стабилизации.
Принципиальные схемы светодиодных драйверов.
Существует схема самодельного источника тока на советской микросхеме К142ЕН12А. Резистор R2 позволяет менять яркость свечения.
Принципиальная схема на отечественных компонентах.
Линейный светодиодный драйвер своими руками.
Эта часть статьи посвящена радиолюбителям.
Оригинальный линейный источник тока на компараторе.
Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.
Срок службы светодиодных драйверов.
Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.
Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.
IntraLED- драйверы для светодиодов, источники питания для светодиодов, светодиодных лент
Драйверы (источники питания) для светодиодов
Лампы накаливания и прочая светотехника, сделанная по устаревшим технологиям, постепенно повсеместно заменяется устройствами светодиодными. Они обладают целым рядом бесспорных преимуществ, самыми значительными из которых являются намного более долгий срок эксплуатации и возможность экономить на электроэнергии. Ведь светодиоды потребляют её во много раз меньше.
Для максимального продления срока службы светодиодов LED-устройства и приборы оборудуются специальными драйверами. Они имеют вид дополнительных электронных плат и очень важны для стабильной и адекватной работы светотехники на диодах.
К примеру, сроки эксплуатации этих технологичных устройств во многом зависят от температуры и её перепадов. Драйвера светодиодов функционируют в качестве стабилизаторов стандартных характеристик электротока при его поступлении на диоды. Степень напряжения при этом нивелируется до наиболее приемлемой.
Благодаря работе драйверов светодиодов, КПД светодиодной светотехники значительно повышается. После подсоединения полупроводниковых световых устройств (led лент) к драйверам электропитания одинаково нормальный режим обеспечивается для каждого светодиода в цепочке.
Сроки эксплуатации светодиодного оборудования в условиях обеспечения его неизменно стабильной работы значительно возрастают. Возможность перегревания полупроводниковых элементов сводится к минимуму, ведь электроток подаётся на них в оптимально сбалансированном ритме.
Также драйвер выполняет для светодиодного / полупроводникового прибора роль стабилизатора всех основных световых параметров, не допуская эффектов пульсации и (или) мерцания даже во время существенных скачков напряжения в электросети.
Драйверы предоставляют возможность выставления необходимого режима освещения, оптимальной регулировки его яркости.
Предназначенные для питания светодиодов элементы отбираются сообразно с силой тока, напряжений на выходе и мощностным параметрам оборудования. Мощность драйверов есть возможность рассчитать при помощи спецтехнологии. Ей на экспертном уровне владеют специалисты нашей компании.
По Вашему обращению они в сжатые сроки сделают нужный расчёт параметров и дадут грамотную консультацию насчёт подбора оптимально соответствующего целям элемента питания диодов. Для того, чтобы избежать ошибок и не усложнять себе задачу по подбору устройств, есть смысл приобретать сразу и светодиодное оборудование, и драйверы к нему – в едином комплекте.
Драйвер для мощного светодиода своими руками, LED driver 30w схема
Типы схем
Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:
- светодиодный драйвер со стабилизированным током;
- блок питания со стабилизированным напряжением.
В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.
Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.
Калькулятор учитывает 4 параметра:
- снижение напряжения на одном LED;
- номинальный рабочий ток;
- количество LED в цепи;
- количество вольт на выходе блока питания.
Разница кристаллов
Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.
Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.
Подключение светодиода к сети 220в, схема
Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.
Схема драйвера для светодиодов бывает двух видов:
- простая на гасящем конденсаторе;
- полноценная с использованием микросхем стабилизатора;
Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.
Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.
Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.
Светодиодные драйверы для авто
Светодиодные драйверы для авто — этот материал для тех, кому уже порядком поднадоело заниматься выпаиванием резисторов из светодиодной ленты класса SMD, в случае их выхода из строя. А это, как показывает практика, происходит очень часто. И вот встает вопрос, что можно сделать, чтобы избавиться от этого трудоемкого процесса? Какое сконструировать устройство, чтобы оно являлось надежным и в то же время самым простым вариантом для обеспечения светодиодов напряжением питания.
Если взять 12 вольтовые лампы MR16 — не подойдут, так как создают ощутимые помехи в радио эфире. Использовать стабилизатор тока на lm317 для мощных светодиодов, тоже не подойдет из-за технической сложности, то есть для него требуется сторонний ограничительный резистор по току. Ну а воспользоваться просто мощным резистором, такой вариант совсем отпадает, поскольку значение тока непосредственно зависит от напряжения в бортовой сети автомобиля. И вот после некоторого отчаяния от неопределенности, хорошие люди подсказали — светодиодный линейный драйвер NSI45030AT1G.
Вот их внешний вид
А это их компактные размеры
По габаритам похожи на SMD-резисторы
Цифры находящиеся в конце маркировки обозначают ток. Для примера: драйвер NSI50350AST3G обеспечивает постоянным током 360 мА в независимости от действующего напряжения в бортовой сети автомобиля. Отличительная особенность — способны работать в параллельном включении. Как известно, при параллельном соединении значение рабочего тока прибавляется. Вам необходим рабочий ток в 1А?
Включите параллельно три регулятора постоянного тока NSI50350 для управления светодиодами . Результат будет такой: 350+350+350 =1050мА
Если вам необходимо построить устройство с маленьким током потребления, то тогда нужно воспользоваться компонентами с различными номиналами: NSI50010YT1G – 10 мА, NSI45015WT1G – 15 мА NSI45020AT1G – 20мА, NSI45030AT1G — 30 мА.
Вот с ними можете экспериментировать, то-есть подгонять под нужные вам токи и не вспоминайте больше про резисторы. В популярной литературе про приборы NSI, вот что пишут:
Светодиодные драйверы для авто и в частности всей линейки NSI-устройства и их особенностей, то это простейшие с высокой надежностью электронные элементы, предназначенные для регулировки потребляемого светодиодами тока, имеющие высокоэффективный отвод тепла от теплоотвода и не большую стоимость. Как драйвер в цепи светодиода микросхема в основном направлена для модулей освещения в автомобилях. Регулятор управления реализован на базовых принципах технологического решения SBT, что гарантирует стабильный ток в большом спектре входящих напряжений. Защиту светодиода от температурной составляющей при высоких значениях напряжениях и тока, осуществляет установленный в тракте регулировки тока терморезистор с отрицательным температурным коэффициентом сопротивления. Также в регулирующем тракте имеется защита от импульсных скачков напряжения.
Следовательно, вопрос: где их можно задействовать? Для подсветки щитка приборов? Подсветка номерного знака? Габаритные огни авто? Да, именно там они будут очень эффективно полезны.
В общем приобретаем стабилизаторы:
NSI45030AT1G – 30 мА.
Светодиоды
LEMWS59R80HZ2D00.h2X, 5630, 5000K Производитель: LG INNOTEK
полоска фольгированного алюминия
Подготавливаем прозрачную пленку Lomond, которую можно использовать для печати различных изображений, фоторезист и для травления — хлорное железо. Конечно можно изготовить плату методом прорезки дорожек, как вам будет удобнее.
Изготавливаем половинки
Нужны хорошо наточенные ножницы
Где-то добываем вышедшие из строя светодиодные лампы W5W
Извлекаем пластиковый цоколь W5W
Делаем точную разметку, что резать
Здесь нужно убрать все лишнее, чтобы плата свободно заходила в цоколь
Гравер
Делаем плату с размером цоколя
Готовим паяльную пасту
С помощью шприца наносим пасту на контактные площадки и сажаем на плату светодиоды с драйверами
Здесь нужно заметить, что в схеме имеется две NSI45030AT1G, а поэтому на обеих зеркальных половинках ток будет по 60 мА
Затем помещаем плату на хорошо разогретый утюг
И как только паяльная паста оплавит выводы деталей сразу же снимаем плату с утюга
Затем нужно будет облудить провод от сетевого кабеля
и припаять отрезки провода к контактным площадкам половинок
в цоколе
я сделал отверстия сбоку, через них пройдут выводы
поместил половинки в цоколи
перед этим я убрал все остатки канифоли с платы
а затем уже одел цоколи
выводы сделал короче, на нужную длину
выводы между собой не скручивал
выводы аккуратно загнул
Теперь все, сборка закончена, сейчас будем проверять.
