- Расчет водяного теплого пола , онлайн калькулятор теплопотери
- Желаемая температура воздуха
- Температура подачи и обратки
- Температура в нижнем помещении
- Шаг укладки трубы теплого пола
- Длина подводящих труб от коллектора
- Толщина стяжки над трубой теплого пола
- Максимальная температура поверхности пола
- Минимальная температура поверхности пола
- Средняя температура поверхности пола
- Тепловой поток вверх
- Тепловой поток вниз
- Суммарный тепловой поток
- Удельный тепловой поток вверх
- Удельный тепловой поток вниз
- Суммарный удельный тепловой поток
- Расход теплоносителя
- Скорость теплоносителя
- Перепад давления
- Программа теплый пол 3D калькулькулятор —
- Калькулятор для расчета водяного теплого пола онлайн
- Калькулятора теплых полов
- Теплый пол (водяной теплый пол)
- Расчет теплого водяного пола: программа калькулятор
- Подбор этажных распределительных узлов для систем водяного отопления
- Вода – удельная теплоемкость
- 04 [BTU (IT) / (моль ° R)]
- Расчет рекуперации водонагревателя
- Расчет ОВК
- куб.
- Испарение с водной поверхности
- Онлайн калькулятор расчета водяного теплого пола в зависимости от помещения
- Калькулятор расчета длины трубы для теплого пола
- Калькулятор теплых водяных полов
- как рассчитать количество труб напольного обогрева
- Расчет водяного теплого пола, программа онлайн
- Как рассчитать количество проводов, необходимых для установки DITRA-HEAT
- HVAC – Оцените размер вашей системы отопления / охлаждения (в БТЕ)
- Калькулятор БТЕ
- Полы с подогревом, Hydronic, теплые полы, полы с легким лучистым подогревом
- Калькулятор кабеля WarmWire | SunTouch
- Чтобы определить количество продукта, необходимое для вашего домашнего региона, введите информацию ниже и выберите «Рассчитать».
- Доступное напряжение 120 В переменного тока 240 В переменного тока Желаемое расстояние между проводами 3,5 32,5 Тип чернового пола под отапливаемым помещением БетонДерево Предложите комплект, соответствующий вашему проекту.Да нет
- Ваш расчет
- Требуется более или менее утеплить пол в этой комнате?
- Выберите отдельные продукты (для некоторых вариантов требуется выбрать более одного элемента для завершения установки):
- Или выберите отдельные продукты (некоторые варианты требуют выбора нескольких элементов для завершения установки):
- Что такое U-значение? Объяснение тепловых потерь, тепловой массы и онлайн-калькуляторов
- Показатель U или коэффициент теплопередачи (обратный значению R)
- Расчет коэффициента теплопередачи
- Измерение значения U
- Калькуляторы коэффициента теплопередачи
- R-value или теплоизоляция (обратная U-value)
- значение k или теплопроводность (также известное как значение лямбда или λ; величина, обратная удельному тепловому сопротивлению)
- Значение Y, или теплопроводность, или коэффициент теплопередачи
- фунтов на квадратный дюйм (Ψ) или линейный коэффициент теплопередачи
- Удельное термическое сопротивление (обратное теплопроводности)
- Теплопроводность (обратная термическому сопротивлению)
- Тепловое сопротивление (обратное теплопроводности)
- Тепловая масса
- Декремент
- Химическая фаза
Расчет водяного теплого пола , онлайн калькулятор теплопотери
Желаемая температура воздуха
Температура воздуха в помещении, которая является комфортной для жильцов. Этот показатель весьма индивидуален – кто-то любит чтобы в комнате было очень тепло, а кто-то не переносит жару и предпочитает прохладу.
В среднем можно принять 20⁰С. По европейским нормам в спальнях, гостиных, кабинетах, кухнях, столовых принимается 20-24⁰С; в туалетах, гардеробных, кладовых – 17-23⁰С; в ванных 24-26⁰С.
Чем выше желаемая температура воздуха, тем больше энергии нужно затратить на ее достижение и поддержание.
ВверхТемпература подачи и обратки
Температура подачи – температура теплоносителя на входе в теплый пол (в подающем коллекторе).
Температура обратки – температура теплоносителя на выходе из контура теплого пола (в обратном коллекторе).
Температура подачи должна быть выше температуры обратки, иначе теплый пол не будет отдавать тепло в помещение.
Температура подачи должна быть выше желаемой температуры воздуха в помещении.
ВверхТемпература в нижнем помещении
Этот показатель используется для учета теплового потока вниз.
Если рассчитывается водяной теплый пол в двух- или многоэтажном доме, то в расчете используется температура воздуха в расположенной ниже комнате. Например, 22⁰С.
Если теплый пол располагается над подвалом, то используется температура, поддерживаемая в подвале. В случае, если дом не имеет подвала, а пол располагается над грунтом или на грунте, то следует использовать температуру воздуха в самую холодную пятидневку для конкретного города. Например, для Москвы это -26⁰С.
ВверхШаг укладки трубы теплого пола
Шаг укладки трубы – расстояние между трубами в стяжке теплого пола. Он влияет на теплоотдачу пола – чем меньше шаг, тем выше тепловой поток с каждого квадратного метра пола. И наоборот – чем больше шаг, тем меньше тепловой поток.
Только Европейские трубы для теплых водяных полов.Оптимальным является шаг укладки труб в пределах 100-300 мм. При меньшем шаге возможна отдача тепла из трубы подачи в трубу обратки, а не в помещение. При большем шаге может образоваться «полосатое тепло» – участки, где нога отчетливо чувствует тепло над трубами и холод между ними.
Влияние шага укладки трубы теплого пола на равномерность прогрева можно посмотреть на рисунке.
ВверхДлина подводящих труб от коллектора
Это длина трубы от коллектора до начала контура теплого пола, т.е. точки, где трубы укладываются выбранным рисунком с заданным шагом. Плюс длина от конца контура до обратного коллектора.
Если коллектор установлен в том же помещении, где монтируется теплый пол, то длина подводящей магистрали минимальна и практически не оказывает влияния на гидравлическое сопротивление петли. Если же коллектор устанавливается в другом помещении, то длина подводящей магистрали может оказаться большой.
Толщина стяжки над трубой теплого пола
Стяжка над трубой выполняет 2 функции – воспринимает нагрузку от предметов и людей, защищая трубу от повреждений, и распределяет тепло по поверхности пола.
Если стяжка над трубой армируется, то ее минимальная толщина должна быть не меньше 30 мм. При меньшей толщине стяжка не будет обеспечивать необходимую прочность и будет ощущаться эффект «полосатого тепла» – неравномерный нагрев поверхности пола.
Также, стяжку не стоит делать толще 100 мм, т.к. это приведет к тому, что пол будет прогреваться очень долго. При этом регулирование температуры становится практически невозможным – изменение температуры теплоносителя будет ощутимо спустя несколько часов, а то и сутки.
Оптимальная толщина стяжки без добавления пластификатора и фибры – 60-70 мм. Добавление фибры и пластификатора позволяет заливать стяжку толщиной 30-40 мм.
Влияние толщины стяжки на равномерность прогрева можно посмотреть на рисунке.
ВверхМаксимальная температура поверхности пола
Максимальная температура поверхности пола – температура поверхности пола над трубой контура в стяжке. Согласно СНиПу не должна превышать 35⁰С.
ВверхМинимальная температура поверхности пола
Минимальная температура поверхности пола – температура поверхности пола на равном расстоянии от соседних труб контура. Чем больше шаг укладки трубы, тем больше разница между максимальной и минимальной температурой пола.
ВверхСредняя температура поверхности пола
Средняя температура поверхности пола – среднее значение между максимальной и минимальной температурой поверхности пола.
Согласно СНиПу, в помещениях с постоянным нахождением людей эта температура не должна превышать 26⁰С. В помещениях с непостоянным пребыванием людей и с повышенной влажностью (ванные, бассейны) средняя температура поверхности пола не должна превышать 31⁰С.
На практике такие значения являются заниженными – ощущения тепла для ног нет, поскольку температура ступни человека 26-27⁰С. Оптимальной является температура 29⁰С – при этом обеспечивается комфорт. Поднимать температуру выше 31⁰С не стоит, т.к. это приводит к высушиванию воздуха.
ВверхТепловой поток вверх
Количество тепла, которое теплый пол отдает на обогрев помещения.
Если планируется использовать водяной теплый пол в качестве основной системы отопления, то этот показатель должен немного превышать максимальные теплопотери помещения.
Если основным видом отопления являются радиаторы, то тепловой поток вверх компенсирует лишь незначительную часть тепловых потерь, а первоочередным показателем является температура пола.
ВверхТепловой поток вниз
Количество тепла, уходящее от труб водяного теплого пола вниз. Поскольку эта энергия расходуется не на обогрев помещения, то тепловой поток вниз является потерей тепла. Для повышения энергоэффективности системы этот показатель должен быть как можно ниже.
Добиться этого можно увеличением толщины утеплителя. ВверхСуммарный тепловой поток
Общее количество выделяемого теплым полом тепла – вверх (полезного) и вниз (потери).
ВверхУдельный тепловой поток вверх
Тепловой поток вверх (полезный) с каждого квадратного метра теплого пола.
ВверхУдельный тепловой поток вниз
Тепловой поток вниз (теплопотери) с каждого квадратного метра теплого пола.
ВверхСуммарный удельный тепловой поток
Общее количество тепла, выделяемого каждым квадратным метром теплого пола.
ВверхРасход теплоносителя
Этот параметр необходим для гидравлической балансировки
нескольких контуров, подключенных к одному коллектору теплого пола. Полученное
значение необходимо выставить на шкале расходомера.
Скорость теплоносителя
Повлиять на это значение можно диаметром или длиной трубы.
ВверхПерепад давления
По этому параметру подбирается циркуляционный насос. Перепад давления в контуре (между подающим и обратным коллектором) указывает какой напор должен обеспечивать насос. Если насос не обеспечивает требуемый напор, то можно выбрать более мощную модель, или уменьшить длину трубы.
ВверхПрограмма теплый пол 3D калькулькулятор —
- Калькулятор для расчета водяного теплого пола онлайн
- Калькулятора теплых полов
- Теплый пол (водяной теплый пол)
- Расчет теплого водяного пола: программа калькулятор
- Подбор этажных распределительных узлов для систем водяного отопления
- Вода – удельная теплоемкость
- 04 [BTU (IT) / (моль ° R)] [BTu (IT) / (фунт м ° F)] [ккал / (кг · K)] [кДж / ( кг K)] [BTU (IT) / кмоль ° R] [BTu (IT) / фунт м ° F] [ккал / кг K] [кДж / кг К] 32.2 40,0 1,007 4,217 40,032 1,008 4,220 40 39,9 1,005 4,208 39,916 1,005 4,208 1,005 4,208 900 1,001 4,191 39,801 1,002 4,196 60 39,6 0,996 4. 169 39,739 1,001 4,189 80 39,2 0,986 4,128 39,660 0,999 4,181 100 38,7 0,975 4,082 39,682 0,998 4,179 120 38,3 0,963 4,033 39,662 0,999 4.181 140 37,7 0,950 3,977 39,702 1.000 4,185 160 37,2 0,937 3,923 39,761 1,001 39,761 1,001 180 36,7 0,923 3,865 39,835 1,003 4,199 200 36.1 0,909 3,805 39,927 1,005 4,209 212 35,7 0,900 3,768 39,993 1,007 4,216 22083 4,216 22083 3,745 40,042 1,008 4,221 240 35,0 0,880 3,686 40.186 1,012 4,236 260 34,4 0,867 3,629 40,364 1,016 4,255 280 33,9 0,854 3,574 40,580 1,0 4,278 300 33,4 0,841 3,522 40,838 1,028 4,305 350 32.3 0,813 3,404 41,685 1,050 4,394 400 31,3 0,789 3,302 42,902 1,080 4,522 450 30,4 3,209 44,009 1,108 4,639 500 29,7 0,748 3,130 47.296 1,191 4,986 550 28,8 0,725 3,035 51,318 1,292 5,410 600 28,3 0,713 2,987 59,6903 900 6,292 625 28,4 0,716 2,997 66,611 1,677 7,022 650 28.9 0,728 3,047 82,851 2,086 8,734 675 29,9 0,754 3,156 126,670 3,189 13,353 . Расчет рекуперации водонагревателя
- Расчет ОВК
- куб. Футов в минуту 720 галлонов в минуту 210 галлонов в минуту . Испарение с водной поверхности
Калькулятор для расчета водяного теплого пола онлайн
Как самостоятельно рассчитываются отдельные элементы отопительной системы
Для начала представим вашему вниманию простую и понятную схему – рисунок, на которой изображено расположение водяных контуров в жилых помещениях.
Рассчитывать мощность следует начинать с элементарных, простых шагов. План расположения водяного отопительного контура станет основной для последующих расчетов. На схеме обычно указывается так же расположение оконных и дверных проемов.
Такие схемы выполняются на миллиметровой бумаге, в масштабе 10 мм соответствует 0,5 м.
Для определения полезной отапливаемой площади следует отталкиваться от шага. Обычно применяются следующие соотношения:
- при шаге 15 см – полезная площадь не должна превышать 12 кв. метров;
- при шаге 20 см – не более 16 м2;
- при шаге 25 см — не более 20 м2;
- шаг в 30 см позволяет эффективно отапливать помещение площадью в 25 м2.
Если площадь меньше рекомендуемых параметров, контуры лучше оставлять целым.
Выбираем трубы: материал, диаметр, количество
Для скрытых систем отопления можно использовать металлические и полимерные трубы. Наиболее долговечной и эффективной по праву считается медная система. Однако в нашей стране этот материал используется достаточно редко. Причиной тому – высокая цена. Кроме того, для монтажа медных труб необходимо специальное дорогостоящее оборудование, а значит, самостоятельная их укладка не рентабельна.
Немного чаще чем медь для монтажа «подпольных» систем домашние умельцы используют полипропилен и сшитый полиэтилен (РЕХ-труба). Но и эти материалы нельзя назвать самыми попу
Калькулятора теплых полов
Для чего это нужно
Калькулятор теплого пола позволяет легко рассчитать необходимое количество греющего кабеля для основных типов помещений.
Кнопка «Рассчитать» запускает расчет параметров монтажа.
Вы можете сохранить результаты расчета в формате pdf и перейти в каталог для заказа товара.
Результаты программы расчета могут отличаться от результатов профессиональных инженерных расчетов.
Памятка перед монтажем. Частично аккумулирующее отопление
Снижение затрат на электроэнергию может достигаться за счет использования систем отопления, задействованных в ночные часы. Для этого необходимо, чтобы тепло накапливалось в бетонной стяжке во время действия низких тарифов, и обогревало помещение днем. Бетонная стяжка прогревается нагревательными кабелями, интенсивность, скорость прогревании накопление тепла зависит от толщины стяжки, глубины залегания кабеля и материала покрытия пола. Нагревательные кабели можно использовать как для укладки в базовую, так и выравнивающую стяжку. Частично аккумулирующее отопление обычно используется с такими материалами покрытия пола как линолеум, дерево, ковролин. Необходимо убедиться в том, что толщина стяжки достаточна для накопления тепла, в противном случае требуется заложить дополнительные источники отопления.
Правильный температурный режим
Для достижения максимального уровня комфорта мы рекомендуем поддерживать следующие температуры поверхности пола:
- Линолеум 26-28 °C
- Керамическая плитка/ бетонный пол 26-28 °C
- Ламинат 23-27 °C
Максимальная температура пола может быть ограничена терморегулятором.
Если Вам неизвестна максимально допустимая температура поверхности для Вашего материала покрытия пола, пожалуйста, свяжитесь с его производителем.
Важно! Дерево является хорошим теплоизоляционным материалом.
