- Несъемная опалубка ПЕНОПЛЭКС® при устройстве ленточного фундамента.
- Опалубка для монолитного фундамента
- Фундамент монолитная плита: плюсы и минусы
- Опалубка ленточного фундамента съемная и съемно-несъемная
- Строительство дома из несъемной опалубки – личный опыт
- Строительство фундамента по технологии несъемной опалубки. Личный опыт
- Технология строительства фундамента монолитная плита: этапы монтажа
- Установка стен ICF на монолитный фундамент – децентрализованныйinc
- Гигуре и Дюфрен | Наши услуги
- Неглубокие фундаменты с защитой от замерзания – хорошее жилищное строительство
- ICF против бетонных фундаментов – какой из них лучше всего подходит для вашего проекта?
- DOE Building Fundations Section 4-1
- Изолированные бетонные опалубки (ICF) | Building America Solution Center
- ICF Строительные мифы: что вы должны знать
Несъемная опалубка ПЕНОПЛЭКС® при устройстве ленточного фундамента.
Содержание статьи:
- Крепление несъемной опалубки ПЕНОПЛЭКС®
- Преимущества технологии несъемной опалубки ПЕНОПЛЭКС®
При возведении ленточных фундаментов из монолитного железобетона не обойтись без устройства опалубки. В традиционном понимании опалубка представляет собой ограждающую конструкцию чаще всего из деревянных конструкций, которая служит для придания точных геометрических параметров и положения в пространстве изделиям из бетона. После отверждения бетонного раствора опалубка удаляется. Однако есть альтернативный способ, позволяющий оставить опалубку в качестве составной части строительной конструкции.
Такая технология называется несъемной опалубкой ПЕНОПЛЭКС®. Этот способ позволяет сократить объем строительно-монтажных работ на один этап – исключить распалубливание, а самое главное – отпадает необходимость в деревянной опалубке, которая составляет значительную часть при производстве работ и далее по ходу работ утилизируется.
Несъемная опалубка ПЕНОПЛЭКС® также выполняет функцию теплоизоляции для фундаментной и цокольной частей будущего дома. Методика устройства несъемной опалубки уже давно и активно используются в Европе и это связано, в первую очередь, с энергоэффективностью возводимых строительных конструкций.
Несъемная опалубка для частного домостроения
Применение ленточного фундамента в частном домостроении обусловлено его универсальностью, надежностью и доступной ценой. Один из самых дорогих этапов создания малозаглубленного и заглубленного ленточного фундамента – это устройство опалубки для фундамента. Несъемная опалубка ПЕНОПЛЭКС® позволяет значительно удешевить и ускорить технологический процесс. Выступающая над поверхностью земли часть ленточного фундамента становится цоколем будущего дома, который уже утеплен качественной теплоизоляцией ПЕНОПЛЭКС®. Таким образом, данная технология позволяет соединить создание опалубки и утепление фундамента с цоколем в единый процесс.
Крепление несъемной опалубки ПЕНОПЛЭКС®
Крепление несъемной опалубки ПЕНОПЛЭКС® происходит с помощью универсальной стяжки. Благодаря удлиняющему элементу стяжки можно регулировать толщину бетонной стяжки. Такая стяжка будет универсально использоваться как при устройстве фундаментов, так и при устройстве стен.
Основные элементы стяжки:
1. Универсальная стяжка
2. Закладная под арматуру
3. Удлинитель
4. Замок
Вид универсальной стяжки в собранном виде:
1. Внешний слой: ПЕНОПЛЭКС®
2. Внутренний слой: ПЕНОПЛЭКС®
3. Универсальная стяжка несъемной опалубки
4. Арматурный каркас
Преимущества технологии несъемной опалубки ПЕНОПЛЭКС®:
- Ускорение проведения строительных работ. Ускоряется и упрощается строительство за счёт объединения нескольких операций в одной. Несущие конструкции и теплоизоляция монтируются за один технологический цикл.
- Экономия финансовых средств. Высоких затрат на опалубку, которая после демонтажа утилизируется, не потребуется. Утеплитель ПЕНОПЛЭКС® также позволяет получить ровную поверхность стен фундамента, что снижает расход бетонной смеси.