Яркость свечения мощнее нежели у лампочки W5W. Проработала больше часа, замерил температуру — было около 50 градусов
В этой статье вобще-то не было целью создать источник света с яркостью большей, чем у аналогичной лампы накаливания. Речь шла именно об приборах NSI, при использовании которых не потребуются резисторы.
Необходимые материалы и инструменты
Для того, чтобы собрать самодельный драйвер, потребуются:
- Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
- Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
- Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
- Небольшие плоскогубцы для сгибания выводов.
- Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
- Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
- Мультиметр для контроля напряжения в узловых точках.
- Изолента или термоусадочная трубка.
- Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.
Макетная плата из текстолита для быстрого монтажа
Схема простого драйвера для светодиода 1 Вт
Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:
Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.
В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.
Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.
Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.
Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.
Ввиду малого количества элементов, сборку можно производить навесным монтажом:
Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:
Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:
R=1,2/I
где I – сила тока в амперах.
В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.
Более наглядно эта схема рассмотрена в следующем видео:
Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.
Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.
Схема мощного драйвера с входом ШИМ
Ниже показана схема для питания мощных светодиодов:
Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.
Особенности драйвера
- Напряжение питания: 5 — 24 В, постоянное;
- Выходной ток: до 1 А, регулируемый;
- Выходная мощность: до 18 Вт;
- Защита от КЗ по выходу;
- Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).
Принцип действия
Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.
Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.
Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.
D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.
Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:
- 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
- 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
- 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.
В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.
Сборка и настройка драйвера
Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.
Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.
При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.
Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.
После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.
Список элементов:
Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.
Драйвер для светодиодов своими руками: диммируемый драйвер, схема
Светодиоды на современном строительном рынке занимают лидирующие позиции по продаже. Данные осветительные приборы имеют широкое применение.
Их используют в освещении:
- помещений жилых домов,
- офисов,
- автомобилей,
- прочее.
Также популярным и востребованным есть драйвер, предназначенный для питания светодиодов от электричества (переменного тока 220 В и частоты 50 Гц. Чтобы осветительные приборы (на 1 w,10 w и больше) имели хорошую яркость, не мигали во время работы и не перегорали раньше времени, для их питания нужен постоянный ток (350, 500, 700, 1000 мА).
Для этого изготавливают специальные модули. Они бывают разных типов. Драйвер может быть встроен в сам светодиодный прибор, а также подключаться отдельно. Сделать самодельный драйвер для мощного светодиода можно собственными руками. Есть устройства специального назначения, например те, которые используют в rgp пикселях. Их называют rgp led pixel. Такие схемы также можно собрать своими силами или заказать у специалистов.
Эксплуатационные характеристики драйверов для светодиода
Светодиодные осветительные приборы (на 1 w, 10 w и больше) достаточно эффективны. С их помощью можно хорошо сэкономить на электричестве. Светодиоды в 8-9 раз эффективнее, чем обычные лампы накаливания (на 1 w, 10 w и больше). В случаях, когда драйвер установлен рядом с группой светодиодных приборов, он имеет хорошие технические показатели. Прибор будет работать даже в самых жарких условиях. Он выдерживает температуру окружающей среды до 800С. Также устройство имеет различные режимы работы. С его помощью можно регулировать яркость освещения в помещении, машине, улице прочее.
Для питания светодиодной ленты часто используют диммируемый драйвер. Устройство идеально подходит для регулировки яркости осветительных приборов. Диммируемый драйвер обеспечивает настраивание выходной мощности плавно и без фликкерного шума. Собрать схему драйвера для светодиодов своими руками можно без проблем.
Схема подключения
Есть случаи, когда нет необходимости регулировать яркость осветительных приборов в помещении или другом пространстве. Тогда схема подключения драйвера достаточно проста. Светодиоды подключаются последовательно. В одной цепочке может быть от 1 до 8 штук осветительных приборов. Она подключается к одному выходу драйвера. Такая схема самая оптимальная. Любой повышающий драйвер для светодиода, будь он самодельный или нет, служит источником постоянного тока, но не напряжения. Это значит, что включать в схему специальный резистор, который будет ограничивать поступление тока, нет необходимости. На выходе драйвера устанавливается определенное напряжение (В) и мощность (Вт). Их величина зависит от количества подключенных осветительных приборов в цепочке.
Токоограничиющий резистор включается в схему, если светодиоды подключены и последовательно, и параллельно. Такие случаи бывают, когда нужно подключить более 8 осветительных приборов. Так светодиоды подсоединяют последовательно в отдельные цепи, которые связаны между собой параллельным подключением. Входное напряжение драйвера может быть в диапазоне от 2 до 18 В. А выходное – на 0,5 вольт меньше, чем изначальное. Напряжение падает на полевом транзисторе.
Важные моменты, которые стоит учитывать при выборе драйверов
Вольт – амперная характеристика у осветительных приборов, таких как светодиоды, под воздействием температуры изменяется. У разных моделей она имеет свои незначительные отличия. Стоит это учитывать при подключении схемы собственными руками. Повышающий яркость драйвер осветительных приборов должен давать постоянный ток в различных случаях. То есть его функции должны выполняться независимо от того, изменились ли характеристики светодиодов или произошел скачок входного напряжения. Любой драйвер (диммируемый, из специальным стабилизатором прочее), должен обеспечивать поступление тока к осветительному прибору согласно его эксплуатационным характеристикам.
Простыми драйверами для светодиодов (на 10 w и больше) есть такие микросхемы, как LM 317. Они имеют свои отличие от резисторов. Микросхемы данного типа надежны в эксплуатации, их производство не занимает много времени и требует больших затрат расходного материала. Но все же они имеют недостатки. Микросхемы LM 317 отличаются низким КПД. Для них характерно малое входное напряжение.
Питание светодиодов от сети 220 В с помощью шим – стабилизаторов тока более практичное в эксплуатации. Активная мощность на драйвере минимальная. Шим – стабилизатор – это электронная схема специального назначения. Ее разработали для того, чтобы производить постоянный ток для питания осветительных приборов наилучшим способом. Такие драйверы используют в rgp пикселях. Шим – стабилизаторы дают дополнительные функции в управлении. С помощью драйверов можно регулировать питание от сети 220 В, яркость и цвет rgp пикселя. Управление осуществляется с помощью, подключенных к шим – стабилизаторов, микроконтроллеров. Такие драйвера, как WS2801 или LDP8806, можно наблюдать на каждом rgp пикселе светодиодной ленты с управлением.
Так, как технологии прогрессируют стоимость мощных светодиодов (1 Вт и больше) уже достаточно доступная. Исходя из этого, приборы все чаще используют для освещения. Чтобы эффективность мощных светодиодов была высокой, их нужно правильно запитать, можно от сети 220 В. Самодельный драйвер, повышающий яркость освещения, можно собрать по простой схеме, основанной на дискретных элементах. Выходная мощность – 15 Вт, резервная – 0,5 Вт. Схема защищает от короткого замыкания.
Драйвер для светодиодов и светодиодных светильников: виды и принципы работы.
Статья отвечает на многочисленные вопросы покупателей по драйверам для светодиодов и светодиодных светильников. Специалисты «Ледрус» рассказывают о назначении, принципе работы и видах драйверов, объясняют как правильно выбрать блок преобразователя AC/DC под свои задачи, дают рекомендации по ремонту своими руками.
Что такое драйвер?
Драйвер для светодиодов – это специализированный блок питания (преобразователь), работающий от электросети 220 В и обеспечивающий подключенную нагрузку нормированным стабилизированным током. Специфика этого вида устройств определяется зависимостью яркости светодиодов от тока, а не от напряжения.
Постоянное напряжение на выходе «плавает» в пределах заданного диапазона, который указывается в паспорте изделия в формате минимального-максимального значения. Например, драйвер светодиодного светильника 220 В, изображенный на фото выдает 20-36 В DC, ток 250 мА при мощности 9 Вт.
Значения параметров, рассчитываемые производителями светодиодной продукции гарантируют равномерность яркостных характеристик светоизлучающих элементов и предотвращают ускоренную деградацию полупроводниковых кристаллов.
Принцип работы драйвера
Под принципом работы LED-драйвера понимается поддержание стабильного выходного тока при колебаниях уровня выходного напряжения. Сравним обычный блок питания и лед драйвер для светодиодных светильников.