Что нужно учесть при монтаже теплого пола
- Нагревательные кабели не устанавливаются под мебелью и стационарными предметами
- Необходимо соблюдать монтажный интервал в расчетных пределах и минимальный радиус изгиба
- Нельзя допускать пересечения нагревательных кабелей друг с другом
- Кабель должен находиться в равномерной и однородной среде по всей его длине
- Во избежание перегрева, кабель нельзя устанавливать внутри теплоизоляционного слоя
- Во избежание физических повреждений, кабель укладывается только на очищенную поверхность
- Нагревательный кабель не должен проходить через подвижный шов, изломы или монтироваться в зонах возможного перегрева. Расстояние до источников тепла, например, камина, печи в сауне и т. п. должно быть не менее 0,5 м
- Возможность использования нагревательного кабеля с материалами покрытия пола регламентируется их производителями
- Резистивный нагревательный кабель нельзя укорачивать или наращивать
- Во всех зонах необходимо использовать устройство защитного отключения на 30 мA
- Угол установки гофро-трубки под датчик на стене должен быть таким, чтобы датчик было легко извлечь в случае его выхода из строя. Датчик устанавливается посередине между витками кабеля
- Монтажный интервал может быть меньше в зонах максимальных теплопотерь, например, окон, но не менее 2-х радиусов изгиба
- Нельзя включать кабель до окончательного высыхания стяжки или выравнивающего раствора. Точные сроки регламентируются производителями. Для бетонной стяжки этот срок составляет около 30 дней, для выравнивающего раствора или клея — до 14 дней.
Теплый пол (водяной теплый пол)
- VALTEC
- Теплый пол (водяной теплый пол)
Водяное напольное отопление становится все более популярным, поскольку обладает рядом преимуществ и является более энергоэффективными, по сравнению с традиционными радиаторными системами. Поскольку тепло в данном случае передается излучением от нагретой поверхности, практически отсутствуют конвективные потоки. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, что существенно снижает теплопотери через кровлю, верхние части стен и создает оптимально комфортные температурные условия для находящихся в помещении людей. Экономия от применения водяных теплых полов может достигать 10–30 %. Это возможно благодаря снижению средней температуры воздуха в помещении на 2 °С и температуры нагрева теплоносителя до 30–45 °С. Кроме того, низкотемпературные системы отопления (теплый пол) обладают ярко выраженным эффектом саморегулирования, то есть теплоотдача с поверхности пола прекращается, когда температура в комнате, в результате внешних воздействий (выглянуло солнце) достигает температуры поверхности пола. В то же время, теплоотдача возрастает, когда снижается температура в помещении. Радиаторы работают по тому же принципу, но разница температур между воздухом в комнате и поверхностью радиаторов так велика, что эффект саморегулирования практически пропадает.
VALTEC поставляет на российский рынок широкий ассортимент качественной продукции, позволяющий реализовать систему напольного отопления любой сложности. Это металлополимерная труба, надежные обжимные и пресс-фитинги, коллекторные блоки, насосно-смесительные узлы, а также автоматика, обеспечивающая заданный уровень комфорта в помещениях. Для специалистов разработаны Альбом типовых схем водяного отопления для жилых домов, где собраны различные варианты организации одно- и многоконтурных систем, а также программный комплекс для расчета элементов инженерных систем VALTEC. Программа VALTEC.PRG дает возможность определить теплопотребность помещений и грамотно определить теплотехнические и гидравлические параметры напольного отопления.
Кроме того, инженеры VALTEC продумали готовые решения для монтажа водяного теплого пола с различным уровнем автоматизации («Эконом», «Комфорт», «Премиум») в помещениях площадью 20, 40, 60, 80 и 120 м2. Воспользовавшись этими спецификациями, можно самостоятельно укомплектовать систему напольного отопления своего дома или при выполнении монтажных работ на объекте заказчика.
В помощь специалистам и владельцам жилья разработан также «Типовой комплект водяного теплого пола для помещений площадью до 60 м2».
Комплексный подход VALTEC к системам напольного отопления гарантирует их экономичность, оптимальную стоимость и длительную безаварийную работу.
Задай свой вопрос по водяным теплым полам
Интервью
Водяной теплый пол valtec: есть ответы на все вопросы
Каждый, кто начинал строительство нового дома, сталкивался с проблемой выбора. Сначала это выбор проекта, дизайна, строительной организации, затем – материалов, технологий и т.д. Желая помочь читателям в выборе системы отопления, мы пообщались с руководителем направления «Водяной теплый пол» VALTEC Сергеем Пискаревым.
Прежде всего, VALTEC известен как производитель труб и арматуры для внутренних инженерных систем. Почему с 2010 года одним из приоритетных направлений ее развития стали системы для напольного отопления?
– Любому бизнесу необходимо развитие. Малейший простой на месте – это шаг назад. Но и двигаться необходимо в перспективном и востребованном направлении. Проанализировав ситуацию на рынке и оценив свои возможности, мы пришли к решению, что водяной теплый пол – это именно то, что нужно. Специалисты VALTEC давно занимаются подобными системами. Большинство необходимого для их монтажа оборудования у нас уже было. А изучение рынка показало, что в перспективе данная технология может быть очень востребованной. Хотя многие пользователи до сих пор не знают о преимуществах напольного отопления и по старинке применяют только радиаторы.
В чем же заключаются эти преимущества?
– Их достаточно много. В первую очередь – комфорт. В отличие от традиционных отопительных приборов конвективного типа (радиаторов), напольное отопление передает тепло главным образом излучением, и оно распределяется по всему помещению равномерно, отсутствуют зоны локального перегрева или недостаточно прогреваемые участки. При этом температура воздуха постепенно понижается от пола до потолка, а для организма человека такие условия наиболее близки к оптимальным. Необходимо отметить и такие преимущества «теплого пола», как энергоэффективность, эстетика, гигиеничность.
Вы сказали, что водяное напольное отопление – это энергоэффективная система. А чем это обеспечивается?
– Экономия энергии при использовании системы «водяной теплый пол» может быть очень существенной. Дело в том, что температура теплоносителя, поступающего в трубы теплого пола, составляет всего 35–50 °С, что позволяет снизить энергозатраты на нагрев. При этом можно использовать низкотемпературный конденсационный котел с увеличенным КПД. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, поэтому уменьшаются теплопотери через кровлю и верхние части стен.
Вместе с тем, немаловажную роль в экономии играет эффект саморегулирования водяного теплого пола, то есть система сама реагирует на перепады температуры в помещении, изменяя мощность теплового потока. Например, представим себе, что выглянуло солнце, и воздух в комнате нагрелся на 2–4°С. При этом теплоотдача теплого пола самопроизвольно уменьшается на 36–70 %.
А в чем проявляются эстетика и гигиеничность «теплого пола»?
– Все элементы системы надежно скрыты под напольным покрытием, что, согласитесь, лучше подойдет для современных интерьеров, чем торчащие из пола и стен трубы. Это становится особенно важным при использовании в строительстве панорамных окон – от пола до потолка. Да и в ретро-интерьер радиаторы вписываются не очень органично.
Так как тепло передается не конвекцией, а излучением, в воздухе помещения практически отсутствует циркуляция пыли и микроорганизмов. Эта особенность напольного отопления как нельзя кстати для аллергиков. Кроме того, в отличие от электрического теплого пола, водяной не создает электромагнитных полей.
Плюс ко всему, напольное отопление исключает возможность детского травматизма, а в некоторых случаях, как например, при устройстве спортивного зала, оно является самым безопасным решением.
Скажите, какие «подводные камни» могут ожидать владельца коттеджа, если он примет решение использовать систему водяного напольного отопления?
– Главное сделать правильный выбор в пользу того или иного производителя и не ошибиться с монтажной организацией, а точнее – с квалификацией ее специалистов. Неграмотный монтаж способен свести на нет преимущества даже самого передового оборудования. Вот почему мы много внимания уделяем обучению монтажников. Ежемесячно наши специалиста посещают партнеров в различных регионах России и других стран СНГ, проводят семинары, отвечают на вопросы практиков. На семинары, которые каждую пятницу проводятся в офисе VALTEC, может записаться любой желающий. Кроме того, VALTEC издано большое количество технической литературы, разработана компьютерная программа для точного расчета системы.
Водяной теплый пол: вопросы и ответы – проектирование, монтаж, эксплуатация
Расчет теплого водяного пола: программа калькулятор
Теплый пол … ВодянойВодяной теплый пол может быть как альтернативный, так и основной источник тепла. От этого следует отталкиваться при расчетах. Например, может использоваться схема, которая будет обеспечивать полноценный обогрев дома и наоборот, легкий подогрев. Если же напольное отопление будет основным, то должна быть хорошо продуманная и надежная система регулировки.
По этой причине расчет теплого водяного пола требует внимания. В помощь к этому имеются разные программы и онлайн калькулятор. Это поможет выполнить все предварительные расчеты без ошибок. Ошибка на данном этапе может закончиться плохими последствиями, вплоть до демонтажа стяжки.
к содержанию ↑Что необходимо учесть при расчетах
Перед началом расчета важно знать основные характеристики объекта. Как уже говорилось, на этом этапе следует определиться с методом обогрева данной системы, она будет вспомогательной или основной. При расчете следует учесть конфигурацию и площадь комнаты. Для этого в помощь будет план или разрез указанных размеров.
Если у вас отсутствует план с точными размерами помещения, то первым делом необходимо его сделать!
Чтобы создать такой план потребуется знать такую информацию:
- Из какого материала строился дом (бетон, дерево, блоки, кирпичи и прочее).
- Остекление выполнено из стеклопакетов или профиля.
- Средняя температура местности проживания в зимний период.
- Имеется ли дополнительный или альтернативный источник тепла.
Более того, важно знать какая температура должна быть внутри помещения при работающем отоплении. Например, если в помещении будет постоянно находится люди, то достаточно будет 29°С. Для проходного и служебного помещения достаточно будет 35 и 33°С соответственно. Кроме всего прочего, важно выяснить тип и толщину теплоизоляции пола. Уже на этом этапе следует решить, какой будет использоваться отделочный материал для пола. Благодаря сбору такой информации получиться произвести точный расчет теплого водяного пола. Тем более что при использовании онлайн калькулятора все эти данные необходимо указать.
Видео об изготовлении схемы теплого пола:
Не менее важно определиться какую температуру должен иметь теплоноситель. В этом вопросе следует учесть два фактора:
- Ряд напольных покрытий имеют температурное ограничение нагревания до 35°С.
- Система, имеющая насос, котел, радиаторы и трубопровод никогда не будет иметь температуру теплоносителя более 60°С.
Другой вопрос, который следует учесть: как именно будет осуществляться контроль температуры нагрева пола? Как правило, для этого используют терморегулятор, а также датчик, который монтируется непосредственно в пол. Но для водяных систем этих датчиков быть два, для обратки и подачи.
к содержанию ↑Важные условия для продуктивной работы водяного обогрева пола
Важно знать не только максимально точную информацию по техническим характеристикам дома, но и учитывать особенности трубопровода. Поэтому перед тем, как рассчитать теплый пол при помощи специальной программы следует узнать такие подробности:
- Какая общая длина отопительного контура. По требованиям монтажа она не должна превышать 120 м.
- Разница греющих труб не должна превышать 15 м.
- Расстояние между трубами. В среднем оно будет находиться в пределах 100-200 мм.
Уже с этой информацией можно выполнить необходимые расчеты.
к содержанию ↑Два метода расчета теплого водяного пола
Существует два решения проблемы по расчету теплых полов. В первом случае потребуется помощь квалифицированных специалистов или компании. Они произведут все необходимые вычисления и измерения. После, они предоставят для вас подробный расчет, учитывая индивидуальные особенности помещения.
В таких компаниях работаю высококвалифицированные специалисты, которые имеют опыт проектирования на промышленном уровне. Это позволит рассчитывать на максимально точный результат, где будут учитываться разные нюансы и тонкости.
Если вы пожелаете, то вам предоставят консультацию по выбору наилучшего напольного покрытия. Процесс изготовления проект получится быстрей, если вы сразу предоставите все чертежи по планировке комнат.
Другой метод не затратный. Для этого на помощь приходит онлайн калькулятор. При этом вы сможете самостоятельно произвести точные вычисления стоимости работ и необходимых материалов. Использование такой программы, позволит определить необходимую мощность пола. Этот показатель будет исходить из общих тепловых потерь. Так, чтобы узнать эту информацию, в калькуляторе следует ввести данные о площади комнаты. При этом в эту сумму не должны включаться зоны, где будет стоять мебель и другое оборудование.
Калькулятор позволит вам избавиться от потребности производить самостоятельные сложные расчеты. Хотя полученные данные будут относительные, от них можно дальше отталкиваться. Также вы сможете узнать о масштабах будущего проекта. При желании можно будет узнать сколько необходимо стяжки. Для этого в программу вводятся следующие показатели:
- Этаж.
- Площадь в м2.
- Толщина стяжки.
Безусловно, точную сумму вы сможете узнать только у специалистов. Но в таком случае вам получиться получить предварительную информацию. В большей степени на конечную сумму за работу и материалы влияет сложность работ, особенности проекта здания и многое другое. Все эти нюансы учитывают специалисты из специализированной компании. Итак, перед тем, как рассчитать теплый водяной пол на калькуляторе помните, что вы получите приблизительные данные. На нашем сайте вы сможете воспользоваться программой онлайн калькулятор.
Видео расчета теплых полов программой:
Остались вопросы?
Подбор этажных распределительных узлов для систем водяного отопления
Подключение к стоякам: СлеваСправа
Dy: 3/4″1″1 1/4″
Gmax = 1,13 м3/час Qmax = 26,3 KВт
Вид балансировки узла: Без регулировкиБалансировочный клапанРегулятор перепада давлений
Крепление: РамаВстроенный шкафПристроенный шкаф
Коллекторы
Тип коллекторного блока: Без перепускного клапанаС перепускным клапаном
Число выходов: 345678
Dy коллектора: 1″1 1/2″
Воздухоотводчики: РучныеАвтоматические
Манометры: НетЕсть
Дренажные краны: НетЕсть
Теплосчетчики
Место установки: На прямойНа обратной
Тип выхода: НетM-BusИмпульсный + M-Bus
Выходы
Регулировка: НетБалансировочный клапанНастроечный клапанВентильСтабилизатор расхода со скрытой настройкойСтабилизатор расхода с открытой настройкой
Выход
Gном ТС м3/час: Gрасч ТС м3/час: ΔPрасч КПа
Вода – удельная теплоемкость
Удельная теплоемкость (C) – это количество тепла, необходимое для изменения температуры единицы массы вещества на один градус.
При расчете массового и объемного расхода в системах водяного отопления при более высоких температурах следует скорректировать удельную теплоемкость в соответствии с рисунками и таблицами ниже.
Удельная теплоемкость дается при различных температурах (° C и ° F) и давлении водонасыщения (которое для практического использования дает тот же результат, что и атмосферное давление при температурах
- I удельная теплоемкость сохора (C v ) для воды в замкнутой системе постоянного объема , (= изометрической или изометрической ).
- Изобарическая теплоемкость (C p ) для воды в системе постоянного давления (ΔP = 0).
Онлайн-калькулятор удельной теплоемкости воды
Калькулятор ниже можно использовать для расчета удельной теплоемкости жидкой воды при постоянном объеме или постоянном давлении и заданных температурах.
Выходная удельная теплоемкость выражается в кДж / (кмоль * K), кДж / (кг * K), кВтч / (кг * K), ккал / (кг K), британских тепловых единицах (IT) / (моль * ° R). и Btu (IT) / (фунт м * ° R)
Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.
См. Вода и тяжелая вода – термодинамические свойства.
См. Также другие свойства Вода при меняющейся температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации , pK w , нормальной и тяжелой воды, точки плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельный объем, теплопроводность, температуропроводность и давление пара в газожидкостном состоянии. равновесие,
, а также Удельная теплоемкость воздуха – при постоянном давлении и переменной температуре, воздух – при постоянной температуре и переменном давлении, аммиак, бутан, диоксид углерода, монооксид углерода, этан, этанол, этилен, водород, метан, метанол , Азот, кислород и пропан.
Удельная теплоемкость для жидкой воды при температурах от 0 до 360 ° C:
Для полного стола с изобарической удельной теплоемкостью – поверните экран!