- Увеличение надежности конструкции. Главный элемент несъемной опалубки – надежный утеплитель ПЕНОПЛЭКС® впоследствии становится частью конструкции стен.
- Высокая прочность конструкции. Благодаря высокой прочности на сжатие (более 20 тонн на 1 м2) ПЕНОПЛЭКС® не проминается и не продавливается под действием бетонной смеси.
- Герметичность конструкции. Нулевое водопоглощение и ступенчатая кромка по периметру ПЕНОПЛЭКС® позволяет монтировать плиты максимально герметично друг к другу и исключить протечки воды и бетонной смеси.
- Защита от биоповреждения. Защищая несущие элементы конструкции от неблагоприятного воздействия внешней окружающей среды, биостойкая и экологичная теплоизоляция ПЕНОПЛЭКС® продлевает срок их эксплуатации.
- Исключение теплопотерь дома. Использование качественной теплоизоляции ПЕНОПЛЭКС® позволяет предотвратить промерзание грунта и поступление холода к фундаменту. Неизменный низкий коэффициент теплопроводности 0,032 Вт/м∙ºК ПЕНОПЛЭКС® исключает теплопотери дома через фундамент, соответственно внутренние помещения остаются теплыми.
Важным фактором, отличающим технологию несъемной опалубки от традиционного устройства ленточного фундамента, является то, что при этой технологии тепловой контур бетонного сердечника фундамента будет полностью замкнут. (это позволит сэкономить до 11 % тепловой энергии)
Стоимость устройства несъемной опалубки, по сравнению с обычной технологией будет примерно на 20% дешевле. В расчете, подразумевается, что ленточный фундамент будет теплоизолироваться и в том и в другом случае.
Рассмотрим монолитное строительство ленточного фундамента дома 12м на 12м с несущей стеной посередине с применением ПЕНОПЛЭКС, в качестве теплоизоляционных панелей
Общая длина ленты,м |
57,6 |
Высота фундамента, м |
0,6 |
Ширина бетонного сердечника, м |
0,4 |
Объем фундамента, м3 |
13,82 |
Площадь опалубки, м2 |
69,12 |
Использование универсальной стяжки совместно с плитами ПЕНОПЛЭКС ФУНДАМЕНТ® в качестве несъемной опалубки позволяет:
- Выставить точные размеры и минимизировать перерасход бетонной смеси.
- Минимизировать трудовые затраты. Монтаж с помощью универсальных стяжек удобен и прост.
- Закрепить арматуру прямо на стяжки, что значительно упростит монтаж.
- Теплоизолировать фундамент как с внешней, так и с внутренней стороны, что существенно сократит тепловые потери. При отоплении нет необходимости прогревать весь объем фундамента.
- Реализовать конструкцию сложного фундамента (например, ленточного в форме тавра)
- Сократить сроки производства работ и материальные издержки.
30.11.2017
Возврат к списку
Опалубка для монолитного фундамента
При обустройстве ленточных или плитных фундаментов из монолитного бетона вам понадобятся опалубочные вспомогательные конструкции. Опалубка для монолитного фундамента нужна для того, чтобы придать жидкому бетону необходимую конфигурацию до момента застывания.
Разновидности
Для строительства монолитной конструкции можно использовать как готовую арендованную или покупную опалубку, так и опалубочные изделия, изготовленные собственноручно. Готовые изделия для фундамента – это сборные металлические, пластиковые или деревянные щиты. Преимущество готовых изделий, взятых в аренду, – дешевизна, возможность многократного использования.
Благодаря высокой прочности металлической опалубки её можно использовать до 250 раз. Самая недорогая опалубка делается из древесины, но такие изделия можно использовать максимум три раза.
Для изготовления деревянной опалубки применяются:
- доски;
- ДСП;
- ДВП;
- бруски для создания каркаса, изготовления подкосов, распорок.
Опалубка для монолитной фундаментной плиты и ленточных конструкций может быть несъёмной и съёмной. Особенности последних мы рассмотрели выше, что же касается несъёмных изделий, то для их изготовления используется экструдированный пенополистирол и пластиковые стяжки. Такие материалы для устройства монолитных конструкций чаще используются для монтажа стен, поскольку не только удерживают бетон после заливки, но и служат утеплителем и звукоизолятором в конструкции стен.