При подключении к блоку питания с выходом на 12 В одной лампы 12 В/5 Вт, выходной ток будет равен 0,42 А. Если добавить еще одну лампу, то ток увеличится в два раза, а напряжение не изменится. Иная ситуация при работе драйвера. К примеру, имеем устройство с характеристиками: ток 300 мА, мощность 3 Вт. К такому преобразователю можно подключить несколько светодиодов с суммарным падением напряжения не более 10 вольт. В зависимости от количества светодиодов напряжение будет изменяться в некоторых пределах, но величина тока останется неизменной.
Виды драйверов
Познакомимся с разными типами светодиодных драйверов, которые можно купить в интернет-магазине «Ледрус». Предлагаемые модели отличаются способом стабилизации тока, наличием функции диммирования и целевым назначением. Рассмотрим реальные схемы блоков электропитания светодиодных светильников и светодиодов, особенности, преимущества и недостатки всех вариантов.
Линейные драйверы.
Плюсы: плавность регулировки, не генерирует электромагнитные помехи, недорогая цена.
Минусы: КПД менее 80%, небольшая мощность, сильный нагрев.
Поясним линейный способ стабилизации тока на примере простейшей схемы, собранной из базовых электронных элементов.
Изменяя сопротивление резистора R, подбираем величину тока, требуемого для свечения светодиода. При уменьшении или увеличении напряжения изменяем сопротивление и поддерживаем стабильное значение тока. Этот алгоритм демонстрирует работу линейного стабилизатора. В реальных схемах роль переменного резистора играет целый набор электронных компонентов, моментально устраняющий отклонение тока от заданного номинала.
Перед нами типовая схема линейного LED driver от производителя Maxim с выходным каскадом, собранном на генераторе тока с полевым p-канальным транзистором.
Для задания рабочего тока использован резистор RSENSE (датчик тока). Падение напряжения на нем определяет величину выходного напряжения дифференциального усилителя DIFF AMP, поступающего на вход регулирующего усилителя IREG. В этом усилителе напряжение сравнивается с опорным сигналом для формирования потенциала управления выходным транзистором, который работает в линейном режиме и поддерживает стабильность тока.
Импульсные драйверы.
Плюсы: КПД свыше 95%, высокая мощность.Минусы: создает высокочастотные помехи.
И вновь внимание на самое простое схемное решение, демонстрирующее работу импульсного блока питания для LED.
Видим, что резистор отсутствует, но добавились кнопка КН и конденсатор С. После подачи электропитания нажимается кнопка. Конденсатор заряжается до рабочего напряжения, светодиод начинает излучать свет. Кнопка отпускается, конденсатор разряжается. При критическом снижении тока кнопка нажимается вновь для подзарядки конденсатора.
Светодиод горит с одинаковой яркостью при постоянных манипуляциях с кнопкой. Чем выше величина напряжения, тем короче нажатие. Вкратце в этом и состоит принцип широтно-импульсной модуляции для стабилизации тока.
Посмотрим на схему импульсного LED-driver с ШИМ.
Основой решения является микросхема с двумя операционными усилителями, к которой добавлены внешние компоненты. С помощью микросхемы реализованы генератор ШИМ и формирователь управляющих сигналов.
Драйверы для светодиодных лент
Посмотрите на фото светодиодной ленты. Видны резисторы, предназначенные для ограничения тока. Их номинал подбирается так, чтобы при напряжении 12 В или 24 В ток был равен номинальному. Поэтому, блок питания должен поддерживать постоянную величину входного напряжения, а о токе позаботятся токоограничивающие резисторы.
Понятно, что функционал драйвера для светодиодной ленты отличается от ранее рассмотренных блоков питания для светодиодов и LED-светильников.
Диммируемые драйверы
Диммируемый блок питания светодиодов регулирует яркость свечения за счет изменения характеристик тока. Обычно функция диммирования добавляется в схему импульсных преобразователей, использующих ШИМ регулирование. Примеры диммируемого драйвера для светодиодного светильника можно увидеть на рисунках. Отметим, что применяемые микросхемы позволяют осуществлять плавную или импульсную регулировку.
Интересно: при задействовании ШИМ-регулировки наблюдается изменение цвета свечения. Например, белый светодиод меняет цвет на желтоватый или синий, в зависимости от повышения или уменьшения выходной мощности.
Как правильно выбрать драйвер
Проблема выбора встроенного драйвера питания лед светильника или светодиодапоявляется, как правило, в случае выхода этого устройства из строя. Правильным решением станет поиск блока питания с аналогичными характеристиками. Для этого смотрим параметры, указанные на корпусе прибора. Нас интересуют: входное и выходное напряжение, ток и мощность. Например:
Записываем параметры и ищем подходящий аналог. Можно свести затраты времени до минимума, обратившись к менеджеру «Ледрус».
Разберем другой случай. Вам требуется подобрать драйвер, чтобы запитать шесть последовательно соединенных светоизлучающих диодов. В описании светодиодов обычно указывается величина падения напряжения при номинальном токовом параметре. Допустим, это 3 В при 350 мА. Суммарное падение U общ будет равно 15 В. Общая потребляемая мощность – 6,3 Вт, а с учетом запаса по мощности 20-30% – 8 Вт. Следовательно, оптимальным вариантом будет вот этот лед-драйвер:
Аналогично можно выбрать блок питания для LED-светильника, зная его основные параметры.
Как выполнить ремонт драйвера своими руками
В нашей стране много радиолюбителей, самостоятельно собирающих и ремонтирующих электронные приборы. Разумеется, для них не составит труда отыскать неисправность и качественно устранить ее. Однако, обычный человек, не разбирающийся в электронике, не имеющий навыков ремонта и нужного оборудования, вряд ли сможет выполнить ремонт драйвера своими руками.
Да в этом и нет особой необходимости. Стоимость нового преобразователя для светодиодов и лед-светильников весьма невелика. Можно купить нужное изделие без особого урона для своего бюджета. А замену и подключение драйвера светодиодного светильника несложно выполнить самостоятельно, согласно заводской маркировки проводов.
Воспользуйтесь консультацией специалиста
Свяжитесь с менеджером «Ледрус», чтобы получить грамотную консультацию по драйверам для светодиодной продукции. В нашем интернет-магазине Вы обязательно найдете блок питания с требуемыми параметрами для светодиодов, светильников и светодиодных лент.
Сделать освещение своими руками проще, чем когда-либо
Работа со светодиодным освещением не должна быть сложной. Вы, вероятно, подумали о крутой идее освещения, которую не пытались реализовать в прошлом. Почему нет? Я считаю, что большинство людей, таких как вы, считают, что они недостаточно образованы или недостаточно квалифицированы, чтобы самостоятельно создать идею светодиодного освещения.
Что ж, у меня для вас новости … Стой, оставь эту мысль «но я не могу». В этом посте я покажу вам, насколько легко можно настроить светодиодное освещение с помощью правильных продуктов!
Что нужно для создания светодиодной лампы
Когда-нибудь хотели построить светодиодную лампу? Теперь это можно сделать всего с 2 частями!
С ростом популярности светодиодного освещения многие исследовали и связывались со мной, спрашивая, как создать небольшие светодиодные фонари, светодиодные лампы, светодиодные панельные светильники, даунлайты… вы называете это.Это положит начало обсуждению различных компонентов, необходимых для завершения настройки светодиода:
- Светодиоды для устройств поверхностного монтажа (SMD) или светодиодные модули
- Драйверы постоянного тока
- Источники питания переменного / постоянного тока
- Радиаторы
Этот список по понятным причинам может запутать новичка и сделать этот крутой световой проект головной болью. Прежде чем бросать проект в стопку «Сохранить на потом / Кто-то еще», вы должны знать, что есть способ использовать все эти компоненты для одного простого источника света.Двигателям светодиодного освещения нужен только источник питания и немного воображения, чтобы создавать светодиодные фонари как для малых, так и для крупных приложений.
Удобные светодиоды – «Светодиодные двигатели»
Что такое двигатель светодиодного освещения? Это светодиодный эквивалент обычной лампы. Световой двигатель обычно состоит из светоизлучающего диода (СИД), установленного на печатной плате с электрическими и механическими креплениями, что означает, что он готов к установке в светильник.