Температура | Изохорная удельная теплоемкость (C v ) | Изобарическая удельная теплоемкость (C p ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[° C] | [Дж / (моль K)][кДж / (кг K)] | [кВтч / (кг K)] | [ккал / (кг K)] [BTU ( IT) / фунт м ° F] | [Дж / (моль · K)] | [кДж / (кг · K)] | [кВтч / (кг · K)] | [ккал / (кг · К)] [британские тепловые единицы (IT) / фунт м ° F] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0. 01 | 75,981 | 4,2174 | 0,001172 | 1,0073 | 76,026 | 4,2199 | 0,001172 | 1,0079 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | 75,505 | 4,1910 | 0,001164 | 1,0010 758 | 4,1910 0,001165 | 1,0021 | | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20 | 74,893 | 4,1570 | 0,001155 | 0,9929 | 75.386 | 4,1844 | 0,001162 | 0,9994 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25 | 74,548 | 4,1379 | 0,001149 | 0,9883 | 75,336 | 4,1816 | 0,001162 | 0,9988 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74,11162 | 0,9988 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
74 | 0,001144 | 0,9834 | 75,309 | 4,1801 | 0,001161 | 0,9984 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
40 | 73.392 | 4,0737 | 0,001132 | 0,9730 | 75,300 | 4,1796 | 0,001161 | 0,9983 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50 | 72,540 | 4,0264 | 0,001118 | 0,9617 | 75,31134 | 0,001118 | 0,9617 | 75,31134 | 0,9987 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
60 | 71,644 | 3,9767 | 0,001105 | 0,9498 | 75,399 | 4. 1851 | 0,001163 | 0,9996 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
70 | 70,716 | 3,9252 | 0,001090 | 0,9375 | 75,491 | 4,1902 | 0,001164 | 1.0008 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
80 | 69,78 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
80 | 69 | 0,9250 | 75,611 | 4,1969 | 0,001166 | 1,0024 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
90 | 68.828 | 3,8204 | 0,001061 | 0,9125 | 75,763 | 4,2053 | 0,001168 | 1,0044 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
100 | 67,888 | 3,7682 | 0,001047 | 0,9000 | 75.91511 | 1,0069 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
110 | 66,960 | 3,7167 | 0,001032 | 0,8877 | 76,177 | 4.2283 | 0,001175 | 1,0099 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
120 | 66,050 | 3,6662 | 0,001018 | 0,8757 | 76,451 | 4,2435 | 0,001179 | 1,0135 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
140 | 0,8525 | 77,155 | 4,2826 | 0,001190 | 1,0229 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
160 | 62. 674 | 3,4788 | 0,000966 | 0,8309 | 78,107 | 4,3354 | 0,001204 | 1,0355 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
180 | 61,163 | 3,3949 | 0,000943 | 0,81060 | 7 | 0,81060 | 1,0521 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
200 | 59,775 | 3,3179 | 0,000922 | 0,7925 | 80,996 | 4.4958 | 0,001249 | 1,0738 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
220 | 58,514 | 3,2479 | 0,000902 | 0,7757 | 83,137 | 4,6146 | 0,001282 | 1,1022 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
240 | 57003 | 0,7607 | 85,971 | 4,7719 | 0,001326 | 1,1397 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
260 | 56.392 | 3,1301 | 0,000869 | 0,7476 | 89,821 | 4,9856 | 0,001385 | 1,1908 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
280 | 55,578 | 3,0849 | 0,000857 | 0,7368 | 95,2857 | 0,7368 | 1,2632 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
300 | 55,003 | 3,0530 | 0,000848 | 0,7292 | 103,60 | 5. 7504 | 0,001597 | 1,3735 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
320 | 54,819 | 3,0428 | 0,000845 | 0,7268 | 117,78 | 6,5373 | 0,001816 | 1,5614 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
55514 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
340 | 0,7352 | 147,88 | 8,2080 | 0,002280 | 1,9604 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
360 | 59.402 | 3,2972 | 0,000916 | 0,7875 | 270,31 | 15,004 | 0,004168 | 3,5836 |
Удельная теплоемкость для жидкой воды при температурах от 32 до 675 ° F:
Для полной таблицы с изобарической температурой Тепло – поверните экран!
Температура | Изохорная удельная теплоемкость (C v ) | Изобарическая удельная теплоемкость (C p ) | |||||||||||||
[° F] 04 [BTU (IT) / (моль ° R)] | [BTu (IT) / (фунт м ° F)] [ккал / (кг · K)] | [кДж / ( кг K)] | [BTU (IT) / кмоль ° R] | [BTu (IT) / фунт м ° F] [ккал / кг K] | [кДж / кг К] | ||||||||||
32. 2 | 40,0 | 1,007 | 4,217 | 40,032 | 1,008 | 4,220 | |||||||||
40 | 39,9 | 1,005 | 4,208 | 39,916 | 1,005 | 4,208 | 1,005 | 4,208 | 1,001 | 4,191 | 39,801 | 1,002 | 4,196 | ||
60 | 39,6 | 0,996 | 4.169 | 39,739 | 1,001 | 4,189 | |||||||||
80 | 39,2 | 0,986 | 4,128 | 39,660 | 0,999 | 4,181 | |||||||||
100 | 38,7 | 0,975 | 4,082 39,682 | 0,998 | 4,179 | ||||||||||
120 | 38,3 | 0,963 | 4,033 | 39,662 | 0,999 | 4.181 | |||||||||
140 | 37,7 | 0,950 | 3,977 | 39,702 | 1.000 | 4,185 | |||||||||
160 | 37,2 | 0,937 | 3,923 | 39,761 | 1,001 | 39,761 | 1,001 | 180 | 36,7 | 0,923 | 3,865 | 39,835 | 1,003 | 4,199 | |
200 | 36. 1 | 0,909 | 3,805 | 39,927 | 1,005 | 4,209 | |||||||||
212 | 35,7 | 0,900 | 3,768 | 39,993 | 1,007 | 4,216 | |||||||||
22083 | 4,216 | ||||||||||||||
22083 | 3,745 | 40,042 | 1,008 | 4,221 | |||||||||||
240 | 35,0 | 0,880 | 3,686 | 40.186 | 1,012 | 4,236 | |||||||||
260 | 34,4 | 0,867 | 3,629 | 40,364 | 1,016 | 4,255 | |||||||||
280 | 33,9 | 0,854 | 3,574 | 40,580 | 1,04,278 | ||||||||||
300 | 33,4 | 0,841 | 3,522 | 40,838 | 1,028 | 4,305 | |||||||||
350 | 32.3 | 0,813 | 3,404 | 41,685 | 1,050 | 4,394 | |||||||||
400 | 31,3 | 0,789 | 3,302 | 42,902 | 1,080 | 4,522 | |||||||||
450 | 30,4 | 3,209 | 44,009 | 1,108 | 4,639 | ||||||||||
500 | 29,7 | 0,748 | 3,130 | 47. 296 | 1,191 | 4,986 | |||||||||
550 | 28,8 | 0,725 | 3,035 | 51,318 | 1,292 | 5,410 | |||||||||
600 | 28,3 | 0,713 | 2,987 | 59,6903 900 | 6,292 | ||||||||||
625 | 28,4 | 0,716 | 2,997 | 66,611 | 1,677 | 7,022 | |||||||||
650 | 28.9 | 0,728 | 3,047 | 82,851 | 2,086 | 8,734 | |||||||||
675 | 29,9 | 0,754 | 3,156 | 126,670 | 3,189 | 13,353 |
Расчет рекуперации водонагревателя
Расчет рекуперации электрической воды обогреватель / лето и зима: A) Типичный жилой неодновременный водонагреватель мощностью 4500 Вт
элементы.
Лето:
65 температура входящей воды. Ресурс: Средняя температура неглубоких грунтовых вод
Термостат установлен на
125F:
4500 ватт разделить на [повышение температуры 2,42 x 60] = 31 галлон в час. Восстановление летом
Зима:
40 температура входящей воды.
Термостат настроен на
125F:
4500 ватт разделить на [2.42 x 85 повышение температуры] = 21 галлон / час
восстановление зимой
B) Бытовой водонагреватель переведен на одновременную проводку, где оба
элементы могут нагреваться одновременно
Установите 2 элемента – 5550 Вт каждый, подключенный к отдельному 30 А
выключатель. Ресурс: Как подключить синхронный водонагреватель
Лето:
65 температура входящей воды.
Термостат настроен на
125F. Ресурс: Как отрегулировать температуру водонагревателя
11000 ватт разделить на [повышение температуры 2,42 x 60] = 75 галлонов в час.
рекуперация для одновременного водонагревателя летом
Зима:
40 температура входящей воды.
Термостат настроен на
125F:
11000 ватт разделить на [повышение температуры 2,42 x 85] = 53 галлона в час.
рекуперация на одновременный водонагреватель зимой
Повышение
восстановление путем повышения температуры на термостате
Повышение рекуперации путем изменения настройки термостата. Ресурс: Как отрегулировать температуру водонагревателя
Верхний и нижний термостат можно настроить по-разному.
Таймер можно использовать для контроля разницы температур и экономии денег
путем переключения мощности нагрева воды в зависимости от пикового использования
раз.Ресурс: Используйте таймер для управления термостатами
Увеличить
восстановление путем установки темперирующего бака для пассивного подогрева входящего
холодная вода
Темперирующая емкость
Увеличение
рекуперация путем установки 2 водонагревателей
2 водонагревателя означают, что имеется больший объем горячей воды, и пользователь
меньше вероятность нехватки горячей воды
Ресурс: два водонагревателя
Мнение:
Повышение
термостат до 130F – самый простой способ увеличить восстановление. Установка
темперирующий резервуар – дополнительная работа, но эффективна для повышения температуры
холодной поступающей воды.
Если требуется очень высокое восстановление, подключите дополнительный выключатель и работайте. еще один провод 10 калибра для одновременного
операция – лучший способ ускорить выздоровление.
Ресурс: Как подключить одновременный водонагреватель
Преобразование в одновременный – больше работы, но безопаснее, чем
повышение температуры воды до 140-150F.
Расчет ОВК
Расчеты размера системы HVAC в зале Macalister будет проходить двумя способами. Первый метод будет основываться на оценках кубических футов в минуту и тоннажа, указанных в ASHRAE. Второй способ, что более подробно, предполагает использование программы моделирования Carrier E-20 для расчета нагрузок.
Стандарты оценки ASHRAE:
ASHRAE устанавливает стандарты для оценка кубических футов в минуту и тоннажа в здании.При расходе 20 куб. Футов в минуту на человека стандарт и система повторного нагрева, ASHRAE устанавливает следующие числа:
Расчетная охлаждающая нагрузка (тонны): от 0,25 до 0,35 тонны на 100 квадратных футов общей площади здания | |
Расчетная тепловая нагрузка (MBH): от 1,5 до 2,5 MBH на 100 квадратных футов общей площади здания | |
Расчетный кубический фут в минуту: от 75 до 125 кубических футов в минуту на 100 квадратных футов общей площади здания | |
охлажденной воды, галлонов в минуту: 2. 4 галлона в минуту на тонну охлаждение | |
галлонов горячей воды в минуту: отопление MBH, разделенное на 10 |
Для наших оценок мы будем использовать середины этих значений, чтобы дать ответ, который не будет ни слишком либеральным, ни слишком консервативен.
Метод оценки ASHRAE для Macalister Зал:
Общая площадь кондиционированных место в Macalister Зал выглядит следующим образом:
28400 футов 2 в подвале | |
24400 футов 2 в первом этаж | |
13 500 футов 2 на каждой башне этаж | |
10,500 футов 2 на факультете клуб | |
Общая кондиционированная площадь: 117 300 футов 2 |
Исходя из рассчитанной площади выше и стандартов ASHRAE, изложенных ранее, нагрузки на здание рассчитывается по следующей таблице:
Охлаждающая нагрузка | Нагревательная нагрузка | Всего CFM | Охлажденная вода | Горячая вода |
350 тонн | 2350 МБХ | 117300 куб. Футов в минуту | 840 галлонов в минуту | 235 галлонов в минуту |
Программа Carrier E-20
Программа Carrier E-20 намного точнее, чем упомянутая ранее предварительный расчет.С помощью этой программы рассчитываются нагрузки на здание. с учетом строительных материалов, направленная облицовка, инфильтрация, графики занятости, загрузка оборудования, загрузка людей и др. уставки в системе HVAC. Обрисован ввод данных в программу. ниже.
Температура воздуха в регионе Филадельфия
Сезон | Сухой термостат (F) | Мокрая лампа (F) | Суточный диапазон (F) |
Зима | 10 | НЕТ | НЕТ |
Лето | 93 | 75 | 14 |
Филадельфия Высота над уровнем моря: 26 футов
Philadelphia Latitude Адрес: 40
Информация о строительных материалах:
В следующих разделах показаны две основные формы конструкции Macalister. Зал.Башня состоит из 6-дюймовой сборной бетонной панели снаружи. большое воздушное пространство и внутреннее пространство из 4-х дюймовых бетонных блоков. Первый пол состоит из кирпича 4 дюйма, с воздушным зазором 1 дюйм и бетона 8 дюймов. блочная стена.
Стена 1-го этажа Секция Башня Стеновая Секция
Из приведенных выше секций стен я рассчитал общее значение U стен. (БТЕ / час / фут 2 / F) в зависимости от используемых материалов и установленных стандартов вперед в ASHRAE.Табличные значения следующие:
Строительство 1 этажа:
Строительные материалы | R-Value (часы x футы 2 x F / BTU) | Значение U (БТЕ / час / фут 2 / фут) |
Сопротивление наружному воздуху | 0. 33 | 3,03 |
Лицевой кирпич 4 “ | 0,43 | 2,33 |
Воздушный зазор 1 “ | 0,91 | 1,10 |
8 “CMU | 2.02 | 0,50 |
Внутреннее сопротивление воздуха | 0,69 | 1,45 |
Итого | 4,38 | 8,41 |
Строительство башни:
Строительные материалы | R-Value (часы x футы 2 x F / BTU) | Значение U (БТЕ / час / фут 2 / фут) |
Сопротивление наружному воздуху | 0. 33 | 3,03 |
6-дюймовая сборная железобетонная панель | 3,22 | 0,31 |
Воздушный зазор 6 дюймов | 0,91 | 1,10 |
4 “CMU | 1.11 | 0,90 |
Внутреннее сопротивление воздуха | 0,69 | 1,45 |
Итого | 6,26 | 6,79 |
Типовая конструкция окна:
Предполагается алюминиевое стеклопакетное окно с терморазрывом и светлыми плафонами. на внутренней.Эти предположения приводят к следующим значениям:
Общее значение U: 0,537 (БТЕ / ч / фут 2 / фут) | |
Коэффициент затенения: 0,454 |
Типовая конструкция крыши:
Предполагается монолитная крыша на стальном настиле 22 колеи с изоляцией из плит Р-7. Эти предположения приводят к следующему значению:
Общее значение U:.121 (БТЕ / ч / фут 2 / фут) |
Типичная световая нагрузка: 1,5 Вт / фут 2
Типичная нагрузка на людей: 1 человек / 150 футов 2 при выполнении офисной работы:
Явная нагрузка: 245 BTUH | |
Скрытая нагрузка: 205 BTU |
Типичные потери при инфильтрации: 2 воздухообмена в час
Типовая загрузка оборудования: . 5 Вт / фут 2
Уставки и коэффициенты безопасности:
Уравнения, используемые E-20 для расчета нагрузок:
1. Нагревательная нагрузка: Q = U x A x TГде:
Q = Скорость теплопередачи, БТЕ / час | |
U = Общий коэффициент теплопередачи, БТЕ / час / фут 2 / F | |
A = Площадь поверхности, через которую тепло потоки, футы 2 | |
T = разница температур, через которую течет тепло, F |
Площадь стены рассчитана исходя из высоты пола 12 футов-0 дюймов. в башне и 15′-0 “на первом этаже.
2. Охлаждающая нагрузка: Q = U x A x CLTD c
Где:
Q = Нагрузка на охлаждение для крыши, стекла или стены, БТЕ / час | |
U = Общий коэффициент теплопередачи для крыши, стекла или стены, БТЕ / час / фут 2 / F | |
A = Площадь крыши, стекла или стены, футы 2 | |
CLTD c = Скорректированная разница температур охлаждающей нагрузки, F |
CLTD c – это измененное значение разницы температур, которая учитывает эффект накопления тепла и запаздывания.
3. Солнечное излучение через стекло: Q = SHGF x A x SC x CLF
Где:
SHGF основан на ориентации и времени года, а SC основан на вид драпировки на окне.
4. Осветительная нагрузка: Q = 3,4 x Ш x BF x CLF
Где:
BF учитывает тепловые потери в балластах люминесцентных ламп и CLF учитывает накопление тепла в осветительных приборах.
5. Нагрузка на людей: Q s = q s x n x CLF, Q l = q l x n
Где:
Q с и Q л = Явное и скрытое тепловыделение, БТЕ / час | |
q с и q л = Явное и скрытое тепловыделение на человек, БТЕ / час на человека | |
n = Количество человек | |
CLF = Коэффициент охлаждающей нагрузки для людей |
Carrier E-20 Результаты:
Информация была введена на основе вышеуказанных уставок и уравнений в Программа Carrier E-20 и были получены следующие результаты:
Охлаждающая нагрузка | Нагревательная нагрузка | Всего CFM | Охлажденная вода | Горячая вода |
300 тонн | 2100 МБХ | куб.Футов в минуту | 720 галлонов в минуту | 210 галлонов в минуту |
Испарение с водной поверхности
Испарение воды с водной поверхности – например, из открытого резервуара, плавательного бассейна и т.п. – зависит от температуры воды, температуры воздуха, влажности воздуха и скорости воздуха над поверхностью воды.