Также в роли несъёмной опалубочной конструкции можно использовать:
- арболит;
- армированные панели;
- стекломагнезитовый лист;
- специальные пенополистирольные наборы.
Съёмная опалубка для плитного основания
Если вы решили делать плитный монолитный фундамент, опалубка может быть изготовлена самостоятельно. Для изготовления всей конструкции можно брать доски, щиты и бруски. При этом важно правильно рассчитать их толщину.
Внимание: нагрузка, которую должна выдержать опалубка, зависит не только от ширины фундаментной части или плиты, но и от толщины бетонного слоя.
Опалубка для фундаментной плиты требуется тем прочнее, чем глубже будет конструкция основания. Нужно учитывать, что прочность опалубочного изделия зависит от толщины используемых досок или щита, а также от шага, с которым установлены подкосы.
Общие рекомендации
Работы по изготовлению опалубки для монолитной плиты фундамента следует вести с соблюдением следующих принципов:
- В поверхности опалубочной конструкции стоит заранее предусмотреть отверстия в тех местах, где будут проходить инженерные коммуникации. В отверстия нужно вставить части трубы, чтобы после заливки бетона в конструкции основания остались дыры. Для облегчения извлечения трубы после застывания бетона их обматывают рубероидом.
- В частном домостроении для изготовления опалубочных конструкций используют доски шириной 150 мм. Также для этих целей подходит фанера, ОСП, ДСП. Желательно, чтобы все доски были одинаковой толщины, а их длина была не менее трёх метров. Чтобы было проще соблюдать точность геометрических размеров основания, лучше использовать обрезную доску.
- Если для изготовления фундаментной конструкции будут использоваться доски, которые ранее были в употреблении, то из них нужно убрать все гвозди, чтобы они не повредили при демонтаже фундамент.
- Опалубка для плиты фундамента может быть точно по высоте будущего основания или немного превышать её. Однако в первом случае вам будет сложнее выровнять поверхность бетона, а во втором случае сложнее соблюдать требуемую отметку верха фундаментной конструкции (особенно при самостоятельном возведении).
- Щели между досками выше поверхности грунта, а также дыры в досках от выпавших сучков нужно прикрыть фанерой или временно заделать подручными материалами.
- Для снижения адгезии бетона с досками и облегчения их демонтажа внутреннюю поверхность закрывают полиэтиленом либо смазывают жидким глинистым раствором или маслом.
- Чтобы древесина опалубки не забирала влагу из бетона во время его застывания, доски нужно смочить водой. В противном случае прочность бетонной конструкции будет ниже нормативной.
- Для опалубки лучше использовать хвойную древесину.
Опалубка на фундамент-плиту делается только по контуру основания. С внешней стороны щиты дополнительно укрепляют подкосами. После этого в подготовленную конструкцию можно укладывать прутья арматуры и заливать бетон. Если у вас возникли вопросы по поводу изготовления опалубки, вы можете задать их консультанту нашей компании, позвонив по телефону горячей линии.
Фундамент монолитная плита: плюсы и минусы
Плитный фундамент считается самым прочным из всех существующих модификаций. Для рационального сочетания бюджета/качества монолитная плита имеет разновидности, использующиеся в зависимости от геологических условий. Поэтому лучше рассматривать плюсы, минусы этих оснований для каждого варианта конструкции отдельно.
Полнотелая плита МПЛ
Этот фундамент практически не имеет недостатков, используется для любых технологий строительства без ограничений по стеновым материалам, геологии. Плита имеет плюсы:
- минимальная выемка грунта без спецтехники
- простейшая опалубка, позволяющая экономить бюджет
На некоторых почвах при низком УГВ можно обойтись без утеплителя, подбетонки, гидроизоляции, что резко сократит, как время изготовления, так и бюджет строительства. Для этого достаточно разовой квалифицированной консультации в специализированной компании.
Минусом традиционно становится большой объем бетонирования. В домашних условиях столько раствора замесить нереально для заливки опалубки в один прием. В отсутствие ребер жесткости значительно упрощается армирование конструкции. Арматурные сетки можно вязать непосредственно в пятне застройки с учетом стояков инженерных систем, конфигурации стен. Это позволяет изменять ячейку сетки при необходимости без дополнительных затрат.