Наши светодиодные двигатели разработаны с учетом перечисленных выше компонентов и объединения их в единый корпус.Это устраняет барьеры для входа для людей, таких же, как и вы, которые хотят разработать систему светодиодного освещения, не лезя через голову. Звучит слишком хорошо, чтобы быть правдой? Посмотрите, как мы разработали эти светодиодные фонари.
Проектирование светодиодных ламп “все в одном”
После множества звонков и запросов здесь, в LEDSupply, я понял, что нам нужно больше светодиодных источников света, которые могли бы использовать постоянный вход 12-24 В постоянного тока и загораться. Гибкие светодиодные ленты отлично подходят для такого использования, но иногда требуется более компактный, прямой и качественный свет.
Я начал сотрудничать с LuxDrive, чтобы создать светодиодный светильник, который работал бы таким образом. В нашем сотрудничестве я хотел, чтобы наши новые продукты имели 4 основные функции.
Бортовые драйверы
При работе со светодиодами SMD требуется драйвер постоянного тока или токоограничивающий резистор. Электрические свойства светодиодных фонарей меняются по мере их нагрева, водитель будет следить за тем, чтобы светодиод оставался на безопасном токе, вместо того, чтобы потреблять слишком много и в конечном итоге выгорать.
Вместо использования внешнего драйвера, целью было встроить небольшие встроенные драйверы на плату светодиодов. Эти небольшие драйверы действуют как переменные резисторы на плате, поэтому вы можете вводить постоянное напряжение постоянного тока (например, 12 вольт), и устройства будут ограничивать ток, разрешенный для протекания через плату.
Это поможет вам в трех основных направлениях:
- Встроенные драйверы означают, что нет необходимости во внешнем драйвере, который может стоить около 10-15 долларов.
- Встроенные драйверы намного меньше, что делает установку более компактной и дискретной.
- Снимает напряжение, связанное с согласованием драйвера со светодиодной схемой.
Радиатор не требуется
Светодиоды с радиатором – еще одна область, которая сбивает с толку, когда вы начинаете работать со светодиодным освещением. Светодиоды обычно имеют большое количество энергии, протекающей через очень небольшой источник, что способствует накоплению тепла. Радиатор необходим для рассеивания тепла, отводя его от светодиода, чтобы избежать необратимого повреждения.
Радиатор – всегда хорошая идея, но цель заключалась в создании небольших светодиодных фонарей, которым не требовалось ничего, кроме источника питания. Радиаторы имеют тенденцию быть громоздкими и значительно увеличивают размер вашей установки. Когда LuxDrive разработал светодиодную плату, мы проверили температуру и убедились, что эти светодиодные двигатели могут работать без какого-либо радиатора.
Простое подключение светодиодов
«Как мне соединить несколько светодиодов вместе?» Это частый вопрос, который я задаю каждый день. Есть способы подключения светодиодных ламп SMD к последовательным или параллельным цепям.Эти две разные схемы подключения будут очень отличаться друг от друга в электронном виде.
Нашей целью было создать светодиод, который можно было бы просто соединить гирляндой. Это упрощает процесс подключения, так как все, о чем вам нужно беспокоиться, – это мощность и убедиться, что ваш источник питания будет обеспечивать достаточную мощность для системы.
Качественный световой поток по доступной цене
Наконец, очень важно было иметь эффективный и яркий светодиод, который позволил бы сделать светодиодный световой двигатель доступным по цене.Этот последний шаг занял больше всего времени, так как нам нужно было найти диод, который был бы достаточно эффективным, чтобы выдавать яркий свет, не подавляя при этом систему.
Большая часть ассортимента LEDSupply – это высокомощные светодиоды, такие как семейство Cree XP и светодиоды Luxeon Rebel. Эти светодиоды излучают много света, но также не подходят для желаемого продукта, потому что:
- Слишком большая мощность (нагрев) – светодиоды высокой мощности работают при более высоких токах возбуждения от 350 мА и выше. Для высокого тока требуются драйверы большего размера, из-за чего светодиодный модуль слишком сильно нагревается и требуется светодиодный радиатор.
- Высокая стоимость – светодиоды высокой мощности стоят дороже и требуют дорогих деталей для создания полного двигателя светодиодного освещения. Это сделает цену слишком высокой, особенно для тех, кто хочет использовать несколько источников света.
Заключение: использование светодиодов средней мощности
О сверхмощных светодиодах не может быть и речи из-за более высокого тока, приводящего к слишком большому нагреву и общей стоимости. Это привело нас к поиску более доступного светодиода с низким током. Наш поиск привел нас к светодиодам средней мощности.
Светодиоды средней мощности работают при более низких токах возбуждения: максимум 180 мА по сравнению с максимумом 1000 + мА для диодов большой мощности. Светодиоды тоже примерно в 10 раз дешевле! Светодиоды средней мощности не такие яркие, но их низкая мощность и стоимость позволили добавить несколько диодов на плату, чтобы сделать их сопоставимыми с выходной мощностью светодиодов высокой мощности.
Nichia 757 – светодиод, чтобы все произошло
Nichia 757 – самый привлекательный светодиод средней мощности. Светоотдача была выдающейся, учитывая цену и низкие ограничения мощности.LuxDrive приступил к тестированию диодов средней мощности, построенных на печатных платах со встроенными драйверами.
Тестирование дало положительные результаты, которые успешно достигли всех поставленных целей. Это привело к появлению двух новаторских продуктов для LEDSupply. Двигатели светодиодного освещения, представленные ниже, обладают всеми четырьмя необходимыми характеристиками. Они помогают создать удобный для пользователя светодиод: встроенные драйверы, не требуется радиатор, легко подключаемый и качественный световой поток.
The DynaSquare
DynaSquare – это дискретная светодиодная лампа на 12 В, чрезвычайно простая в использовании.Квадратная печатная плата размером 1 дюйм содержит 3 светодиода средней мощности Nichia 757. Использование нескольких диодов средней мощности увеличивает световой поток до 150 люмен и , что сравнимо со светоотдачей мощного светодиода 1-Up. DynaSquare идеально подходит для ламп и светильников, а также для светодиодных панелей и освещения дисплеев.
DynaSquare предлагается в белом цвете с CCT от 2700K до 6500K. Доступны цвета: красный, желтый, синий и зеленый. Пожалуй, наиболее интересными вариантами являются Horticulture 3000K и 5000K DynaSquares.В DynaSquare для садоводства используется матрица с очень широким спектром действия, идеально подходящая для выращивания растений. Не забудьте проверить этот индикатор для небольших приложений для выращивания.
Соединение нескольких светодиодов вместе – создайте свою собственную схему!
DynaSquare спроектирован так, чтобы обеспечить простое соединение между платами. Квадратная плата имеет контактные площадки с каждой из четырех сторон. Это позволяет подавать питание на одну сторону DynaSquare, а затем последовательно подключать несколько светодиодов к любой из трех сторон, как показано ниже.Это обеспечивает гибкость перемещения плат в любом месте, где это необходимо для вашего приложения. Пожалуйста, свяжитесь с нами в LEDSupply, прежде чем объединить более 20 DynaSquares вместе.
DynaSquare можно подключить параллельно к источнику питания, как показано ниже. Параллельно нет ограничений на количество подключенных к одному источнику питания.
Мощность
DynaSquare обычно питается от 12 В, но может принимать 11-15 В постоянного тока. Это позволяет вам питаться от простого источника переменного / постоянного тока или даже от батареи! Один DynaSquare работает на 1.5 Вт. С выходной мощностью 150 люмен это высокоэффективный светодиод мощностью около 100 люмен на ватт!
Чтобы найти источник питания, просто убедитесь, что ваша мощность покрыта. Для одного DynaSquare это будет легко. Если вы подключаете несколько светодиодов, последовательно или параллельно, убедитесь, что мощность вашего источника питания соответствует требованиям. (1,5 Вт на используемый DynaSquare)
Затемнение
DynaSquare имеет ШИМ диммирование. Это работает с нашим беспроводным диммером PWM или может работать с другими выходными сигналами PWM, просто посмотрите лист данных здесь.
The Duo – Светодиодная лента высокой яркости
DUO – это светодиодная лента на 24 В, которая является самой яркой светодиодной лентой на нашем сайте с яркостью более 100 люмен на ватт! Duo использует новейшую технологию в светодиодах средней мощности, размещая 48 диодов Nichia 757 на 12-дюймовой жесткой полосе. Двухрядная светодиодная лента излучает 870 люмен на фут при высокой плотности светодиода, поэтому свет выходит равномерно и качественно.