Количество испарившейся воды можно выразить как:
г с = Θ A (x с – x) / 3600 (1)
или
г ч = Θ A (x с – x)
где
г с = количество испарившейся воды в секунду (кг / с)
г ч = количество испарившейся воды в час (кг / ч)
Θ = ( 25 + 19 v ) = коэффициент испарения (кг / м 2 ч)
v = скорость воздуха над водной поверхностью (м / с)
A = площадь водной поверхности (м 2 )
x с = максимальная влажность соотношение насыщенного воздуха при той же температуре, что и поверхность воды (кг / кг) (кг H 2 O в кг сухого воздуха)
x = соотношение влажности воздуха (кг / кг) (кг H 2 O в кг Сухого воздуха)
Примечание! Единицы для Θ не совпадают, так как это эмпирическое уравнение – результат опыта и экспериментов.
Необходимое теплоснабжение
Большая часть тепла или энергии, необходимых для испарения, берется из самой воды. Для поддержания температуры воды – в воду необходимо подводить тепло.
Необходимое количество тепла для покрытия испарения можно рассчитать как
q = h we g s (2)
где
q = подводимое тепло (кДж / с ( кВт))
h we = теплота испарения воды (кДж / кг)
Пример – Испаренная вода из плавательного бассейна
Имеется бассейн 50 м x 20 м с температурой воды 20 o С. Максимальный коэффициент насыщения влажности в воздухе над поверхностью воды составляет 0,014659 кг / кг. При температуре воздуха 25 o C и 50% относительной влажности коэффициент влажности в воздухе составляет 0,0098 кг / кг – см. Диаграмму Молье.
При скорости воздуха над поверхностью воды 0,5 м / с коэффициент испарения можно рассчитать как
Θ = (25 + 19 (0,5 м / с))
= 34. 5 кг / м 2 h
Площадь бассейна можно рассчитать как
A = (50 м) (20 м)
= 1000 м 2
Испарение от поверхность может быть рассчитана как
г с = (34,5 кг / м 2 ч ) (1000 м 2 ) ((0,014659 кг / кг) – (0,0098 кг / кг) ) / 3600
= 0,047 кг / с
Теплота (энтальпия) испарения воды при температуре 20 o C составляет 2454 кДж / кг .Подвод тепла, необходимый для поддержания температуры воды в бассейне, можно рассчитать как
q = (2454 кДж / кг) (0,047 кг / с)
= 115,3 кВт
Потери энергии и необходимое количество тепла можно уменьшить на
- уменьшение скорости воздуха над поверхностью воды – ограниченный эффект
- уменьшение размера бассейна – не совсем практично
- уменьшение температуры воды – не комфортное решение
- снижение температуры воздуха – не комфортное решение
- увеличение содержания влаги в воздухе – может увеличить конденсацию и повреждение строительных конструкций для закрытых бассейнов
- удалить влажную поверхность – возможно с пластиковыми одеялами на поверхности воды снаружи время операции. Очень эффективный и часто используемый
Примечание! – во время работы в бассейне может резко увеличиваться испарение воды и необходимое количество тепла.
Чтобы снизить потребление энергии и избежать повреждения строительных конструкций из-за влаги, обычно используют устройства рециркуляции тепла с тепловыми насосами, передающими скрытое тепло из воздуха в воду в бассейне.
Калькулятор испарения с поверхности воды
.Онлайн калькулятор расчета водяного теплого пола в зависимости от помещения
Калькулятор расчета теплого пола и систем отопления. Разгрузить систему радиаторного отопления дома или полностью ее заменить, при достаточной тепловой мощности водяного теплого пола будет хватать для компенсации тепло потерь и обогрева помещения.
Как сделать расчет теплого водяного пола онлайн? Водяные полы могут служить основным источником обогрева помещения, а также выполнять дополнительную функцию отопления. Делая расчет этой конструкции нужно заранее решить основные моменты, для какой цели будет служить изделие, полноценно обеспечивать дом теплом или слегка подогревать поверхность для комфортности в помещении.
Если вопрос решен, то следует переходить к составлению конструкции и расчета мощности теплого водяного пола. Все ошибки, которые будут допущены на стадии проектирования, можно будет исправить только путем вскрытия стяжки. Вот почему так важно правильно и максимально точно сделать предварительные расчетные процедуры.
Расчет теплого водяного пола с помощью калькулятора онлайн
Благодаря специально подготовленным системам онлайн расчетов сегодня можно за несколько секунд определить удельную мощность теплого пола и получить необходимые расчеты.
В основу калькулятора входит метод коэффициентов, когда пользователь вставляет индивидуальные параметры в таблицу и получает базовый расчет с определенными характеристиками.
Внеся все заданные коэффициенты можно с максимальной точностью получить точные характеристики рассчитываемого теплого пола. Для этого нужно знать данные:
- температуру подачи воды;
- температуру обработки;
- шаг и вид трубы;
- какое будет напольное покрытие;
- толщина стяжки над трубой.
В результате пользователь получает данные про удельную мощность конструкции, среднюю температуру получаемого обогрева пола, удельный расход теплоносителя. Выгодно, быстро и предельно ясно за несколько секунд!
Кроме основных данных следует учитывать ряд второстепенных, которые максимальным образом влияют на конечный результат теплого пола:
- наличие или отсутствие остекления балконов и эркеров;
- высота этажа помещения в жилом доме;
- присутствие специальных материалов для утепления стен;
- уровень теплоизоляции в доме.
Внимание: делая расчет теплого пола водяного калькулятором, следует учитывать вид полового покрытия, если планируется укладываться древесная конструкция, то мощность обогревающей системы должна быть увеличена за счет низкой теплопроводностью дерева. При высоких теплопотерях обустройство теплого пола в качестве единственной системы обогрева будет неуместно и невыгодно по затратам.
Особенности расчета водяного пола калькулятором.
Прежде чем сделать предварительный расчет системы обогрева водяного пола следует учитывать целый перечень особенностей:
- Какой вид трубы будет использовать мастер, гофрированную с эффективной теплоотдачей, медную, с высокой теплопроводностью, из сшитого полиэтилена, металлопластиковые или из пенопропилена, с низкой теплоотдачей.
- Расчет длины для обогрева заданной площади, основывается на определении длины контура, распределение тепловой энергии по поверхности в равномерном режиме, с учетом пределов тепловой нагрузки покрытия.
Важно! Если планируется делаться шаг укладки больше, тогда нужно увеличить температуру теплоносителя. Допустимые показатели шага — от 5 до 60 см. Можно использовать как постоянные, так и переменные шаги.
Ошибки новичков — рекомендации профессионалов
Многие пользователи калькулятора онлайн расчета водяного теплого пола допускают существенные ошибки, которые влияют на конечные результаты. Вот некоторые погрешности пользователей:
- На один контур рассчитана труба длиной не более 120 м.
- Если теплые полы будут в нескольких комнатах, то средняя длина контура должна быть приблизительно одинаковой, отклонения не должны превышать 15 м.
- Расстояние между ветками выбирается в соответствии с температурным режимом системы отопления, чаще всего это будет зависеть от региона территории.
- Средне значение расстояние от стен до контура составляет 20 см, плюс-минус 5 см.
Что нужно знать, отправляясь за необходимыми строительными материалами?
Экструдированный пенополистирол является наилучшим материалом в случае утепления пола, он отличается долговечностью и монолитностью структуры. Сверху утеплителя следует уложить гидроизоляцию, достаточно будет полиэтиленовой пленки, а вдоль стен нужно уложить демпферную ленту.
Арматура является основой для крепления труб и бетонной стяжки, скобы для труб – еще один обязательный элемент. Также следует взять распределяющийся коллектор, который позволит экономно и эффективно распределить теплоноситель.
Заключение
Делая расчет водяного пола онлайн, следует учитывать коэффициент расхождения данных на 10%, таким способом полученные данные будут более реальными и достоверными.
Удачи Вам в строительных работах!
Калькулятор расчета длины трубы для теплого пола
Подогрев напольного пространства используется как для создания дополнительного источника тепла, так и для устройства полноценного обогрева. Последнее решение особенно актуально для помещения без возможности проводки центрального отопления.
Ниже располагается форма калькулятора расчета трубы для теплого пола. Для проведения расчетных операций достаточно заполнить основные поля и выбрать предполагаемый шаг укладки.
[CP_CALCULATED_FIELDS id=”25″]
В основе калькулятор лежит формула, которая базируется на общей площади помещения. То есть для выполнения расчетных операций достаточно знать лишь длину и ширину помещения, а также расстояние, через которое будут монтироваться обогревательные элементы.
Данный калькулятор можно использовать как для расчета длины трубы теплого водяного пола, так и для электрических кабельных обогревательных систем. Важно – онлайн программа не учитывает количество трубы, которое потребуется для соединения с коллекторным узлом. Расчеты справедливы только для схемы укладки под названием “змейка”.
Какие типы труб использовать
Металлопластик обладает идеальным соотношением цены к качеству
Устройство теплого водяного пола можно сделать с использованием труб разного типа. Выбор соответствующего типа зависит от таких качеств, как теплопроводность, гибкость и долговечность.
В общих случаях принято использовать трубы из следующих материалов:
- металлопластик – полиэтиленовая труба усиленная алюминиевой прослойкой. Слой алюминия обеспечивает жесткость, прочность и увеличивает теплообменные качества. Металлопластик достаточно легко сгибается для формирования необходимых углы и изгибы;
- полипропилен – прочные, жесткие и надежные трубы. Помимо теплого пола применяются для сооружения канализаций. Изготавливаются из статического сополимера с маркировкой PP-R;
- сшитый полиэтилен – трубы из полиэтилена, сшитого на молекулярном уровне. В результате получается цельная труба со структурой в виде трехмерной сетки. Имеют высокую прочность и устойчивость к химическим растворителям. Легко гнуться, выдерживают рабочую температуру до 95 °C;
- медь – дорогие и технологически сложные в укладке. Обладают наиболее высокой теплопроводностью, но подвержены процессам коррозии. При плохом соединении очень быстро дают течь.
Если не вдаваться в детальное сравнение всех плюсов и минусов, то наиболее оптимальным типом труб являются изделия из металлопластика. Их отличает сравнительно низкая стоимость, простота укладки и высокая надежность.
Схема укладки труб
Три наиболее популярных схемы укладки обогревательных элементов
Как было сказано выше расчет количества трубы теплого пола при помощи калькулятора справедлив только для укладки “змейка” и “обратная змейка”. Помимо данной схемы существует, как минимум, две другие.
“Змейка” – это наиболее простая схема, которая хорошо подходи для небольших помещений прямоугольной формы. Наиболее часто используется при монтаже водяного пола, который будет выступать в качестве дополнительного обогрева помещения.
Главный минус такой схемы в неравномерности прогрева. То есть наибольшая температура прогрева будет в местах, где расположены изгибы, идущие от коллектора. По мере удаления теплоноситель остывает, что выражается в потере его температуры.
“Улитка” или укладка по спирали лишена данных минусов, так как в данном случае комбинируются теплые и холодные изгибы. Тем самым достигается равномерность прогрева пола по всей его площади.
“Обратная змейка” частично имеет похожий принцип. Внешний рукав – это трубы от коллектора, а внутренний – трубы с остывающим теплоносителем. Визуальное представление каждой из схем можно увидеть на фото выше.
На что влияет шаг укладки
Расстояние между трубами влияет на мощность и равномерность прогрева напольного пространства
Шаг укладки напрямую влияет на степень теплоотдачи от контура. Чем меньше шаг, тем большее количество трубы поместится на единицу площади. Уменьшение и увеличения шага позволяет подобрать наиболее оптимальную мощность теплого пола под конкретные условия.
Стандартная градация при укладке – это увеличение шага на 5 см. Минимальное расстояние между изгибами равно 10 см, что достаточно для отопительных систем, выступающих в роли центрального и единственного отопления.
Шаг в 20 и более сантиметров используется только при создании теплых полов для временного и дополнительного обогрева. Допускается использование неравномерного расположения рукава.
К примеру, это часто применяется в угловых помещения, когда требуется проложить рукав от коллектора вдоль холодных стен. Далее по мере удаления от угловых сопряжений шаг увеличивается. В итоге получается, что наибольшая температура прогрева будет у холодной стены.
В калькуляторе расчета длины трубы уже включена величина шага от 10 до 40 см. При необходимости можно выбрать значение “Произвольная величина” и внести свои данные. Все вносимые данные имеют размерность в метрах. Для разделения следует использовать “точку”.
Читайте также:
Калькулятор теплых водяных полов
Инструкция по использованию
калькулятора теплых водяных полов
Когда встает необходимость создать грамотный проект теплого водяного пола, нужно выполнить ряд сложных вычислений. Эта процедура должна быть сделана грамотно, иначе нужный нам функционал системы теплого пола может не функционировать или происходить с перебоями. Еще несколько лет назад реализовать расчеты для подобного проекта было крайне сложно, однако современные технологии позволяют справиться с такой задачей даже не искушенному в строительном деле пользователю. Речь идет об узкопрофильном онлайн-калькуляторе, с его функционалом можно получить необходимые вычисления. Давайте по порядку разберемся, как происходит расчет тепла теплого пола, и какие данные понадобятся для работы с калькулятором.
Что учитывается при создании
проекта теплого пола
- План вашего помещения
- Материал покрытия пола
- Утеплены ли стены помещения
- Формат и размещение теплого генератора
В проекте вашего теплого пола – важно грамотно рассчитать теплопотери в помещении с учетом его габаритов, среднестатистической температуры воздуха и влажности зимой. Будет уместно так же учесть наличие вторичных источников обогрева в помещении. Сделав учет всех упомянутых параметров, и приняв во внимание факторы теплопотери, можно приступать к просчету труб и реализовывать маршрут коммуникаций теплого пола.
Совет! Для создания дизайн-проекта помещения лучше воспользоваться программой – Sweet Home 3D, которая поможет избежать распространенных ошибок при планировке жилого пространства.
Именно на основании показателей мощности происходит выбор оптимальной системы теплого пола. Данный показатель всецело зависит от формата и габаритов помещения, специфики отопительной системы. Важно учитывать, что для вычислений будет учитываться только используемая площадь комнаты, которая может считаться жилой, и не загромождена мебелью или бытовыми приборами. Теплый пол может рассматриваться, как основной источник тепла в помещении, только если его коммуникации смогут обогревать не менее 70% от объема всего помещения.
Работа с калькулятором
В основе функционала калькулятора лежит метод коэффициентов, то есть, используется оптимальный вариант уже готового расчета теплых водных полов, который может быть изменен под нужды конкретного проекта. Пользователь может изменить все параметры под свое помещение, задать его габариты и температуру подачи/обратки.
Начните заполнять поля онлайн-калькулятора
Задайте остальные данные, не забудьте про тип напольного покрытия. Если вы хотите использовать, к примеру, деревянный паркет, то мощность системы должна быть больше, поскольку дерево обладает не высокой теплопроводностью. Лучше отдать предпочтение в пользу кафеля или ламината.
Заполните остальные поля таблицы, указав тип финишного накрытия пола
После того как все поля будут заполнены – нажмите на кнопку “рассчитать”. Обратите внимание – расчет теплого водяного пола с использованием специализированного калькулятора получается значительно точнее, чем проект созданный вручную. Принимая во внимание тот факт, что метод «коэффициентов» опирается на параметры реально созданного эталонного теплого пола.
Расчет теплого водяного пола по вашим критериям
Подводя итоги, можно сделать вывод – данный калькулятор отличается более продвинутым функционалом, чем его аналоги. В его базу вносятся, помимо типичных данных, еще и информация о начальной и финишной стяжке, толщина полистирола и квадратура помещения. Эти функции делают его отличным помощником при прокладке теплых полов в вашем доме.
как рассчитать количество труб напольного обогрева
Система обогрева «тёплый пол» является хорошей альтернативой радиаторному отоплению. При правильной организации напольной магистрали в помещении не остаётся холодных зон.
Шаг трубы, м.