Плита с кессоном МПЛЧК
Фундамент плита не позволяет получить полноценный подземный этаж. Поэтому для небольших винных, продуктовых погребков в любой комнате коттеджа, гаража разработана кессонная МПЛЧК плита. Она имеет минусы:
- сложная конструкция опалубки, армопояса
- обязательная заливка за один раз
- необходимость качественной гидроизоляции
Общая сложность для плитных оснований – монтаж коммуникаций. Ошибка в 20 – 30 см на этапе ввода инженерных систем обходится снижением эстетики интерьеров, комфортностью эксплуатации. Трубы, кессон закладываются до изготовления опалубки, ошибиться с размерами внутренних перегородок, стен достаточно легко.
Плюсы технологии перевешивают недостатки. Застройщик получает монолитную конструкцию с погребом/техподпольем, в котором удобно хранить зимние запасы, продукты, размещать насосное оборудование, соответственно.
Фундаментная плита-чаша МПЛЧ
Фундамент в виде чаши является самым мощным, идеально подходит для стен из бетонных блоков, кирпичной кладки. Внутренняя часть заполняется песком, позволяя получить полы по грунту. Глинистые грунты не в состоянии выдавить основание на поверхность силами пучения. От высокого уровня УГВ, агрессивных сред конструкция защищена гидроизоляцией.
Минусом является максимально высокий бюджет строительства, который имеет чашеобразная плита. Поэтому ее обычно выбирают для сложных геологических условий, монолитных, бетонных, кирпичных стен многоэтажных коттеджей. Такой дом никогда не даст трещин по стенам, не потребует периодического ремонта.
Перевернутая чаша плиты фундамента МПЛПЧ
Фундамент плитного типа с ребрами жесткости, направленными вниз от подошвы получил название перевернутой чаши. Конструкция имеет плюсы:
- заливка при высоком УГВ – ребра опираются на почву, внутрь монтируется несъемная опалубка, засыпается песок, плита расположена над землей
- подъем чистового пола – существуют проекты, в которых плита поднята на 1,5 м от уровня земли
- снижение бюджета – конструкция является плитным ростверком, поэтому толщину плиты снижают до 10 см
Минусы технологии – сложная опалубка, схемы армирования, необходимость качественной гидроизоляции непрерывным слоем. Щиты внутренней опалубки невозможно демонтировать, использовать в дальнейшем. После шлифования плита становится готовым полом нижнего этажа, снижая бюджет отделки. Коммуникации лучше разводить после установки опалубки, хоть это и менее удобно. В этом случае повышается тонность позиционирования стояков водоотведения, ХВС относительно стен, перегородок. До монтажа опалубки определить, где пройдут стены, гораздо сложнее.
Утепленная плита УШП
Фундамент с теплоизоляционным слоем под подошвой, интегрированными контурами теплого пола получил название «шведская» плита. Основным достоинством конструкции УШП является сокращение бюджета отделки. Владелец получает одновременно с фундаментом:
- готовый пол по грунту
- нижний обогрев
- комфортность проживания
- снижение расхода энергоносителя в основном контуре отопления
Недостатком является сложная конструкция, технология строительства. Для шведской плиты придется изготовить подбетонку, произвести гидроизоляцию, закупить, уложить дорогостоящий пенополистирол XPS.
Достоинства, общие для любых плит
Любой фундамент этого типа гораздо прочнее, надежнее ленты, столбов, ростверка. Нагрузки на грунт распределяются равномерно, не возникает проблем с возведением перегородок, переносом их при перепланировке. Кроме того монолитная плита имеет плюсы:
- вариабельность – при проектировании можно выбрать гладкую, усиленную ребрами, чашеобразную конструкцию, перевернутую чашу, вариант с кессоном, глубокого заложения
- высокий ресурс – плиты не требуют периодического ремонта, могут зимовать без снижения прочности для возобновления строительства в следующем сезоне
- простая конструкция – позволяет обойтись без землеройной техники
Плита не имеет ограничений по этажности, поэтому даже в трехэтажном коттедже может присутствовать мансарда. Прочностной запас основания дома многократно превышает сборные нагрузки в любом случае. Отмостки не вызывают сложностей при выборе любой модификации МЛП, при необходимости их можно утеплить пенополистиролом для снижения бокового промерзания.