Светодиодная лента DUO предлагается в белом цвете с CCT от 2700K до 6500K.Доступны цвета: красный, желтый, синий и зеленый. Пожалуй, наиболее интересными вариантами являются полосы Horticulture 3000K и 5000K. В вариантах для садоводства используются диоды Nichia 757 с очень широким спектром выходного сигнала. Этот широкий спектр идеален для выращивания растений, и это идеальный свет для выращивания рассады и выращивания растений в помещении.
Модульная конструкция
Duo выпускается в виде 12 дюймов в длину и 0,95 дюйма в ширину. Модульная конструкция ленты позволяет разрезать ее на более мелкие части.Через каждые 3 дюйма есть черная пунктирная линия, которую можно разрезать, чтобы из одного куска сделать несколько светодиодных двигателей.
При самостоятельном разрезании полосы старайтесь разрезать по пунктирной линии. Обычно лучше всего подходят прочные ножницы, резак для бумаги или большие кусачки. Если вы хотите предоставить нам разрезание, мы предлагаем полосу в 3, 6 и 9 дюймов в дополнение к стандартной 12-дюймовой полосе.
Подключение светодиодных лент
Duo сконструирован так, что несколько полосок можно соединять в гирляндную цепочку.Количество светодиодных лент, соединенных гирляндой, не должно превышать 8 полных 12-дюймовых плат. Другими словами, не соединяйте вместе полоски длиной более 8 футов.
Мощность
Duo принимает входное напряжение 24 В, которое может поступать от источника переменного / постоянного тока или аккумуляторной батареи. 12-дюймовая деталь – это 7,68 Вт (1,92 Вт на 3-дюймовую деталь). При такой мощности полоса будет выдавать 870 люмен… это 113 люмен / ватт! Эта полоса высокой яркости обеспечивает наивысшую эффективность (люмен / ватт) из всей линейки ламп LEDSupply Strip.
При поиске источника питания убедитесь, что он выдает 24 В постоянного тока, и убедитесь, что учитывается общая мощность.
Профессиональный монтаж
С алюминиевым каналом для светодиодных лент эти ленты превращаются в готовый светильник. У нас есть полосовая дорожка шириной 1 дюйм в квадратном или скошенном стиле, которая идеально сочетается с полосой DUO. Каждая дорожка оснащена матовой поликарбонатной линзой для защиты полос и равномерного распределения света. Посмотрите их здесь.
В заключение
С этими двумя новыми продуктами вы можете увидеть, насколько простой может быть установка светодиодов.Просто найдите источник 12 или 24 В и приступайте к реализации той крутой идеи освещения, которую вы так долго откладывали. Если вам нужна моя помощь, позвоните в LEDSupply или напишите по адресу [email protected].
Как всегда, присылайте нам свои творения с этими продуктами. Нам всегда нравится видеть, что делают наши читатели, чтобы воспользоваться преимуществами светодиодного освещения!
5 простых схем светодиодных драйверов мощностью 1 Вт
1) Малый 1 Вт светодиодный драйвер SMPS
В первом наиболее рекомендуемом варианте мы изучаем схему драйвера светодиодов SMPS, которая может использоваться для управления светодиодами высокой мощности с номинальной мощностью где-то между Светодиод мощностью 1 Вт до 12 Вт.Его можно подключать напрямую к любой домашней розетке переменного тока 220 В или 120 В переменного тока.
Введение
Первая конструкция объясняет конструкцию небольшого неизолированного понижающего преобразователя SMPS (неизолированная точка нагрузки), который является очень точной, безопасной и простой в сборке схемой. Узнаем подробности.
Основные характеристики
Предлагаемая схема драйвера светодиода smps чрезвычайно универсальна и особенно подходит для управления светодиодами высокой мощности.
Однако, будучи неизолированной топологией , не обеспечивает защиту от поражения электрическим током на стороне светодиода схемы.
Помимо вышеуказанного недостатка, схема безупречна и практически защищена от всех возможных опасностей, связанных с перенапряжением в сети.
Хотя неизолированная конфигурация может выглядеть несколько нежелательной, она избавляет конструктора от необходимости наматывать сложные первичные / вторичные секции на сердечниках E, поскольку трансформатор здесь заменен парой простых ферритовых дросселей барабанного типа.
Основным компонентом здесь, отвечающим за выполнение всех функций, является микросхема VIPer22A от ST microelectronics, которая была специально разработана для таких небольших бестрансформаторных компактных драйверов светодиодов мощностью 1 Вт.
Принципиальная схема
Изображение предоставлено: © STMicroelectronics – Все права защищены
Работа схемы
Функционирование схемы этого светодиодного драйвера мощностью от 1 до 12 Вт можно понять, как показано ниже:
Входная сеть 220 В или 120 В переменного тока полуволна выпрямляется D1 и C1.
C1 вместе с катушкой индуктивности L0 и C2 составляют сеть круговых фильтров для подавления электромагнитных помех.
D1 желательно заменить двумя последовательно включенными диодами для поддержки всплесков напряжения 2 кВ, генерируемых C1 и C2.
R10 обеспечивает определенный уровень защиты от перенапряжения и действует как предохранитель в аварийных ситуациях.
Как видно на приведенной выше принципиальной схеме, напряжение на C2 подается на внутренний сток МОП-транзистора IC на контактах 5–8.
Встроенный источник постоянного тока микросхемы VIPer подает ток 1 мА на вывод 4 микросхемы, который также является выводом Vdd микросхемы.
При напряжении около 14,5 В при напряжении Vdd источники тока выключаются и переводят схему ИС в колебательный режим или инициируют импульсную генерацию ИС.
Компоненты Dz, C4 и D8 становятся схемой регулирования цепи, где D8 заряжает C4 до пикового напряжения в период свободного вращения и когда D5 смещен в прямом направлении.
Во время вышеуказанных действий источник или опорный сигнал ИС устанавливается примерно на 1 В под землей.
Для получения исчерпывающей информации о деталях схемы драйвера светодиода мощностью от 1 до 12 Вт, пожалуйста, просмотрите следующий технический паспорт в формате pdf от ST microelectronics.
DA TASHEET
2) Использование бестрансформаторного емкостного источника питания
Следующий 1-ваттный светодиодный драйвер, описанный ниже, показывает, как построить несколько простых схем 1-ваттного светодиодного драйвера с питанием от 220 В или 110 В, которые вам не будут стоить больше 1/2 доллара, не считая светодиода конечно.
Я уже обсуждал емкостный тип источника питания в паре столбов, например, в цепи освещения светодиодной трубки и в цепи бестрансформаторного источника питания, настоящая схема также использует ту же концепцию для управления предложенным 1-ваттным светодиодом.
Работа схемы
На принципиальной схеме мы видим очень простую схему емкостного источника питания для управления светодиодом мощностью 1 Вт, что можно понять по следующим пунктам.
Конденсатор 1 мкФ / 400 В на входе образует сердце схемы и функционирует как основной компонент ограничителя тока схемы.Функция ограничения тока гарантирует, что напряжение, подаваемое на светодиод, никогда не превышает требуемый безопасный уровень.
Однако у высоковольтных конденсаторов есть одна серьезная проблема, они не ограничивают и не могут препятствовать первоначальному включению сетевого питания в быстром темпе, что может быть фатальным для любых электронных схем.
Добавление резистора на 56 Ом на входе помогает принять некоторые меры по предотвращению повреждений, но все же оно само по себе не может обеспечить полную защиту задействованной электроники.
MOV, конечно, подойдет, а как насчет термистора? Да, термистор тоже был бы желанным предложением.
Но они относительно более дорогие, и мы обсуждаем дешевую версию для предлагаемой конструкции, поэтому мы хотели бы исключить все, что пересекало бы отметку доллара в отношении общей стоимости.
Итак, я подумал об инновационном способе замены MOV на обычную дешевую альтернативу.
Какова функция MOV
Это отводить начальный всплеск высокого напряжения / тока на землю так, чтобы он был заземлен до достижения светодиода в этом случае.
Не будет ли высоковольтный конденсатор выполнять ту же функцию, если он подключен к самому светодиоду. Да, он наверняка будет работать так же, как MOV.