0.050.10.150.20.250.30.35
Труба
Pex-Al-Pex 16×2 (Металлопластик)Pex-Al-Pex 16×2.25 (Металлопластик)Pex-Al-Pex 20×2 (Металлопластик)Pex-Al-Pex 20×2.25 (Металлопластик)Pex 14×2 (Сшитый полиэтилен)Pex 16×2 (Сшитый полиэтилен)Pex 16×2.2 (Сшитый полиэтилен)Pex 18×2 (Сшитый полиэтилен)Pex 18×2.5 (Сшитый полиэтилен)Pex 20×2 (Сшитый полиэтилен)PP-R 20×3.4 (Полипропилен)PP-R 25×4.2 (Полипропилен)Cu 10×1 (Медь)Cu 12×1 (Медь)Cu 15×1 (Медь)Cu 18×1 (Медь)Cu 22×1 (Медь)
Напольное покрытие
ПлиткаЛаминат на подложкеПаркет на фанереКовролин
Тепло равномерно распространяется по комнате. Водяной или электрический контур спрятан под облицовкой, что даёт возможность выполнять любой дизайн в доме. Система отопления требует проекта и определённых расчётов.
Специалисты используют многочисленные таблицы, высчитывая теплопотери помещения, длину трубопровода, шаг укладки контура. Программисты облегчили работу строителей.
Все необходимые расчёты можно выполнить с помощью online-калькулятора. Как работает программа? Какими данными она оперирует?
Описание программы
Основной вопрос, который возникает при создании проекта напольного обогрева, сколько трубы необходимо для определённого помещения. На форумах предлагается выполнить несложный расчёт.
Определяют площадь обогреваемой поверхности пола. Для системы отопления выбирают трубу диаметром 16 мм или 20 мм. Оптимальный шаг витков при выкладывании контура 10-15 см. Если разделить данные площади на шаг укладки магистрали, то получают длину трубы. L длина трубы = S площадь /h шаг.
Калькулятор «тёплого пола» предусматривает не только площадь комнаты и длину шага витка напольного контура, но и другие условия, которые влияют на температуру воздуха в помещении, и на эффективность системы отопления.
Принимается во внимание теплопотери помещения. Для комнат, которые находятся на подвальном уровне или на 1 этаже, потребуется больше мощности от системы отопления. Теплопотери высокие. Они связаны с наличием входной двери, близостью фундамента.
Для помещений, находящихся, на 2-3 этажах, необходим менее мощный обогрев. Теплопотери незначительные. Внизу и вверху площадь отапливается, уличная дверь отсутствует.
Калькулятор расчёта водяного тёплого пола предусматривает характеристику обогреваемой площади: процент влажности, частоту использования дома; постоянное проживание или пребывание людей только в определённые дни; для кого предназначено помещение, для взрослых или для детей. В детских комнатах выдерживается средняя температура 20 0С, в гостиной – 22-24 0С, в спальне 18 0С, в ванной комнате 33 0С.
В программу вводят показатель площади обогреваемой поверхности, желаемый тепловой режим, тип теплоносителя, вода, антифриз.
Важны характеристики трубы для тёплого пола: медь, нержавеющая сталь, сшитый или термостойкий полиэтилен, диаметр контура. Учитывается длина труб, которые соединяют нагревательное оборудование с коллектором.
Один из блоков калькулятора посвящается характеристике «тёплого пола»: наличие утеплителей, гидроизоляционных материалов, толщина черновой и чистовой стяжки, клеевого раствора, наливного пола. Принимается во внимание материал для напольного финишного покрытия.
Плитка обладает высокой теплопроводностью. Она быстро отдаёт тепло. Паркет и ламинат имеют низкую теплопроводность. Данные покрытия не рекомендуют сильно нагревать.
Программа анализирует исходные показатели, делает определённые расчёты «тёплого пола»:
- количество тепла, которое выделяется в помещении – общий тепловой поток; если он меньше, чем тепловые потери, то потребуются дополнительные нагревательные приборы;
- кол-во тепла с 1 м2 тёплого водяного пола;
- кол-во тепла с 1м2, направленного вниз, к фундаменту; если показатель превышает норму, то при проекте системы отопления предусматривают дополнительный слой теплоизоляции для чернового покрытия; это позволит уменьшить расход энергии для обогрева фундамента, направит тепловой поток вверх к полу;
- какое суммарное количество тепла вырабатывается с 1 м2 и 1 пог. м напольного покрытия; определяется минимальная, максимальная и средняя температура пола;
- средняя температура теплоносителя; скорость его движения; расход жидкости;
- расчет трубы; длина, тепловая нагрузка;
- линейные потери; снижение напора теплоносителя по всей длине магистрали; максимальное давление 20 000 Па; давление уменьшают, выбирая трубу большего диаметра.
В проекте для «тёплого пола» указываются материалы, которые используются для формирования уровней пола над жидкостной магистралью и под трубопроводом.
Учитывают характеристику гидроизоляции и утеплителя, толщину слоя, наличие отражающего экрана. Если выполняется бетонная стяжка, то предусматривается тип бетона: лёгкий с пластификаторами, утяжелённый с армированной сеткой.
Как работает калькулятор?
В первую очередь проводится подсчёт теплопотерь. Для этого вводят название региона и населённого пункта. Указывается площадь комнаты, высота стен, наличие внутренних перегородок, высота потолков, количество окон и их размер.
Обозначается, с какой стороны находятся внешние стены комнаты: север, юг, восток, запад. Заполняется информация об утеплении стен, расположение комнаты: подвальный уровень, этаж.
Исходные данные: дом находится в г. Волгограде.
- Комната, в которой предусматривается водяное отопление, располагается с северной стороны, на 2 этаже.
- Стены утеплены плохо.
- Общая площадь помещения 20 м2.
- В комнате находится одна перегородка.
- Остекление – двухкамерное; общая площадь окон 3 м2.
Расчётные данные:
- общие теплопотери составят 2323 Вт; удельные теплопотери – 116 кВт/м2;
- средняя температура воздуха холодных суток -27 0С; в неделю -25 0С;
- продолжительность сезона – 176 дней.
Данные используются при калькуляции для водяного тёплого пола. Дополнительно указывается желаемая температура в помещении, температура теплоносителя при выходе из котла и в обратном контуре, длина подводящей магистрали.
Исходные данные:
- общие потери 2323 Вт;
- температура воздуха – 20 0С;
- t0 теплоносителя при выходе 30 0С, на «обратке» – 23 0С;
- длина труб от котла до коллектора – 10 м;
- трубы из сшитого полиэтилена 16 мм, толщина стенки 2,2 мм;
- облицовка – кафель;
- толщина бетонной стяжки чистового основания 5 см; чернового покрытия 8 см;
- в качестве утеплителя использованы полистирольные плиты толщиной 3 см.
Расчётные данные калькулятора тёплого пола:
- рекомендуемая площадь обогрева – 16 м2;
- длина трубы – 170 м; магистраль разделяют на 3 контура по 63,33 м;
- шаг укладки – 10 см;
- общий тепловой поток – 684,34 Вт; программа рекомендует установить дополнительный источник обогрева мощностью – 1638,66 Вт;
- t0ср. теплоносителя 26,5 0С;
- t0ср. пола – 23,29 0С; температура является комфортной;
- линейные потери давления петли – 1324,3 Па; программа указывает, что показатель в норме;
- скорость движения теплоносителя – 0,089 м/с;
- общий объём теплоносителя в системе 17,96 л.
В конце расчёта даются рекомендации. В данном случае рекомендуют увеличить скорость теплоносителя за счёт уменьшения диаметра трубы. Калькулятор не только рассчитывает систему отопления, но и выполняет чертёж на основании полученных данных, выводит все уровни «тёплого пола» в разрезе с указанием соответствующих размеров.
При изменении каких-либо данных, программа корректирует расчёт. Если для облицовки пола используется не кафель, а ламинат, то объём теплового потока уменьшается. Средняя температура пола снижается на градус. Рекомендуется дополнительный обогрев большей мощности.
Самостоятельно рассчитать напольную систему отопления сложно. При использовании online-калькулятора получают не только необходимые показатели для монтажа жидкостной магистрали, но и определённые рекомендации по настройке всех элементов контура.
Отпадает необходимость выполнять чертёж на бумаге вручную. Его можно распечатать на принтере.
YouTube responded with an error: The request cannot be completed because you have exceeded your <a href=”/youtube/v3/getting-started#quota”>quota</a>.
Загрузка…Расчет водяного теплого пола, программа онлайн
Содержание
- 1 Основы теплых полов
- 2 Расчет длины контура и отопление котла
- 3 Расчет с помощью специальных программ
- 4 Использование пола в качестве источника тепла
- 5 Расчет полов в Интернете
- 6 Правила безопасности
- 7 Заключение
Перед
, как проложить температурную систему отопления, сначала нужно узнать, как рассчитать теплый водяной пол, чтобы предварительно закупить все необходимое оборудование.Целесообразно доверить это специалистам. Но если у вас нет средств, то можно сделать самому, главное правильно это придумать.Сегодня в Интернете можно найти различные сервисы, предлагающие онлайн-расчет труб или специальное программное обеспечение для расчета, но без инженерного образования многим будет сложно с этим справиться. Между тем от правильного подхода полностью зависит конечный результат и безопасность жилища.
Основы расчета
Расчет подогрева пола Конструкция системы такова, что контур нагревательной линии, по которой циркулирует жидкость, расположен непосредственно в полости между основанием и отделочной поверхностью.Это может быть как вода, так и антифриз.
Составными частями системы отопления являются:
- Коллекторный шкаф.
- Материал для теплоизоляции.
- Контур трубопровода.
- Запорная арматура.
- Разъемы (фитинги).
- Крепеж.
Для начала выбирается оптимальный вариант газовых плит, который будет рассчитан. Теплые полы делятся на два типа:
- Когда установлена одинарная система теплого пола, которая является основной, и при этом очищаются все радиаторы.
- Если теплый пол используется как дополнительная система, работающая совместно с другими отопительными приборами или центральным отоплением.
В связи с этим готовится план размещения, и проводятся расчеты потребности в необходимых материалах. Информация должна быть максимально точной. Даже небольшая ошибка может повлиять на качество системы «теплый пол» или привести к аварии.
Особое внимание следует уделить планировке будущего помещения, а именно выбору финишного напольного покрытия.
При расчете теплого пола необходимо учитывать следующие данные:
RAUCAD / RAUWIN 7.0
- Процесс расчета Количество теплопотерь в помещении. На это может повлиять наличие в доме объемного остекления: эркеры или мансарды, а также высота жилого дома.
- Тип помещения и напольного покрытия. Он учитывает наличие в обработке полов специальных материалов, обладающих высокой теплоемкостью – мраморных или гранитных плит.
- Расчетный уровень температуры в помещении. При использовании теплого пола в качестве индивидуальной системы отопления потребуется большое количество электроэнергии или более частая операция прокладки.
Если у вас в квартире есть такие конструктивные особенности, то, в первую очередь, нужно сделать акцент на увеличении мощности. Особое внимание уделяется устройству гидроизоляции пола в помещениях с озеленением. Дело в том, что с учетом низкой теплопроводности древесины стандартной удельной мощности такой системы может не хватить для создания комфортной температуры в помещении.
Не использовать теплые полы в качестве обогрева в помещениях, не имеющих дополнительной теплоизоляции. Как правило, у них большие потери тепла, и это приведет только к большим затратам на их обогрев.
Расчет длины контура и нагрева котла
Используя собранные данные, сначала необходимо рассчитать мощность циркуляционного насоса, электрического или газового котла. Также эти показатели учитываются при расчете шага трубы при укладке.На сегодняшний день можно использовать 5 видов материала для петли теплого пола:
Работа в Multiplaner CAD
- Гофрированные трубы из нержавеющей стали. Этот материал обладает эффективной теплоотдачей.
- Медь. Также у них высокие показатели, но при этом они намного дороже.
- Трубы полиэтиленовые. Они хорошего качества по доступной цене.
- Металлопластиковые изделия. Самый популярный материал, сочетающий в себе невысокую стоимость и высокое качество.
Тип используемых труб также учитывается при расчете теплого пола, ведь каждый материал имеет свои особенности и коэффициент теплопроводности. Например, большой теплопроизводительностью и долгим сроком службы обладают медные трубы, но из-за дороговизны материала их могут себе позволить далеко не все.
Расчет по специальным программам
Наличие таких программ несколько упрощает процесс выбора конструкции теплых водяных полов.Как мне с ними работать?
Сначала программа заполняет все данные о помещениях и прогнозируемом материале продуктов для цепи, которую вы решите использовать. Программа сама выдаст вам необходимую длину и шаг трубы.
На этом этапе определяются следующие параметры:
- Требуемая длина всей цепи.
- Правильное распределение тепловой энергии по всей поверхности пола.
- Пределы максимальной тепловой нагрузки, которую может обеспечить система.
Доска. Если по каким-то причинам потребуется сделать трубопровод большего размера, то следует одновременно с этим позаботиться о повышении температуры охлаждающей жидкости. Допустимое значение шага 5-60 см, чаще всего трубы ставят с шагом 15-30 см, используя как переменный, так и постоянный шаг.
Использование теплого пола в качестве источника тепла
Расчет мощности котла
Обычно стены домов, которые выходят на улицу (внешние), характеризуются высокими тепловыми потерями.Поэтому лучше рассчитать шаг укладки труб с большей частотой, а также продумать дополнительную систему обогрева. Чтобы убедиться, что для создания комфортной температуры хватит одной системы теплого пола, тогда заранее рассчитайте большую мощность отопительного котла.
Сначала определяют суммарные теплопотери здания с учетом высоты стен, площади окон, степени теплоизоляции помещения. Также здесь можно воспользоваться специальной программой.Этот показатель сравнивается со средней выходной мощностью системы теплого пола. Если она не покрывает теплопотери здания, то систему как единый источник отопления использовать нельзя.
Internet Flooring Simple
Диаграмма Сегодня вы можете использовать различные онлайн-калькуляторы для расчета мощности водяного пола. Принцип работы такой же, и основан на итоговых цифрах теплопотерь. Для этого необходимо рассчитать размер площади помещения, но только то, что не будет ставить мебель, ведь под тяжелой мебелью и другими предметами прокладывать трубопровод не рекомендуется.
Использование такого калькулятора избавит вас от необходимости выполнять сложные вычисления вручную. Главное, правильно ввести все данные. Также можно будет рассчитать и стоимость стяжки пола, нетрудно догадаться, что для этого также потребуется замерить всю рабочую площадь.
Конечно, полностью полагаться на онлайн-калькулятор нельзя, потому что он не точно выполнит все расчеты, а даст приблизительную оценку. Но вы будете в курсе примерных масштабов будущей работы.
Правила безопасности
В основном полы с водяным подогревом используются в частных домах, а штабелирование в многоэтажных домах не допускается, поэтому чаще используются инфракрасные системы. Есть некоторые правила безопасности, запрещающие подключение теплого водяного пола к централизованной системе отопления.
Коллекторная система
Например, нельзя подключать индивидуальную схему отопления к общей системе водогрейных печей, так как при прохождении по контуру пола вода будет остывать, это может вызвать недовольство соседи.Также несанкционированное подключение водяного пола противоречит административным нормам и может быть наказано штрафом.
В новостройках застройщики заранее предусматривают возможность подключения теплого водяного пола в каждой квартире к централизованной системе отопления. Изначально ведутся все расчеты, в таких случаях беспокойства со стороны жителей не будет. Только вам нужно будет согласовать все соответствующие организации для подключения.
Заключение
Конечно, рассчитать точную сумму денег, необходимую для устройства водяного теплого пола, можно только обратившись к профессионалам, использующим профессиональные программы.Эта услуга стоит недорого, а в результате вы получите точную информацию, которая позволит вам закупить необходимое количество материала и провести грамотный монтаж всей системы.
Как рассчитать количество проводов, необходимых для установки DITRA-HEAT
Итак, ваши клиенты выбрали роскошный пол с подогревом для вашего следующего проекта напольного покрытия и готовы получить коврик, кабель и термостат. Перед началом работы важно спланировать установку, и одной из самых сложных задач может быть заказ необходимого количества кабеля.Прочтите наши лучшие советы по определению того, где вы хотите разместить нагревательные кабели, и о том, как рассчитать правильное количество проволоки.
Совет 1: Кабель не перерезать! Это правило номер один, а это значит, что правильные размеры нагревательного кабеля жизненно важны.