Присущие всем МПЛ недостатки
Самым серьезным минусом плитного фундамента является непригодность для сложных ландшафтов. При перепаде высот больше 2 м по любой стене дома лучше выбрать сваи или ленту МЗЛФ. Плиту можно залить на болоте, торфянике, при высоком УГВ, но невозможно навесить над прибрежной зоной в виде пирса.
Вторым недостатком монолитной плиты считается отсутствие подвального этажа. Кессонная модификация МПЛЧК предоставляет застройщику погребок под кухней – не более того. Это актуально для индивидуальных застройщиков, бюджет которых ограничен в 80% случаев. Если при обустройстве чердака в жилую мансарду экономится 2/3 бюджета, то цокольный уровень обходиться на 1/3, но все же дешевле стандартного этажа.
Минусом плиты является нулевая ремонтопригодность узлов ввода коммуникаций. Чтобы заменить трубопровод, придется вскрыть фундамент либо использовать дублирующие схемы для перехода с одного патрубка на другой при засорении инженерной системы. Для любых бетонных конструкций, предназначенных для эксплуатации в земле, необходима дренажная система, поверхностная ливневка.
Последним недостатком монолитной плиты является высокий расход материалов, вытекающий из этого максимальный бюджет. Смета строительства больше, чем в МПЛ, наблюдается лишь при возведении глубокой ленты ниже 2,5 м.
Таким образом, построить плитный фундамент не получится на горах. Во всех остальных вариантах он обеспечит максимальный ресурс даже в экстремальных эксплуатационных условиях.
Опалубка ленточного фундамента съемная и съемно-несъемная
Возведение бетонных и железобетонных конструкций — будь то фундамент, стены или межэтажные перекрытия, выполняются заливкой бетонной смеси в опалубку — специальную форму для заливки и выдерживания бетонной смеси. Опалубка состоит из формообразующих, несущих, соединительных, поддерживающих, и других элементов. Её главная задача — обеспечить проектные характеристики (геометрическую форму и внешний вид поверхности) монолитной конструкции, и её поддержку до набора распалубочной прочности.
Бетон тяжелый материал и при его заливке на опалубку создается большое давление. Для выполнения своих функций опалубка должна быть прочной и жесткой, чтобы не сломаться под давлением бетона и сохранить нужную форму.
В зависимости от оборачиваемости опалубка делится на неинвентарную, используемую для одного сооружения, и инвентарную, используемую многократно. Несъемная опалубка является составной частью возводимой монолитной конструкции, съемная – разбирается (производится распалубка) после набора бетоном распалубочной прочности, поэтому её конструкция должна обеспечивать распалубку без повреждения бетона.
Для изготовления опалубки подходят самые разные химически нейтральные материалы: фанера, дерево, металл, пенопласт и т.п. Изготовление опалубки производится с учетом способа укладки и уплотнения бетонной смеси, а также условий твердения бетона и тепловой обработки. При этом важно уменьшить сцепления бетона с опалубкой. Силу сцепления (адгезии) можно уменьшить, используя для внутренней поверхности опалубки гидрофобные (слабосмачивающиеся) материалы (пластик, текстолит и т. п.), покрывая поверхность специальными смазками и противоадгезионными гидрофобиризующими покрытиями. Наиболее эффективны комбинированные смазки в виде обратных эмульсий, в которые кроме замедлителей схватывания и гидрофобизаторов вводят пластифицирующие добавки, облегчающие отрыв опалубки от бетона. Использование подобных смазок и покрытий снижает силу сцепления в несколько раз.
Устройство опалубки для ленточного фундамента
// ]]>
Изготовление опалубки нормируется ГОСТ Р 52085-2003. В малоэтажном строительстве чаще всего используется съемная мелкощитовая опалубка третьего класса точности, у которой регламентируется только один показатель: точность изготовления и монтажа — сквозные щели в стыковых соединениях между досками или щитами должны составлять не более 2 мм. Остальные параметры не регламентируются и должны удовлетворять требованию заказчика. В соответствии с пунктом 3.7 ВСН 37-96 отклонения плоскостей установленной опалубки от вертикали не должны превышать 5 мм на 1 м высоты, смещение осей опалубки от проекта — 10 мм, а местные неровности не могут составлять более 3 мм.