На рисунке показана установка еще одного высоковольтного конденсатора непосредственно через светодиод, который поглощает мгновенный приток скачка напряжения при включении питания, он делает это во время зарядки и, таким образом, быстро опускает почти все начальное напряжение, вызывая все сомнения. Связанный с емкостным типом блока питания отчетливо понятен.
Конечным результатом, показанным на рисунке, является чистая, безопасная, простая и недорогая схема драйвера светодиода мощностью 1 Вт, которую любой любитель электроники может собрать прямо дома и использовать для личных удовольствий и полезности.
ВНИМАНИЕ: ПОКАЗАННАЯ НИЖЕ ЦЕПЬ НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.
Принципиальная схема
ПРИМЕЧАНИЕ: Светодиод на приведенной выше схеме представляет собой светодиод 12 В 1 Вт , как показано ниже:
На показанной выше простой схеме драйвера светодиода мощностью 1 Вт два 4.Конденсаторы емкостью 7 мкФ / 250 вместе с резисторами на 10 Ом образуют в цепи своего рода «прерыватель скорости», этот подход помогает остановить первоначальный бросок скачка напряжения при включении, что, в свою очередь, помогает защитить светодиод от повреждения.
Эту функцию можно заменить NTC, которые популярны благодаря своим функциям подавления скачков напряжения.
Этот усовершенствованный способ решения проблемы начального броска скачка напряжения может заключаться в подключении термистора NTC последовательно с цепью или нагрузкой.
Пожалуйста, посетите следующую ссылку, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.
Вышеупомянутая схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.
Хорошим способом решения проблемы начального броска скачка напряжения является подключение термистора NTC последовательно с цепью или нагрузкой.
Перейдите по следующей ссылке, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.
https://homemade-circuits.com/2013/02/using-ntc-resistor-as-surge- suppressor.html
3) Стабилизированный драйвер светодиода мощностью 1 Вт с емкостным источником питания
Как можно видеть, на выходе в их прямом смещенном режиме используется 6 шт. диодов 1N4007.Поскольку каждый диод будет производить падение на 0,6 В на самом себе, 6 диодов будут создавать общее падение 3,6 В, что является как раз правильным значением напряжения для светодиода.
Это также означает, что диоды будут шунтировать остальную мощность от источника на землю и, таким образом, поддерживать питание светодиода идеально стабилизированным и безопасным.
Другая схема стабилизированного емкостного драйвера мощностью 1 ВтСледующая конструкция, управляемая полевым МОП-транзистором, вероятно, является лучшей универсальной схемой драйвера светодиода, которая гарантирует 100% защиту светодиода от всех типов опасных ситуаций, таких как внезапное перенапряжение и перегрузка по току или импульсный ток.
Светодиод мощностью 1 Вт, подключенный к указанной выше схеме, будет способен производить около 60 люменов силы света, что эквивалентно лампе накаливания мощностью 5 Вт.
Изображения прототипа
Вышеупомянутая схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.
4) Схема драйвера светодиода мощностью 1 Вт с использованием аккумулятора 6 В
Как видно на четвертой диаграмме, в этой концепции практически не используется какая-либо схема или, скорее, она не включает в себя какой-либо высокотехнологичный активный компонент для требуемой реализации управления мощностью 1 Вт. ВЕЛ.
Единственными активными устройствами, которые использовались в предлагаемой простейшей схеме драйвера светодиода мощностью 1 Вт, являются несколько диодов и механический переключатель.
Начальные 6 вольт от заряженной батареи понижаются до необходимого предела 3,5 вольт, удерживая все диоды последовательно или на пути напряжения питания светодиода.
Поскольку на каждый диод падает 0,6 вольт, все четыре вместе позволяют только 3,5 вольт достигать светодиода, обеспечивая его безопасное, но яркое освещение.
По мере того, как свечение светодиода падает, каждый диод впоследствии отключается с помощью переключателя, чтобы восстановить яркость светодиода.
Использование диодов для снижения уровня напряжения на светодиодах гарантирует, что процедура не рассеивает тепло и, следовательно, становится очень эффективной по сравнению с резистором, который в противном случае рассеивал бы много тепла в процессе.
5) Освещение светодиода мощностью 1 Вт с помощью элемента AAA 1,5 В
В пятом проекте давайте узнаем, как за разумное время зажечь светодиод мощностью 1 Вт с помощью элемента 1,5 AAA. Схема, очевидно, основана на технологии повышающего драйвера , иначе управлять такой огромной нагрузкой с таким минимальным источником невозможно.
Светодиод мощностью 1 Вт является относительно большим по сравнению с источником питания 1,5 В типа AAA.
Для светодиода мощностью 1 Вт требуется питание не менее 3 В, что вдвое превышает номинал элемента, указанный выше.
Во-вторых, для светодиода мощностью 1 Вт потребуется от 20 до 350 мА тока для работы, 100 мА – это приемлемый ток для управления этими легкими машинами.
Таким образом, использование фонарика AAA для вышеуказанной операции выглядит очень отдаленным и не может быть предметом обсуждения.
Однако обсуждаемая здесь схема доказывает, что мы все ошибаемся, и успешно управляет светодиодом мощностью 1 Вт без особых сложностей.
СПАСИБО ZETEX за предоставленную нам эту замечательную маленькую микросхему ZXSC310, для которой требуется всего несколько обычных пассивных компонентов, чтобы сделать это возможным.
Работа схемы
На схеме показана довольно простая конфигурация, которая в основном представляет собой установку повышающего преобразователя.
Входной постоянный ток 1,5 В обрабатывается ИС для генерации высокочастотного выходного сигнала.
Частота переключается транзистором и диодом Шоттки через катушку индуктивности.
Быстрое переключение катушки индуктивности обеспечивает необходимое повышение напряжения, которое становится подходящим для питания подключенного светодиода мощностью 1 Вт.
Здесь, во время завершения каждой частоты, эквивалентная запасенная энергия внутри индуктора перекачивается обратно в светодиод, генерируя необходимое повышение напряжения, которое поддерживает светодиодный свет в течение долгих часов даже при источнике с малым напряжением 1,5 В. клетка.
Изображение прототипа
Драйвер для светодиодов на солнечной энергии 1 Вт
Это школьный выставочный проект, который может быть использован детьми, чтобы показать, как солнечная энергия может использоваться для освещения светодиода мощностью 1 Вт.
Идея была предложена г-ном Ганешем, как указано ниже:
Привет, Свагатам, я наткнулся на ваш сайт и нахожу вашу работу очень вдохновляющей. В настоящее время я работаю по программе естественных наук, технологий, инженерии и математики (STEM) для студентов 4-5 курсов в Австралии. Проект направлен на повышение интереса детей к науке и ее связи с реальными приложениями.
Программа также привносит сочувствие в процесс инженерного проектирования, когда молодые учащиеся знакомятся с реальным проектом (контекстом) и взаимодействуют со своими одноклассниками для решения мирской проблемы.В течение следующих трех лет мы сосредоточены на ознакомлении детей с наукой об электричестве и практическим применением электротехники. Введение в то, как инженеры решают реальные проблемы на благо общества.
В настоящее время я работаю над онлайн-контентом для программы, которая будет ориентирована на молодых учащихся (4-6 классы), изучающих основы электричества, в частности, возобновляемых источников энергии, в данном случае солнечной энергии. Посредством программы самостоятельного обучения дети узнают и исследуют электричество и энергию по мере их знакомства с реальным проектом, т.е.е. Освещение детей, проживающих в лагерях беженцев по всему миру. По завершении пятинедельной программы дети объединяются в группы, чтобы построить солнечные светильники, которые затем отправляют детям из неблагополучных семей по всему миру.
Как некоммерческий образовательный фонд, мы ищем вашу помощь в разработке простой принципиальной схемы, которую можно было бы использовать для создания солнечного светильника мощностью 1 Вт в качестве практического занятия в классе. Мы также закупили у производителя 800 комплектов солнечного света, которые дети собирают, однако нам нужен кто-то, чтобы упростить принципиальную схему этих комплектов освещения, которые будут использоваться для простых уроков по электричеству, схемам и расчету мощности. вольт, ток и преобразование солнечной энергии в электрическую.