Совет 2: Мембрану Schluter®-DITRA-HEAT следует выбирать в соответствии с размером области, которая должна быть облицована плиткой, а кабель выбирается в соответствии с размером области, которая должна быть обогреваемой .Не покупайте нагревательный кабель того же размера, что и площадь, которую вы планируете облицевать плиткой, иначе у вас останется слишком много кабеля. (И все мы знаем, что нельзя делать, если это произойдет… вернитесь к совету 1!)
Совет 3: Знайте, где не топить ! Минимальное расстояние между нагревательными кабелями составляет 2 дюйма от стен, перегородок и стационарных шкафов, 8 дюймов от любого источника тепла и 4 дюйма от водостоков. Кабели также не следует прокладывать под шкафами или мебелью.
Совет 4: Планируйте буферную зону! Не всегда можно предсказать, где закончится нагревательный кабель. Эта буферная зона – это область, где нагревание не является необходимым, но дает некоторое пространство для маневра, если вы в конечном итоге получите немного больше, чем вы ожидали. Оставив 6-дюйм. зазор между стеной и кабелем не повлияет на теплоту пола и оставит вам необходимую гибкость.
В случае сомнений воспользуйтесь калькулятором! Калькулятор Ditra-Heat был специально создан для того, чтобы не гадать, сколько кабеля вам понадобится.Это даст вам окончательный расчет, который включает, сколько кабеля и мембраны вам действительно понадобится, с учетом минимального расстояния в три шпильки (3-1 / 2 дюйма или 9 см) между трассами нагревательного кабеля. Нужны еще советы? Посмотрите видео из серии «Советы и приемы»: «Советы по расчету длины кабеля для DITRA-HEAT», чтобы получить более точные советы по расчету длины кабеля для вашего следующего проекта по утеплению пола.
Калькулятор нагрузкиHVAC – Оцените размер вашей системы отопления / охлаждения (в БТЕ)
Калькулятор ОВК
Этот калькулятор нагрузки HVAC (также известный как калькулятор BTU) обеспечивает точную оценку реальной тепловой нагрузки для как для обогрева, так и для охлаждения .Кроме того, он дает рекомендации по оборудованию (тип системы отопления / охлаждения, подходящий для вашего дома) и рассчитывает стоимость установки оборудования, включая труд и материалы!
Мы используем собственный алгоритм расчета BTU, который НЕ ЗАВЕРШАЕТ переоценку единичной мощности. Большинство онлайн-инструментов дают вам более высокую оценку тепловой нагрузки, чем вам на самом деле нужно, чтобы ваш дом мог продать вам более дорогое оборудование.
Оценить нагрузку на систему отопления, вентиляции и кондиционирования воздуха сейчас:
Расчетная нагрузка Охлаждение / нагрев: 0 БТЕ
Рекомендуемое оборудование Рассчитайте, чтобы увидеть результаты
Посмотреть цены в вашем районе Начните здесь – введите свой почтовый индексКак пользоваться вычислителем тепловой нагрузки
МАССИВНОЕ ОБНОВЛЕНИЕ (24 июня 2020 г.): Мы выпустили обширное обновление калькулятора, на разработку которого ушло более 150 часов, и теперь оно содержит более 900 строк кода! В этом новом выпуске представлены расчеты цен и HVAC Equipment Алгоритм рекомендаций , который предлагает рекомендации, основанные на вашем климатическом регионе, размере вашего дома, наличии (или отсутствии) воздуховодов и / или радиаторов плинтуса в вашем доме.
Хотя расчет тепловой нагрузки в BTU производился до этого обновления, многие домовладельцы не знали, какая система отопления и охлаждения им лучше всего подходит. Именно здесь наш новый алгоритм может дать разумную рекомендацию, которая включает как мощность системы (для отопления и охлаждения), соответствующий тип системы, так и затраты на энергию / топливо.
Мы также рекомендуем, если вы планируете использовать результаты этого расчета тепловой нагрузки для принятия решений о покупке, вам СЛЕДУЕТ проверить результаты с помощью этого подробного онлайн-оценщика Manual J.
Несколько систем отопления / охлаждения: Еще одна важная новая функция – это расчет стоимости нескольких систем отопления / охлаждения, устанавливаемых в больших домах (более 3000 кв. Футов), и определение максимально возможной ведущей системы отопления, вентиляции и кондиционирования в BTU, а затем система наименьшего размера для оставшейся части общей нагрузки БТЕ.
Например, если ваша тепловая нагрузка составляет 150 тыс. БТЕ, а максимальный размер центрального кондиционера в жилых помещениях составляет 60 тыс. Британских тепловых единиц (5 тонн), тогда вам понадобятся два компрессора на 60 тыс. БТЕ и один компрессор на 30 тыс. (2.5 тонн). Алгоритм калькулятора выберет полноразмерную систему (ы) и систему наименьшего размера, чтобы покрыть остальную требуемую нагрузку в БТЕ, чтобы дать вам наиболее экономичную оценку.
Оценка затрат на установку: инструмент оценит общую стоимость установки для вашей новой системы HVAC, которая основана на стоимости оборудования, а также на средней рабочей силе + накладные расходы + прибыль по стране, которую сантехники / подрядчики HVAC взимают за каждый тип системы.
Запланированные новые функции: Теперь, когда механизм рекомендаций по оборудованию и расчет стоимости полностью функционируют, мы планируем добавить две последние функции:
1) Ориентировочная стоимость установки новых воздуховодов (при необходимости).
2) Оценка стоимости установки нового плинтуса или настенных радиаторов ИЛИ теплых полов (при необходимости).
Как рассчитать нагрузку HVAC
Важно, чтобы вы вводили точные / соответствующие данные в калькулятор БТЕ. Этот инструмент максимально приближает вас к сложной ручной оценке J. В противном случае вы можете получить слишком большую или слишком маленькую систему.
Шаг 1 (климатический регион): Выберите свой климатический регион, используя карту региона в верхней части калькулятора.Например, если вы живете в Нью-Йорке или Нью-Джерси, выберите Регион 3 (желтый). Если вы живете в Техасе, выберите регион 5 (красный) и т. Д.
Шаг 2 (Размер площади): Введите квадратные метры для вашего дома / здания или определенной площади, для которой вы делаете расчеты.
Это шаг Critical для точной оценки годовых нагрузок на отопление / охлаждение ваших систем HVAC! Если вы оставите все настройки по умолчанию и измените только регион с 1 на 5 и обратно, вы увидите огромное изменение нагрузки охлаждения / нагрева в БТЕ.
Шаг 3 (Помещения / Зоны): Введите количество Помещений / Зон, в которых вы хотите установить новую систему отопления / охлаждения.
Если вы планируете использовать центральную систему кондиционирования + воздушную печь (канальную) или центральный котел для отопления, количество зон не очень важно с точки зрения оценки тепловой нагрузки.
Это значение наиболее полезно для определения того, какой тип системы Ductless Mini-Split использовать.
Кроме того, мы обсуждаем плюсы и минусы использования многозонного против установка нескольких однозонных систем с тепловым насосом Ductless в нашем руководстве по установке Mini Split DIY.
Шаг 4 (Высота помещения): Выберите среднюю высоту потолка вашего дома. В большинстве случаев это значение должно быть равно 8 футам. Однако, если у вас высокие потолки или соборные / сводчатые потолки, ОБЪЕМ вашего пространства будет выше.
Для соборных / сводчатых потолков сложите наименьшую высоту стены + высоту пика и разделите на 2, чтобы получить среднее значение. Например:
Ваша внешняя стена 8 футов.высота, а самая высокая точка на потолке – 12 футов в высоту. В этом случае средняя высота потолка составляет 10 футов:
(12 + 8) / 2 = 10
Шаг 5 (класс изоляции): Большинство домов в США, построенных между 1978 и 2000 годами, будут иметь 4-дюймовые стойки с изоляцией стен R-13 и изоляцию крыши / чердака R-38. Если это соответствует вашему дому, оставьте это значение по умолчанию (Средняя изоляция стен R-13).
Если у вас новый дом с 6-дюймовыми шпильками, у вас будет изоляция R-18.В этом случае выберите значение «Больше среднего».
В большинстве случаев вам не следует использовать значение «Очень хорошо изолировано», если только у вас нет дома с «супер изоляцией».
Если у вас дом частично изолирован, выберите «Менее среднего» или «Плохо изолирован».
Эти два значения являются наиболее важными с точки зрения отопления, где потери тепла будут самыми высокими. Если ваша основная причина для установки новой системы отопления, вентиляции и кондиционирования воздуха – охлаждение, мы рекомендуем использовать значение «Меньше среднего», чтобы не перегружать ваше охлаждающее оборудование.
Шаг 6 (Windows): Выберите среднее количество окон в вашем доме. Если у вас ~ 1 окно или меньше, на каждые 8 футов длины внешней стены выберите «Среднее количество».
Если у вас более 1 окна, на каждые 8 футов длины внешней стены выберите «Больше среднего»
Шаг 6 (Герметичность окон / дверей): Выберите соответствующий уровень изоляции окон / дверей. В большинстве случаев оставьте это значение по умолчанию «Среднее».
Понимание результатов расчета нагрузки HVAC
В отличие от других онлайн-калькуляторов HVAC, мы предоставляем расчетную тепловую нагрузку (размер системы в БТЕ / ч) для как для отопления, так и для охлаждения , а также рекомендуемый тип и размер оборудования HVAC!
Вы получите ДВА результата:
1) Нагрузка на охлаждение и обогрев в БТЕ – это фактическое рассчитанное количество БТЕ в час и Тонны, необходимые для обогрева / охлаждения вашего помещения.
2) Тип оборудования, наиболее подходящего для ваших нужд.
1) Расчетная тепловая нагрузка
Вы получите приблизительную нагрузку в БТЕ / тонны для вашего дома на основе информации, введенной вами в калькулятор, и вашего региона. Результаты по отоплению и охлаждению в БТЕ рассчитываются с использованием нашего оптимизированного алгоритма расчета в БТЕ, который является более «консервативным», чем может дать вам большинство подрядчиков по ОВКВ и продавцов оборудования.
В среднем эти значения будут на 20-30% ниже, чем «оценка подрядчика».Однако мы рекомендуем использовать меньшие числа по причинам, описанным выше.
2) Рекомендация по оборудованию HVAC
Наш калькулятор пытается предоставить наилучшее соответствие / рекомендации для оборудования, подходящего для вашей конкретной ситуации, на основе вашего климатического региона и других исходных данных.
Рекомендация по оборудованию нуждается в дополнительных разъяснениях, поскольку ситуация у каждого человека индивидуальна. В идеале этот калькулятор идеально подходит для дома новой постройки, где у вас есть полный контроль над дизайном и спецификациями типа оборудования HVAC, которое будет использоваться.Однако большинство домовладельцев в США имеют дело с уже существующими домами, что накладывает определенные ограничения.
Прежде всего, если у вас дома есть система воздуховодов , центральная печь горячего воздуха AC + будет для вас наиболее рентабельной системой. В очень жарком климате печь можно заменить электронагревательной спиралью, которая будет обеспечивать теплый воздух в редкие холодные дни / ночи.
Если у вас нет воздуховодов и вы живете в климатических зонах 1, 2 или 3, лучшая система для отопления – это водогрейный котел с принудительной подачей воды (с плинтусами, настенными радиаторами или лучистым напольным отоплением), а лучшая система охлаждения – это многоступенчатая система отопления. -зональные бесканальные (мини-сплит) кондиционеры, которые экономичны и чрезвычайно эффективны.
В регионах 3, 4 и 5 очень редко бывает очень холодно. В этих областях зимы очень мягкие, а средняя низкая температура выше 0 градусов по Фаренгейту. Следовательно, высокоэффективная бесканальная (мини-сплит) система с тепловым насосом может (и должна) использоваться как для отопления, так и для охлаждения. Это наиболее экономичный * тип обогрева / охлаждения, который вы можете получить.
Тепловые насосыDuctless могут как обогревать, так и охлаждать ваш дом при температуре окружающей среды до -15 градусов по Фаренгейту, и они довольно хорошо справляются с обоими задачами. Поскольку они могут обеспечивать отопление и делают это с использованием довольно небольшого количества электроэнергии (в 3-4 раза меньше, чем у электрических обогревателей), вам может не потребоваться установка дополнительной системы отопления, будь то печь или бойлер, что сэкономит вам около 7000-12000 долларов США + на установку.
Однако они не должны быть вашим ЕДИНСТВЕННЫМ источником тепла в климатической зоне 1 и 2, где зимой очень низкие температуры и часты перебои в подаче электроэнергии, поскольку бесканальные тепловые насосы работают на электричестве. Если у вас есть резервная система отопления (например, старый котел или газовая печь / печь на гранулах, и которая может проработать несколько дней без электричества в случае отключения электроэнергии, то вы можете использовать тепловые насосы в качестве основного источника отопления даже в более холодных регионах.
Большим преимуществом является то, что бесканальные системы являются «модульными» и работают на уровне зоны.Так что, если вы проводите большую часть дня в гостиной, нет необходимости охлаждать или обогревать весь дом! Вам нужно всего лишь запустить 1 зону. Ночью вы можете выключить зону гостиной и включить зоны в спальне (ах).
Более того, бесканальные системы также примерно в 2 раза более эффективны, чем даже современные высокоэффективные системы центрального кондиционирования, а это значит, что ваши счета за электроэнергию будут в 2 раза меньше! Фактически даже больше, чем в 2 раза, из-за зонирования, которое практически невозможно сделать с центральными системами кондиционирования воздуха.
* В то время как в большинстве южных штатов затраты на электроэнергию очень низкие (около 0,10-0,13 доллара США за кВтч), в таких местах, как Калифорния, затраты на электроэнергию часто превышают 0,30 доллара США за кВтч, а цены на PEAK могут достигать 0,50 доллара США за кВтч, a Бесканальная система кондиционирования / отопления идеальна, поскольку они часто в 2 раза более эффективны, чем центральная система кондиционирования, и вы можете кондиционировать только те части вашего дома, где вам действительно нужен прохладный или теплый воздух, вместо охлаждения / обогрева всего дома, в то время как вы сидите в гостиной!
Профессиональный совет: Если в вашем доме в настоящее время нет воздуховодов, а ваш дом одноуровневый (ранчо / мыс), то на чердаке можно установить воздуховоды и печь AC +, используя гибкие изолированные воздуховоды.Это намного дешевле, чем традиционные воздуховоды из листового металла, которые необходимо устанавливать из подвала и распространять на все ваши комнаты, особенно если ваш дом состоит из нескольких уровней.
В этом случае установка Central AIR значительно дешевле, чем бесканальные тепловые насосы. Однако из-за огромной разницы в эффективности бесканальная система быстро покроет начальную разницу в расходах, сэкономив в среднем 40% эксплуатационных расходов!
Таблица размеров HVAC
Выбор системы HVAC подходящего размера для вашего дома / здания необходим для обеспечения достаточной мощности для обогрева или охлаждения вашего жилого пространства.Если ваша система отопления или охлаждения слишком мала, вы не получите достаточного количества БТЕ, и пространство не будет комфортным.
Если вы приобретете слишком большую систему, вы будете переплачивать за дополнительную емкость: Большая система = более высокая стоимость установки. Вы также будете слишком много платить за эксплуатационные расходы (будь то газ, электричество или нефть) в будущем.
Большинство подрядчиков по отоплению, вентиляции и кондиционированию воздуха / сантехнике не хотят тратить время на правильный расчет (с использованием ручного метода J) тепловую нагрузку и теплопотери вашего дома (или отдельных комнат).Таким образом, вместо того, чтобы прикрыть свои «основы», 99% профессионалов указывают на крупногабаритные системы (которые, как объяснялось выше, стоят дороже в установке и эксплуатации).
ПРИМЕЧАНИЕ: Большинство подрядчиков и дистрибьюторов оборудования используют НАДУТАННЫЕ значения БТЕ / ч при расчете тепловой нагрузки и размера агрегата (в тоннах / БТЕ), в первую очередь, чтобы прикрыть свою спину.
В нашем калькуляторе используются более низкие значения БТЕ / ч как для обогрева, так и для охлаждения, чтобы получить более «реальную» оценку тепловой нагрузки. Однако мы, , настоятельно рекомендуем , чтобы вы (или ваш подрядчик) выполнили ручной расчет тепловой нагрузки J вашего дома или определенного района, прежде чем принимать какие-либо решения о покупке!
Этот калькулятор предназначен для использования только в информационных целях!