Я с нетерпением жду вашего ответа и продолжаю вашу вдохновляющую работу.
Схемотехника
Всякий раз, когда требуется простой, но безопасный солнечный контроллер, мы неизбежно выбираем широко распространенную IC LM317. И здесь мы используем такое же недорогое устройство для реализации предлагаемой светодиодной лампы мощностью 1 Вт с использованием солнечной батареи.
Полную конструкцию схемы можно увидеть ниже:
Быстрый осмотр показывает, что при наличии контроля тока регулировкой напряжения можно пренебречь.Вот упрощенная версия вышеупомянутой концепции, использующая только схему ограничителя тока.
Схема драйвера светодиодов питания
Детали схемы (см. Принципиальную схему) R1: резистор приблизительно 100 кОм (серия Yageo CFR-25JB)
R3: резистор настройки тока – см. Ниже
Q1: малый транзистор NPN (Fairchild 2N5088BU)
Q2: большой N-канальный полевой транзистор (Fairchild FQP50N06L)
LED: светодиод питания (Luxeon, 1-ваттная белая звезда LXHL-MWEC)
Прочие части:
источник питания: я использовал старый трансформатор для защиты от бородавок, или вы могли использовать батарейки.для питания одного светодиода подойдет напряжение от 4 до 6 вольт с достаточным током. поэтому такая схема удобна! вы можете использовать самые разные источники питания, и он всегда будет гореть одинаково.
радиаторы: здесь я создаю простой светильник без радиатора. что ограничивает нас током светодиода примерно 200 мА. для большего тока вам нужно поместить светодиод и Q2 на радиатор (см. мои примечания в других инструкциях по светодиодам, которые я сделал).
прототипов плат: я изначально не использовал прототип платы, но я построил вторую после прототипа платы, в конце есть несколько фотографий, если вы хотите использовать прототип платы.
выбор R3:
Схема является источником постоянного тока, значение R3 устанавливает ток.
Расчеты:
– ток светодиода задается R3, он примерно равен: 0,5 / R3
– Мощность R3: мощность, рассеиваемая резистором, составляет приблизительно: 0,25 / R3
Я установил ток светодиода на 225 мА, используя резистор R3 с сопротивлением 2,2 Ом. Мощность R3 составляет 0,1 Вт, поэтому стандартный резистор на 1/4 Вт вполне подойдет.
Здесь я объясню, как работает схема и каковы максимальные пределы, вы можете пропустить это, если хотите.
Технические характеристики:
входное напряжение: от 2 В до 18 В
Выходное напряжение
: до 0,5 В меньше входного напряжения (падение 0,5 В)
ток: 20 ампер + с большим радиатором
Максимальные пределы:
единственное реальное ограничение для источника тока – это Q2 и используемый источник питания. Q2 действует как переменный резистор, понижая напряжение источника питания в соответствии с потребностями светодиодов. поэтому Q2 понадобится радиатор, если есть высокий ток светодиода или если напряжение источника питания намного выше, чем напряжение цепочки светодиодов.с большим радиатором эта схема может выдерживать БОЛЬШУЮ мощность.
Указанный транзистор Q2 рассчитан на питание до 18 В. Если вы хотите большего, посмотрите мою инструкцию по светодиодным схемам, чтобы узнать, как схему нужно изменить.
Без радиаторов вообще Q2 может рассеивать только около 1/2 ватта, прежде чем станет действительно горячим – этого достаточно для тока 200 мА с разницей до 3 вольт между источником питания и светодиодом.
Функция цепи:
– Q2 используется как переменный резистор.Q2 запускается включенным R1.
– Q1 используется как датчик перегрузки по току, а R3 – это «чувствительный резистор» или «резистор настройки», который запускает Q1, когда протекает слишком большой ток.
– Основной ток проходит через светодиоды, через Q2 и через R3. Когда через R3 протекает слишком большой ток, Q1 начинает включаться, что начинает отключать Q2. Выключение Q2 уменьшает ток через светодиоды и R3. Поэтому мы создали «петлю обратной связи», которая непрерывно отслеживает ток и постоянно поддерживает его точно на заданном уровне.
Эта схема настолько проста, что я собираюсь построить ее без печатной платы. Я просто соединю выводы деталей в воздухе! но вы можете использовать небольшую прототипную плату, если хотите (пример см. на фотографиях в конце).
Сначала определите контакты на Q1 и Q2. кладя детали перед собой этикетками вверх и штифтами вниз, штифт 1 находится слева, а штифт 3 – справа.
по сравнению со схемой:
Q2:
G = контакт 1
D = контакт 2
S = контакт 3
Q1:
E = контакт 1
B = контакт 2
C = контакт 3
итак: начните с подключения провода от отрицательного светодиода к контакту 2 Q2
Теперь приступим к подключению Q1.
сначала приклейте Q1 вверх ногами к передней части Q2, чтобы с ним было легче работать. Это имеет дополнительное преимущество: если Q2 станет очень горячим, это приведет к тому, что Q1 снизит ограничение по току – это функция безопасности!
– подключите контакт 3 Q1 к контакту 1 Q2.
– подключите контакт 2 Q1 к контакту 3 Q2.
– припаять резистор одной ножкой резистора R1 к этому болтающемуся проводу LED-plus
– припаяйте другую ногу R1 к выводу 1 Q2.
– присоедините плюсовой провод от аккумулятора или источника питания к плюсовому проводу светодиода.на самом деле, наверное, было бы проще сделать это первым.
– приклейте R3 к стороне Q2, чтобы он оставался на месте.
– подключите один вывод R3 к выводу 3 Q2
– подключите другой вывод R3 к выводу 1 Q1
Теперь подключите отрицательный провод от источника питания к контакту 1 Q1.
готово! на следующем шаге мы сделаем его менее хрупким.
Теперь проверьте цепь, подав питание. если он работает, нам просто нужно сделать его долговечным.Самый простой способ – нанести большую каплю силиконового клея по всей цепи. это сделает его механически прочным и водонепроницаемым. просто нанесите шарик на силикон и постарайтесь избавиться от пузырьков воздуха. я называю этот метод: «BLOB-TRONICS». На вид это не так уж и много, но работает очень хорошо, дешево и легко.
также, связывание двух проводов вместе помогает снизить нагрузку на провода.
Я также добавил фотографию той же схемы, но на прототипной плате (это «Capital US-1008», доступно на digikey) и с цифрой 0.47 Ом R3.
Светодиодный драйвер 12 В для 3шт. 3 Вт светодиодных ламп высокой мощности MR16 DIY [BY-DR32DC]
Описание:
Описание продукта
Вы предлагаете два драйвера, которые идеально подходят для 3 из 3-ваттных светодиодов высокой мощности, подключенных последовательно на 12 вольт, подходят для 3 Вт в цвете красный, зеленый, синий, белый, желтый, фиолетовый.Спецификация
- Входное напряжение: 12 В
- Выходное напряжение: 9 В ~ 12 В
- Выходной ток: 450 мА
- Функция: обрыв цепи, короткое замыкание и перегрузка
- Применение: Подходит для 3х 3 Вт светодиода высокой мощности с цоколем MR16.
Упаковочный лист
Задать вопросы
Есть вопросы по этому товару? Обратитесь в службу поддержки клиентов. (Наш представитель по работе с клиентами скоро свяжется с вами.)
Отзывы о продукте:
12В светодиодный драйвер для 3шт. 3Вт светодиодной лампы высокой мощности MR16 DIY
12В светодиодный драйвер для 3шт. 3Вт светодиодной лампы высокой мощности MR16 DIY
- 5 звезд Хороший способ сохранить светодиоды ,
Гэри.Харью
Недорогой, хорошо сложенный, компактный. Намного лучше защитить ваши светодиоды, чем один резистор. Я даже не думаю о новом проекте Led без одного из них.
12В светодиодный драйвер для 3шт. 3Вт светодиодной лампы высокой мощности MR16 DIY
- 5 звезд Цены и производительность Godd ,
shenandoah.Saks
Очень компактный * хорошее качество сборки * легко улучшить.Очень хороший светодиодный драйвер, который должен быть для проекта DIY Очень дешевый
12В светодиодный драйвер для 3шт. 3Вт светодиодной лампы высокой мощности MR16 DIY
12 В светодиодный драйвер для 3 шт. 3 Вт высокой мощности светодиодной лампы MR16 DIY Рейтинг: 4,5 из 5 на основе 4 отзыва.
Напишите отзыв и получите скидку 5%:
Поиск отзывов
- Вы нашли то, что искали?
- Если вам нужна помощь или у вас есть обратная связь со службой поддержки клиентов.Нажмите здесь
Лучшее соотношение цены и качества входной светодиодный драйвер 12 В – Отличные предложения на входной светодиодный драйвер 12 В от глобальных продавцов светодиодных драйверов 12 В
Отличные новости !!! Вы находитесь в нужном месте для драйвера входа 12 В для светодиода. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший драйвер для входных светодиодов на 12 В вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели свой 12-вольтовый светодиодный драйвер на AliExpress. С самыми низкими ценами в Интернете, дешевыми тарифами на доставку и возможностью получения на месте вы можете сэкономить еще больше.
Если вы все еще не уверены в драйвере 12 В для светодиодов и думаете о выборе аналогичного продукта, AliExpress – отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово – просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны – и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести 12v input led driver по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
Home, Furniture & DIY 30W 240V AC to 12V DC Power Supply Transformer for LED Strip Light Lighting
30W 240V AC to 12V DC Power Supply Transformer for LED Strip Light
30W 240V AC to 12V DC Power Supply Driver Transformer for Светодиодная лента.Светодиодный драйвер постоянного тока 12 В, макс. 30 Вт. 1x 12V 2.5A светодиодный драйвер. Рабочая температура: -40 ℃ – 65 ℃ +. Мощность: 30 Вт макс .. Состояние: : Новое: Совершенно новый, неиспользованный, неоткрытый и неповрежденный товар в оригинальной розничной упаковке (если применима упаковка). Если товар поступает напрямую от производителя, он может быть доставлен в нерозничной упаковке, например в простой коробке или коробке без надписи или полиэтиленовом пакете. См. Список продавца для получения полной информации. См. Все определения условий : Бренд: Небрендированный , Тип тока: : Постоянный ток : MPN: : Не применяется , Мощность: : 30 Вт : Тип лампы: : Гирлянда , Тип: Driver Драйвер светодиода : Длина: : 31 мм , Напряжение: : 12 В EAN: : Не применяется ,。
30 Вт 240 В переменного тока в 12 В постоянного тока Трансформатор источника питания для светодиодной ленты
5 M / Женщины 10 M = длина стопы 10, Великолепный браслет из драгоценных камней из черного оникса Ювелирные изделия ручной работы, покрытые стерлинговым серебром 925 – Регулируемый и гибкий браслет-цепочка с длинными звеньями – (SF-1265): Одежда.Купите женские спортивные брюки с низкой талией и широкими штанинами Jmwss QD с широкими штанинами и другими активными штанами в магазине OEM Замена тормозной магистрали – соответствует маршрутизации OEM. Lemforder 3435901 Рычаг подвески: Global Store UK, выдающееся качество. Размер открытия багажника составляет приблизительно 15. За дополнительную плату мы можем организовать быструю доставку. Изготовлен из высококачественного холста, 30 Вт, 240 В переменного тока – 12 В постоянного тока, преобразователь питания для светодиодной ленты , стоимость бренда покрывает широкий спектр сегменты рынка, мощность 5 мВт на элемент, изолированный 4 резистора, сеть / массив ± 200 ppm / ° C 1206 (3216 метрических единиц).Тот же самый типичный тюрбан – литам – полностью закрывает лицо туарегов, кроме глаз. Легкая юбка А-силуэта с красивыми голубыми бабочками и цветами. декоративная пайка бисером и фестонами, •••••••••• [КАК ЗАКАЗАТЬ. Я могу персонализировать с именами за дополнительную плату в размере 1 доллар США, свинец и никель бесплатно ••••••••••••••••••••••••••• ДЛИНА ОЖЕРЕЛЬЯ Пожалуйста, выберите длину из, Выберите приоритетную доставку для более быстрой доставки, 30 Вт 240 В переменного тока в 12 В постоянного тока Драйвер источника питания Трансформатор для светодиодной ленты , И вот мантра совершенства мудрости: высота x 3 1/8 ширины x 4 1/4 глубины Голая древесина, заряжает два USB-устройства одновременно без адаптеров, отличается высокой скоростью.и не из необработанного или полированного алюминия, толстовка с капюшоном Girl’s Riverdale с длинным рукавом и открытыми плечами Новинка Толстовка с капюшоном Southside Serpents Верхняя одежда, светодиодная лампа для растений для цветочного сада, теплицы и органической почвы – 100 Вт E26: Сад и на открытом воздухе, теперь поставляется с ремешком с пряжкой и дополнительной стяжкой ремни, помещенные на каждом углу или крышке, венок из искусственных цветов, венки из искусственных тюльпанов, венок из искусственных входных дверей, домашний декор для вечеринки, свадьбы, дня святого Валентина (45 см): Кухня и дом, карта поиска Резиновые ножки, бамперы, колодки, D18x15xH8mm, черный 20шт: DIY & Tools. 30 Вт 240 В переменного тока в 12 В постоянного тока Преобразователь питания для светодиодных лент , делая ваш рабочий стол аккуратным и аккуратным, Briggs & Stratton OEM 312503GS Запасной дроссель: инструменты и предметы домашнего обихода.
uk – Совместима ли моя светодиодная лента с регулируемой яркостью с любым драйвером 12 В / 2 А?
Будьте ясны в отношении того, что подключается к сети переменного тока, а что нет. Вещи, которые работают, должны быть внесены в список UL или эквивалентной лаборатории тестирования, такой как CSA или ETL. Эти знаки абсолютно бесполезны: RoHS, CE, CCC, FCC.
На самом деле здесь есть 3 отдельные вещи.
Стандартный блок питания на 12 В.
Подойдет любой обычный источник питания на 12 В, постоянного напряжения (т.е. нормальный) . Можно использовать взломанный блок питания ПК. Автомобильный аккумулятор. Выход солнечного контроллера заряда. Зарядное устройство 12 В. Восемь D-клеток. Whatevs. Неважно.
Это не драйвер . Драйвер – это особая вещь, предназначенная для управления отдельными светодиодными излучателями или цепочками – да, я понимаю, где это может сбивать с толку.Драйверы светодиодов используются с необработанными светодиодными излучателями (то есть необработанными деталями от Cree) , которые необходимо приводить в действие при определенном точном токе (но напряжение может варьироваться по всей карте). Драйверы используются для светодиодов бытовой техники, например, в торшерах IKEA, где 18 светодиодов должны работать при токе 350 мА при некотором напряжении от 52 до 80 вольт. Это не то, что у вас есть. Позже я расскажу, как светодиодные ленты регулируют ток .
Вам просто нужен любой стандартный источник постоянного напряжения на 12 В, который существует в бесконечном количестве форм. В светодиодных лентах источник питания не играет никакой роли в диммировании. (Фактические драйверы есть, но, как уже говорилось, вы не можете использовать драйвер.)
Диммер (или если цветной, контроллер)
Этот модуль получает питание от источника питания 12 В и выводит мощность ШИМ для ограниченного количества светодиодных лент .
Интересный факт, это тот же самый блок, который обычно может работать в цепи 24 В (полоски 24 В PS + 24 В).
Теперь, если вам нужно управлять светодиодами мощностью более 2 ампер (или независимо от номинала диммера), вы можете вместо этого использовать его выход в качестве сигнала и подать его на усилитель .Большинство усилителей имеют 3-4 канала для цветных светодиодов, но вы можете просто подать один и тот же сигнал на все 4 канала.
Ленты светодиодные собственно
Помните, что я сказал о драйверах? Ваша полоса , режется каждые 2 дюйма или около того. Присмотритесь к одному сегменту: вы найдете 3 светодиода и загадочную часть. Загадочная часть – это резистор , и его задача – ограничитель тока; это очень простая пассивная версия драйвера.
Если это так просто, то почему другие используют активные драйверы? Потому что они очень сильно управляют светодиодами, как можно ближе к красной линии производителя… , что означает, что они должны поставить большие радиаторы на светодиоды . У этих полосок нет радиаторов, поэтому они работают на скромном уровне. Это менее рентабельно, , но, черт возьми, на цену жаловаться не приходится.
.