Стоимость установки ОВК
Стоимость установкиHVAC варьируется в зависимости от региона и зависит от прожиточного минимума.Однако цены на оборудование в большинстве штатов примерно одинаковы. Вот типичные цены на системы центрального кондиционирования (центральный кондиционер + печь с горячим воздухом), водогрейные котлы или бесканальные системы Mini-Split.
Обратите внимание на , что центральная печь переменного тока и печь горячего воздуха могут быть установлены вместе или по отдельности. Однако, если у вас есть только центральный кондиционер, вам также понадобится система отопления. Поскольку система центрального кондиционирования и печь штабелируются, они прекрасно работают вместе друг с другом.
Мы используем дом размером 2300 кв. Футов (в среднем по США для существующих односемейных домов) для оценки стоимости.
- СТОИМОСТЬ ЦЕНТРАЛЬНОГО АККУМУЛЯТОРА: 4-тонный, 14 SEER Central Air стоит от $ 5 595 до $ 7 837 . Система оснащена электронагревателем. Включает удаление старого центрального конденсатора переменного тока и змеевика, а также повторное использование существующих медных линий и электрических соединений. Обновление до 16 SEER обойдется примерно в 800-1200 долларов.
- ЦЕНТРАЛЬНЫЙ ВОЗДУХ (кондиционер + ПЕЧЬ): Комбинированная система центрального воздуха стоит от 7 976 долларов до 11 171 долларов США за 4-тонный центральный кондиционер на 14 SEER с газовой печью 80 000 БТЕ и КПД 96%.Включает удаление старого центрального конденсатора переменного тока и змеевика, а также повторное использование существующих медных линий и электрических соединений.
- КОТЛ (лучистое тепло): Котлы с принудительной подачей горячей воды, старт 4683–6 130 долларов за обычный газовый / масляный котел ИЛИ 6934–10623 долларов за конденсационный котел со встроенным безбаквальным водонагревателем, например Navien, Bosch, Viessmann. Включает удаление старого котла и повторное использование существующих радиаторов / водопроводов.
- БЕСПРОВОДНЫЕ ТЕПЛОВЫЕ НАСОСЫ: Мини-сплит-система для всего дома на 4-5 зон будет стоить 13 876–18 058 долларов.Эти системы могут очень эффективно обогревать и охлаждать ваш дом. Включает установку новых медных линий хладагента и электрическое соединение 240 В с 1 внешним компрессором и 4-5 внутренних «настенных агрегатов». Напольные, тонкие воздуховоды, потолочные кассетные внутренние блоки будут стоить дополнительно 300-400 долларов за каждую зону. Оцените мини-сплит-стоимость в вашем районе.
Если вы хотите получить расценки на HVAC в вашем районе, позвоните некоторым местным установщикам HVAC, которых вы знаете, или ваша семья / друзья могут порекомендовать или запросить бесплатные оценки через нашу реферальную программу.
Выбор лучшей системы HVAC для вашего дома
Используйте следующие рекомендации, чтобы выбрать лучшую систему отопления / охлаждения для вашего дома.
Как упоминалось выше, если вы живете в северных климатических регионах, мы рекомендуем газовый котел для отопления и бесканальный (мини-сплит) кондиционер для охлаждения. Если у вас уже есть воздуховоды, в краткосрочной перспективе будет дешевле использовать центральную печь переменного тока + горячего воздуха.
Однако в некоторых случаях вы получите рекомендацию Mini Split как для охлаждения, так и для нагрева, но размер BTU будет другим.
Мы знаем, что эта часть сбивает с толку. Итак, давайте посмотрим на это подробнее:
Большинство мини-сплит-секций рассчитаны на основе их ХОЛОДИЛЬНОЙ способности. Мини-сплит 12000 БТЕ (1 тонна) будет иметь номинальную мощность около 12000 БТЕ / ч. Однако эти же агрегаты могут также НАГРЕВАТЬСЯ! И большинство более дорогих устройств Mini Split будут иметь гораздо более высокую теплопроизводительность!
Пример: 9000 БТЕ Fujitsu RLS3H (одна зона) имеет максимальную мощность нагрева 21000 БТЕ ! Поэтому, если вы живете в зонах 3, 4 и 5 и планируете установить бесканальную систему для всего дома, используйте размер ОХЛАЖДЕНИЯ при выборе оборудования.В большинстве случаев тепловых единиц будет более чем достаточно!
В регионах 1 и 2 вам необходимо внимательнее изучить технические характеристики вашего устройства. Однако в большинстве случаев в более крупных системах (2-8 многозонных установок) разница в BTU для обогрева и охлаждения не такая большая, как в приведенном выше примере. Поэтому вам придется либо немного увеличить размер, либо установить несколько однозонных блоков по всему дому, чтобы получить максимальную эффективность и доступную мощность.
Если вы не уверены, какой тип системы отопления или охлаждения установить в вашем доме, получите 3–4 бесплатных оценки от местных профессионалов в области HVAC.
Мини-колена для холодного климата: хорошо ли греют?
Многие домовладельцы, желающие добавить эффективную систему отопления, которую можно было бы использовать в холодные месяцы года, очень скептически относятся к установке мини-сплит-теплового насоса. В конце концов, они используются в первую очередь для охлаждения. Однако реальность такова, что если вы приобретете мини-сплит-тепловой насос, РАЗРАБОТАННЫЙ для холодной погоды, он будет нагревать ваше пространство так, что вас удивит – вам будет очень тепло и приятно!
Вместо того, чтобы перечислять все «за» и «против», а также возможные сценарии, я приведу пример.Пять лет назад начальная школа Нью-Брук в Ньюфане, штат Вермонт, установила бесконтактные тепловые насосы + солнечные панели для ОТОПЛЕНИЯ и охлаждения здания с резервным пропановым котлом (только в дни с температурой ниже -4F). Это был беспрецедентный выбор отопления для школьного здания в этом районе, и многие люди были против. Однако обновление было окончательно одобрено и работает очень эффективно по сей день.
Это означает, что тепловые насосы могут производить достаточно тепла в холодном климате и быть экономичными! Соедините это с солнечной батареей на крыше, и вы получите бесплатное отопление через 5-8 лет.
Однако, если у вас пропадет электричество, вы можете остаться без тепла! Поэтому важно иметь запасной план, если вы живете в северном климате и хотите использовать для отопления мини-сплит-тепловые насосы!
Калькулятор БТЕ
Калькулятор БТЕ переменного тока
Используйте этот калькулятор для оценки потребностей в охлаждении типичной комнаты или дома, например для определения мощности оконного кондиционера, необходимого для многоквартирного помещения или центрального кондиционера для всего дома.
Калькулятор БТЕ переменного тока общего назначения или отопления
Это калькулятор общего назначения, который помогает оценить количество БТЕ, необходимое для обогрева или охлаждения помещения. Желаемое изменение температуры – это необходимое повышение / понижение температуры наружного воздуха для достижения желаемой температуры в помещении. Например, в неотапливаемом доме в Бостоне зимой температура может достигать -5 ° F. Для достижения температуры 75 ° F требуется желаемое повышение температуры на 80 ° F. Этот калькулятор может делать только приблизительные оценки.
Что такое БТЕ?
Британская тепловая единица или BTU – это единица измерения энергии. Это примерно энергия, необходимая для нагрева одного фунта воды на 1 градус по Фаренгейту. 1 БТЕ = 1055 джоулей, 252 калории, 0,293 ватт-часа или энергия, выделяемая при сжигании одной спички. 1 ватт составляет примерно 3,412 БТЕ в час.
БТЕ часто используется в качестве ориентира для сравнения различных видов топлива. Несмотря на то, что они являются физическими товарами и измеряются соответствующим образом, например, по объему или баррелям, их можно преобразовать в БТЕ в зависимости от содержания энергии или тепла, присущего каждому количеству.БТЕ как единица измерения более полезна, чем физическая величина, из-за внутренней ценности топлива как источника энергии. Это позволяет сравнивать и противопоставлять множество различных товаров с внутренними энергетическими свойствами; например, один из самых популярных – это природный газ к нефти.
БТЕ также можно использовать с практической точки зрения как точку отсчета для количества тепла, которое выделяет прибор; чем выше рейтинг прибора в БТЕ, тем больше его теплопроизводительность. Что касается кондиционирования воздуха в домах, хотя кондиционеры предназначены для охлаждения домов, БТЕ на технической этикетке относятся к тому, сколько тепла кондиционер может удалить из окружающего воздуха.
Размер и высота потолка
Очевидно, что меньшая по площади комната или дом с меньшей длиной и шириной требуют меньшего количества БТЕ для охлаждения / обогрева. Однако объем является более точным измерением, чем площадь для определения использования БТЕ, потому что высота потолка учитывается в уравнении; каждый трехмерный кубический квадратный фут пространства потребует определенного количества использования БТЕ для охлаждения / нагрева соответственно. Чем меньше объем, тем меньше БТЕ требуется для охлаждения или нагрева.
Ниже приводится приблизительная оценка холодопроизводительности, которая потребуется системе охлаждения для эффективного охлаждения комнаты / дома, основанная только на площади помещения / дома в квадратных футах, предоставленной EnergyStar.губ.
Площадь, подлежащая охлаждению (квадратных футов) | Необходимая мощность (БТЕ в час) | ||||
От 100 до 150 | 5000 | ||||
от 150 до 250 | 6000 | ||||
от 250 до 300 | |||||
300–350 | 8000 | ||||
350–400 | 9000 | ||||
400–450 | 10000 | ||||
450–550 | 12000 | ||||
700–1000 | 18000 | ||||
1000–1200 | 21000 | ||||
1200–1400 | 23000 | ||||
1,400–1500 | 1,500–1500 | 24481 | |||
от 2000 до 2500 | 34000 |
Состояние изоляции
Термическая изоляция определяется как уменьшение теплопередачи между объектами, находящимися в тепловом контакте или в диапазоне радиационного воздействия.Важность изоляции заключается в ее способности снижать использование БТЕ за счет максимально возможного управления неэффективным ее расходом из-за энтропийной природы тепла – оно имеет тенденцию течь от более теплого к более прохладному, пока не исчезнет разница температур.
Как правило, новые дома имеют лучшую изоляционную способность, чем старые дома, благодаря технологическим достижениям, а также более строгим строительным нормам. Владельцы старых домов с устаревшей изоляцией, решившие модернизировать, не только улучшат способность дома к утеплению (что приведет к более дружественным счетам за коммунальные услуги и более теплым зимам), но также оценят ценность своих домов.
R-значение – это обычно используемая мера теплового сопротивления или способности теплопередачи от горячего к холодному через материалы и их сборку. Чем выше R-показатель определенного материала, тем более он устойчив к теплопередаче. Другими словами, при покупке утеплителя для дома продукты с более высоким значением R лучше изолируют, хотя обычно они дороже.
При выборе правильного ввода состояния изоляции в калькулятор используйте обобщенные допущения.Бунгало на пляже, построенное в 1800-х годах без ремонта, вероятно, следует отнести к категории бедных. Трехлетний дом в недавно построенном поселке, скорее всего, заслуживает хорошей оценки. Окна обычно имеют более низкое тепловое сопротивление, чем стены. Следовательно, комната с большим количеством окон обычно означает плохую изоляцию. По возможности старайтесь устанавливать окна с двойным остеклением, чтобы улучшить изоляцию.
Требуемое повышение или понижение температуры
Чтобы найти желаемое изменение температуры для ввода в калькулятор, найдите разницу между неизменной наружной температурой и желаемой температурой.Как правило, температура от 70 до 80 ° F является комфортной температурой для большинства людей.
Например, дом в Атланте может захотеть определить использование БТЕ зимой. Зимой в Атланте обычно бывает около 45 ° F с шансом иногда достигать 30 ° F. Желаемая температура обитателей – 75 ° F. Следовательно, желаемое повышение температуры будет 75 ° F – 30 ° F = 45 ° F.
Дома в более суровых климатических условиях, очевидно, потребуют более радикальных изменений температуры, что приведет к увеличению использования БТЕ.Например, для обогрева дома зимой на Аляске или охлаждения дома летом в Хьюстоне потребуется больше БТЕ, чем для отопления или охлаждения дома в Гонолулу, где температура обычно держится около 80 ° F круглый год.
Прочие факторы
Очевидно, что размер и пространство дома или комнаты, высота потолка и условия изоляции очень важны при определении количества БТЕ, необходимого для обогрева или охлаждения дома, но следует учитывать и другие факторы:
- Количество жителей, проживающих в жилых помещениях.Тело человека рассеивает тепло в окружающую атмосферу, поэтому требуется больше БТЕ для охлаждения и меньше БТЕ для обогрева комнаты.
- Постарайтесь разместить конденсатор кондиционера в самой тенистой стороне дома, обычно к северу или востоку от него. Чем больше конденсатор подвергается воздействию прямых солнечных лучей, тем тяжелее он должен работать из-за более высокой температуры окружающего воздуха, который потребляет больше БТЕ. Помещение его в более тенистое место не только повысит эффективность, но и продлит срок службы оборудования.Можно попробовать разместить вокруг конденсатора тенистые деревья, но имейте в виду, что конденсаторы также требуют хорошего окружающего воздушного потока для максимальной эффективности. Убедитесь, что соседняя растительность не мешает конденсатору, блокируя поток воздуха в агрегат и блокируя его.
- Размер конденсатора кондиционера. Единицы слишком большие, крутые дома слишком быстро. Следовательно, они не проходят запланированные циклы, которые были специально разработаны для работы вне завода. Это может сократить срок службы кондиционера.С другой стороны, если устройство слишком мало, оно будет работать слишком часто в течение дня, а также переутомиться до изнеможения, потому что оно не используется эффективно, как предполагалось.
- Потолочные вентиляторы могут помочь снизить потребление БТЕ за счет улучшения циркуляции воздуха. Любой дом или комната могут стать жертвой мертвых зон или определенных участков с неправильной циркуляцией воздуха. Это может быть задний угол гостиной за диваном, ванная без вентиляции и большого окна или прачечная. Термостаты, помещенные в мертвые зоны, могут неточно регулировать температуру в доме.Работающие вентиляторы могут помочь равномерно распределить температуру по всей комнате или дому.
- Цвет крыш может повлиять на использование БТЕ. Более темная поверхность поглощает больше лучистой энергии, чем более светлая. Даже грязно-белые крыши (с заметно более темными оттенками) по сравнению с более новыми, более чистыми поверхностями привели к заметным различиям.
- Снижение КПД отопителя или кондиционера со временем. Как и у большинства бытовых приборов, эффективность обогревателя или кондиционера снижается по мере использования.Нередко кондиционер теряет 50% или более своей эффективности при работе с недостаточным количеством жидкого хладагента.
- Форма дома. У длинного узкого дома больше стен, чем у квадратного дома такой же площади, что означает потерю тепла.
ПРЕМИУМ ЛУЧЕВОЕ ОТОПЛЕНИЕ ПОЛОВ EZ Floor Heat – ваш главный источник теплой плитки. Мы поставляем комплектные электрические системы теплого пола и предлагаем все учебные материалы, необходимые для правильного выполнения работы с первого раза.Наши системы электрического теплого пола включают комплекты кабелей Warm Tiles®, комплекты матов и комплекты термостатов, которые можно доставить прямо к вашей входной двери, купив их онлайн. Независимо от того, впервые ли вы знакомы с идеей полов с подогревом или готовы приступить к реализации этого увлекательного проекта, EZ Floor Heat поможет вам начать работу уже сегодня. ЭКОНОМИЧНЫЙ И КОМФОРТНЫЙ EZ Floor Heat предлагает инновационный и экономичный подход к лучистому теплу – электрические теплые полы Warm Tiles®.Вы когда-нибудь мечтали проснуться в теплой ванной, которая была нагрета к вашему приезду? Или вы ищете доступное обновление, которое создает уютную атмосферу для друзей и семьи? Warm Tiles® от Easy Heat – это основа, которую вы ищете. Будь то на кухне, в спальне или даже в подвале, лучистое отопление пола придает интерьеру ощущение тепла и уюта, которое невозможно получить от центрального отопления. Мы даже можем помочь вам уберечь подъездную дорожку от снега с помощью наших ковриков с подогревом. Warm Tiles® не только защищает полы от босых ног в холодные дни, но и помогает снизить счета за отопление круглый год. Фактически, электрические системы теплого пола намного более доступны, чем любой другой метод лучистого тепла, включая системы водяного теплого пола. Это потому, что наши электрические системы Warm Tiles® проще и дешевле в установке. Кроме того, после установки вам больше не придется беспокоиться о регулярных расходах на техническое обслуживание, которые обычно связаны с водяным отоплением – потому что их нет! КАЧЕСТВЕННОЕ ОБСЛУЖИВАНИЕ И ПОДДЕРЖКА КЛИЕНТОВ EZ Floor Heat предоставила клиентам качественную продукцию компании Easy Heat Warm Tiles®.Мы специализируемся на качественном обслуживании клиентов и обещаем неограниченную техническую поддержку, чтобы каждый раз обеспечивать успешный проект. | НЕОБХОДИМА ТЕХНИЧЕСКАЯ ПОДДЕРЖКА! ОТПРАВИТЬ ЭЛЕКТРОННУЮ ПОЧТУ НА: [адрес электронной почты защищен] Наша группа поддержки может помочь вам с измерениями проекта, правильным выбором материалов и вопросами по установке. |
Калькулятор кабеля WarmWire | SunTouch
Чтобы определить количество продукта, необходимое для вашего домашнего региона, введите информацию ниже и выберите «Рассчитать».
Доступное напряжение 120 В переменного тока 240 В переменного тока Желаемое расстояние между проводами 3,5 32,5 Тип чернового пола под отапливаемым помещением БетонДерево Предложите комплект, соответствующий вашему проекту.Да нетРассчитать
Требуемая площадь слишком мала для установки продуктов Sun Touch. Для наших продуктов требуется минимум 12 квадратных футов покрытия.
Предоставленная площадь превышает максимально допустимую для этого калькулятора.
Ваш расчет
Расчетные дневные эксплуатационные расходы:
Рассчитано с использованием {центов} ¢ / кВтч.ИзменятьРасчетные дневные эксплуатационные расходы
Вот ваш список запчастей для печати:
Требуется более или менее утеплить пол в этой комнате?
ST WarmWire можно расположить по-разному, чтобы обеспечить большее или меньшее количество тепла в комнате. Измените настройку интервала на 2,5 дюйма, чтобы увеличить потенциал нагрева, или выберите 3.5 дюймов, чтобы обеспечить меньше тепла на квадратный фут. Наше значение по умолчанию – 3 дюйма.
Нет доступных комплектов для указанной области. Этот проект превышает ограничение по размеру нашего самого большого комплекта на 120 В. Вы можете использовать следующие продукты для завершения этого проекта в среде 120 В ИЛИ посмотрите наши варианты комплекта для 240 В. Если вы не знаете, каковы электрические требования / возможности вашего места установки, проконсультируйтесь с лицензированным электриком.
Нет доступных комплектов для указанной области.Этот проект слишком велик для нашего самого большого комплекта 240v. Вы можете использовать следующие продукты для завершения этого проекта в среде 240 В. Если вы не знаете, каковы электрические требования / возможности вашего места установки, проконсультируйтесь с лицензированным электриком.
Нет доступных комплектов для указанной области.
Наборы WarmWire недоступны для расстояния между проводами 2,5 дюйма. Наборы WarmWire доступны только для расстояния 3 дюйма.
Нет доступных наборов WarmWire для 3.Расстояние между проводами 5 дюймов. Комплекты WarmWire доступны только для расстояния 3 дюйма.
Доступные комплекты
КомплектыSunTouch WarmWire Kits включают важные компоненты, необходимые для установки теплого пола. В каждый комплект входят: кабель (и) WarmWire, командный термостат SunStat ™, фиксатор CableStrap, монитор установки Loudmouth®, двусторонний скотч и руководство по установке. Комплекты WarmWire также доступны с термостатами SunStat View.Свяжитесь с вашим представителем для получения подробной информации.
Выберите отдельные продукты (для некоторых вариантов требуется выбрать более одного элемента для завершения установки):
Или выберите отдельные продукты (некоторые варианты требуют выбора нескольких элементов для завершения установки):
Результаты печатиКоличество: {{Quantity}}
{{ShortDescription}}
Код заказа: {{OrderingCode}}
Номер модели: {{Name}}
{{/каждый}}Что такое U-значение? Объяснение тепловых потерь, тепловой массы и онлайн-калькуляторов
Хотя в настоящее время основной упор в экологических характеристиках зданий делается на использование углерода, по-прежнему необходимо учитывать тепловые характеристики строительных материалов как способствующий фактор.Тепловые характеристики измеряются с точки зрения потерь тепла и обычно выражаются в строительной отрасли как коэффициент теплопроводности или коэффициент теплопередачи. При разработке стратегии строительства обязательно потребуются расчеты коэффициента теплопроводности. Некоторые термины имеют схожее значение, и в Интернете можно найти противоречивые интерпретации. В этой статье объясняются различные термины и их взаимосвязь.
Показатель U или коэффициент теплопередачи (обратный значению R)
Коэффициент теплопередачи, также известный как коэффициент теплопередачи, – это скорость передачи тепла через конструкцию (которая может быть из одного материала или из композитного материала), деленная на разницу температур в этой конструкции.Единицы измерения – Вт / м²K. Чем лучше изолирована конструкция, тем ниже будет коэффициент теплопередачи. Стандарты изготовления и установки могут сильно повлиять на коэффициент теплопередачи. Если изоляция установлена плохо, с зазорами и мостиками холода, коэффициент теплопередачи может быть значительно выше желаемого. Коэффициент теплопередачи учитывает потери тепла из-за теплопроводности, конвекции и излучения.
Расчет коэффициента теплопередачи
Базовый расчет U-значения относительно прост.По сути, значение U можно рассчитать, найдя обратную величину суммы тепловых сопротивлений каждого материала, составляющего рассматриваемый строительный элемент. Обратите внимание, что помимо сопротивления материала внутренняя и внешняя поверхности также имеют сопротивления, которые необходимо добавить. Это фиксированные значения.
Существует ряд стандартов, регулирующих методы расчета коэффициента теплопередачи. Они перечислены в разделе «Полезные ссылки и ссылки» в конце этой статьи.
Простые расчеты коэффициента теплопередачи можно выполнить следующим образом, послойно рассматривая конструкцию строительного элемента. Однако обратите внимание, что при этом не учитываются мосты холода (например, стенные стяжки), воздушные зазоры вокруг изоляции или различные тепловые свойства, например, минометные швы . В этом примере рассматривается полая стена:
Материал | Толщина | Электропроводность (значение k) | Сопротивление = толщина ÷ проводимость (R-значение) |
Наружная поверхность | – | – | 0.040 К м² / Вт |
Кирпич глиняный | 0,100 м | 0,77 Вт / м · К | 0,130 К м² / Вт |
Стекловата | 0,100 м | 0,04 Вт / м · К | 2,500 К м² / Вт |
Бетонные блоки | 0,100 м | 1,13 Вт / м · К | 0,090 К м² / Вт |
Штукатурка | 0.013 м | 0,50 Вт / м · К | 0,026 К м² / Вт |
Внутренняя поверхность | – | – | 0,130 К м² / Вт |
Всего | 2,916 K м² / Вт | ||
Значение U = | 1 ÷ 2,916 = | 0,343 Вт / м² · K |
Обратите внимание, что в приведенном выше примере удельная электропроводность (k-значения) строительных материалов находится в свободном доступе в Интернете; в частности от производителей.Фактически, использование данных производителя повысит точность, если конкретные указанные продукты известны на момент расчета. Хотя можно учесть швы раствора в приведенном выше расчете, оценив процентную площадь раствора по отношению к заложенной в нем блочной кладке, следует иметь в виду, что это грубый метод по сравнению с более надежным методом, изложенным в BS EN ISO 6946 I .
Измерение значения U
Хотя проектные расчеты являются теоретическими, можно также провести измерения после строительства.У них есть то преимущество, что можно учитывать качество изготовления. Расчеты теплопроводности крыш или стен можно проводить с помощью измерителя теплового потока. Он состоит из датчика термобатареи, который прочно прикреплен к испытательной зоне и контролирует тепловой поток изнутри наружу. Коэффициент теплопередачи получается путем деления среднего теплового потока (потока) на среднюю разницу температур (внутри и снаружи) за непрерывный период около 2 недель (или более года в случае плиты первого этажа из-за накопления тепла в помещении). земля).
Точность измерений зависит от ряда факторов:
- Величина разницы температур (больше = точнее)
- Погодные условия (лучше облачно, чем солнечно)
- Хорошая адгезия термобатареи к испытательной площадке
- Продолжительность мониторинга (большая продолжительность позволяет получить более точное среднее значение)
- Больше контрольных точек обеспечивает большую точность для предотвращения аномалий
Два усложняющих фактора, которые могут повлиять на свойства теплопередачи материалов, включают:
- Температура окружающей среды, в том числе из-за скрытой теплоты
- Воздействие конвекционных потоков (повышенная конвекция способствует тепловому потоку)
Калькуляторы коэффициента теплопередачи
Поскольку расчет U-значений может занять много времени и быть сложным (особенно там, где, например, необходимо учитывать холодный мостик), было выпущено множество онлайн-калькуляторов U-value.Однако многие из них доступны только по подписке, а бесплатные, как правило, слишком упрощены. Другой вариант – запросить расчет, например, у производителя изоляции, продукт которого указывается.
Утвержденные строительные нормы и правилаДокументы L1A, L2A, L1B и L2B в Англии и Уэльсе все относятся к публикации BR 443 Соглашения по расчетам U-значения II для утвержденных методологий расчета, а сопутствующий документ Соглашения по U-значению в упражняться.Рабочие примеры с использованием BR 443 III предоставляют полезные рекомендации.
R-value или теплоизоляция (обратная U-value)
Теплоизоляция – коэффициент, обратный коэффициенту теплопередачи; другими словами, способность материала противостоять тепловому потоку. R-значения чаще используются в определенных частях мира (например, в Австралии), в отличие от Великобритании, предпочитающей U-значения. Единицами измерения коэффициента теплопередачи являются м²K / Вт, и, опять же, более высокое значение указывает на лучшую производительность (в отличие от более низкого значения, требуемого для значения U).
значение k или теплопроводность (также известное как значение лямбда или λ; величина, обратная удельному тепловому сопротивлению)
Теплопроводность – это способность материала проводить тепло. Следовательно, высокая теплопроводность означает, что передача тепла через материал будет происходить с большей скоростью; обратите внимание, что это также зависит от температуры. Единицы теплопроводности – Вт / м⋅К. Однако, в отличие от значений U и R, значения k не зависят от толщины рассматриваемого материала.
Значение Y, или теплопроводность, или коэффициент теплопередачи
Способность материала поглощать и отдавать тепло из внутреннего пространства при изменении температуры этого пространства называется теплопроводностью (или коэффициентом теплопередачи ) и определяется в BS EN ISO 13786: 2007 Тепловые характеристики строительных элементов IV . Это также является основой для «динамической модели агрегата» в CIBSE Guide A: Environmental design V , которая используется для расчета охлаждающих нагрузок и летних температур в помещении.Чем выше тепловая проводимость, тем выше будет тепловая масса. Теплопроводность аналогична коэффициенту теплопередачи (и используются те же единицы измерения). Однако он измеряет теплоемкость материала, то есть способность материала сохранять и выделять тепло в течение определенного периода времени, обычно 24 часа. Как и коэффициент теплопередачи, единицы измерения – Вт / м²K.
Обратите внимание, что коэффициент теплопроводности «значение Y» не следует путать с коэффициентом теплового моста «значение y» , который определен в приложении K к стандартной процедуре оценки (SAP) как полученный из линейного коэффициента теплопередачи.
Значениефунтов на квадратный дюйм (Ψ) или линейный коэффициент теплопередачи
Мера теплопотерь из-за теплового моста называется линейным коэффициентом теплопередачи (в отличие от коэффициента теплопередачи «площади», который иначе называется значением U), с единицами измерения, опять же, Вт / м²K. Значения Psi используются для получения значений y (коэффициент теплового моста , ) в Приложении K Стандартной процедуры оценки.
Удельное термическое сопротивление (обратное теплопроводности)
Термическое сопротивление – это способность материала сопротивляться теплопроводности через него.Как и значение k, это свойство не зависит от толщины рассматриваемого материала. Единицы измерения удельного теплового сопротивления – Км / Вт.
Теплопроводность (обратная термическому сопротивлению)
Это относится к количеству тепла, проводимого через материал заданного объема в единицу времени, то есть скорость теплопроводности. Таким образом, единицы измерения – Вт / К.
Тепловое сопротивление (обратное теплопроводности)
Это мера того, насколько хорошо материал может сопротивляться теплопроводности через него, и измеряется в К / Вт.Как и в случае с теплопроводностью, это мера скорости передачи для данного объема.
Тепловая масса
До сих пор в строительной отрасли Великобритании в значительной степени игнорировалось, тепловая масса (в отличие от теплопроводности) получается из удельной теплоемкости (способность материала накапливать тепло относительно своей массы), плотности и теплопроводность (насколько легко тепло может проходить через материал). SAP 2009 использует теплопроводность в виде значения «k» (или каппа) при расчете параметра тепловой массы (TMP).Значение k – это теплоемкость на единицу площади «термически активной» части конструктивного элемента (только первые 50 мм или около того толщины элемента оказывают реальное влияние на тепловую массу, так как она уменьшается с увеличением глубины до элемент; за пределами 100 мм эффект незначителен). Следует отметить, что значение «k» является приблизительным, поскольку делаются предположения о степени термически активных объемов материала; кроме того, он игнорирует влияние теплопроводности при расчете периода, в течение которого тепло поглощается и выделяется из материала.BS EN ISO 13786 VI обеспечивает более эффективный метод определения тепловой массы. Не следует путать тепловую массу с изоляцией.
Значение тепловой массы невозможно переоценить, как показано на следующих примерах:
Строительство стен | Значение U | Тепловая проводимость | Тепловая масса |
| 2 Вт / м² · K | 4.26 Вт / м² · K | 169 кДж / м² · K |
| 0,19 Вт / м² · K | 1,86 Вт / м² · K | 9 кДж / м² · K |
Обратите внимание, насколько низкая тепловая масса современной полой стены по сравнению с массивной кирпичной стеной.Однако, заменив сухую облицовку «влажной» штукатуркой толщиной 13 мм, пропускная способность может быть существенно увеличена:
Строительство стен | Значение U | Тепловая проводимость | Тепловая масса |
| 0.19 Вт / м² · K | 2,74 Вт / м² · K | 60 кДж / м² · K |
Таким образом, можно увидеть, что такое разделение гипсокартона позволяет почти полностью удалить эффективную тепловую массу в доме, построенном в соответствии с современными стандартами и технологиями.
Использование тепловой массы для борьбы с перегревом в летнее время обсуждается более подробно в серии статей Адаптация к изменению климата в зданиях: избыточное тепло , часть первая VII и две VIII .
Декремент
Описывает способ, с помощью которого плотность, теплоемкость и теплопроводность материала могут замедлять передачу тепла от одной стороны к другой, а также уменьшать это усиление при прохождении через него. Следовательно, это влияет на тепловые характеристики здания в более теплые периоды. Они называются задержкой декремента и коэффициентом декремента соответственно.
Химическая фаза
Когда материал меняет состояние с твердого на жидкое или с жидкости на газ, теплопроводность этого материала может измениться.Это происходит из-за поглощения и выделения скрытой теплоты, а также может происходить в меньших масштабах, что может быть выгодно при строительстве.
Становятся все более доступными материалы, которые могут обеспечить высокую тепловую массу при малых объемах. Эти вещества, известные как материалы с фазовым переходом (PCM), могут накапливать и выделять скрытое тепло при плавлении и затвердевании соответственно в узком диапазоне температур. Эти материалы могут быть заключены в микрокапсулы в определенные типы строительных материалов, таких как гипс или глина, с образованием либо облицовочных плит, либо потолочной плитки.Они также могут быть макроинкапсулированы, например, в Пластины теплообменника для использования в охлаждающих и вентиляционных установках и исследуются на предмет включения в панели из вспененного полиуретана для таких применений, как композитные облицовочные панели с металлической облицовкой. Преимущество ПКМ в том, что они могут обеспечивать значительное количество тепловой массы, будучи сами по себе очень тонкими; то есть , тепловая масса кажется непропорционально большой по сравнению с физической толщиной материала.
PCMмогут предложить практическое решение для повторного введения тепловой массы в легкие здания для противодействия перегреву и более подробно рассматриваются в серии статей Адаптация к изменению климата в зданиях: избыточное тепло (часть вторая) IX .
Заинтересованы в большем количестве подобного контента? Подпишитесь на информационный бюллетень NBS eWeekly.
Зарегистрируйтесь сейчас
.