Рисунок 1. Устройство опалубки ленточного фундамента без монолитной бетонной подготовки.
а) мелкощитовая съемная опалубка из фанерных панелей;
б) мелкощитовая съемная опалубка из досок;
в) мелкощитовая съемная опалубка из фанерных панелей с элементами несъемной опалубки из листов пенополистирола;
г) мелкощитовая съемная опалубка из досок с гладким пластиковым или стальным листом и подземным несъемным утеплением.
Для опалубки ленточных фундаментов без монолитной бетонной подготовки допускается использовать грунтовые стенки траншеи (см. рисунок 1 а), б)). Выработка твердого и неосыпающегося грунта под подземную часть фундамента осуществляется с максимальной точностью с целью создания гладких вертикальных стенок траншеи для последующей отливки фундамента. Дно траншеи для ленточного фундамента утрамбовывают. На дно укладывают и утрамбовывают песчаную подушку высотой от 10 — 20 см (допустимые отклонения от горизонта +- 15 мм). По краям траншеи устанавливаются сборные щиты опалубки, изготовленные из фанеры или из досок толщиной 40 — 50 мм, шириной до 150 мм и влажностью до 22%. Щиты закрепляются раскосами к кольям, вбитым в землю не ближе чем 1 метр. Шаг раскосов опалубки в большинстве случаях составляет 1 метр. Верхний срез щитов опалубки скрепляют перемычками, препятствующими раскрытию опалубки в процессе заливки бетонной смеси. Шаг перемычек опалубки — 0,5-1 м. Во избежание отклонений геометрии опалубки (выгиб, прогиб) производят контроль конструкции двухметровой рейкой.
Внутреннюю поверхность опалубки фундамента выстилают полиэтиленовой пленкой, ПВХ или другими гидроизолирующими материалами. Такая гидроизоляция снижает адгезию поверхности щитов опалубки с бетоном и создает оптимальный влажностной режим для набора бетоном прочности. Отсутствие гидроизоляции может повлечь за собой набор бетоном прочности в условиях нехватки воды, что приводит к ослаблению его прочности, так как цементное молоко из бетонной смеси легко уходит в грунт, просачивается в щели опалубки, впитывается древесиной щитов опалубки. Гидроизоляционный материал укладывают на дно траншеи с небольшим напуском и крепят сверху скобами степлера к опалубке фундамента с загибом через край щитов опалубки.
Верхний срез опалубки фундамента делают на 5-7 см выше верхней плоскости фундамента. В щитах опалубки фундамента делаются пропилы и пропускают через них натянутые стальные струны обносок краев ленты фундамента, по которым затем контролируют уровень заливки верхней плоскости фундамента.
Для строительства фундамента в рыхлом, осыпающемся грунте необходимо устанавливать опалубку высотой на всю глубину траншеи. При этом ширину траншеи под фундамент увеличивают с обеих сторон на ширину, требуемую для установки опалубки. Сэкономить время и деньги в таком случае поможет комбинированная съемно-несъемная утепленная опалубка ленточного фундамента (см. рисунок 1 б), в)). Комбинированная опалубка имеет преимущества по сравнению с «грунтовой» и состоит из двух частей – наружной и внутренней. Внутренняя часть представляет собой несъемную опалубку фундамента, выполненную из листов пенополистирола (XPS или EPS) толщиной 5-10 см, снабженных замками на боковых гранях (система шип-паз) для предупреждения протечки бетонной смеси и цементного молока. Наружная часть – стандартная съемная мелкощитовая опалубка, которая удерживает листы пенополистирола в нужном для геометрии фундамента положении. Листы пенополистирола перед их установкой в опалубку прошиваются насквозь фасадными дюбелями («грибками»), которые в последствие выполняют функцию анкеров в бетоне. Листы крепят к стенкам грунта гвоздями длиной от 20 см. В верхней части опалубки листы прикрепляют к деревянным элементам опалубки съемными саморезами. Преимущества несъемной пенополистирольной опалубки перед «грунтовой»:
- утепление фундаментной ленты;
- гидроизоляция фундаментной ленты для предупреждения утечки цементного молока;
- наличие сминаемого слоя для восприятия горизонтальных нагрузок от грунта;
- создание гладкой поверхности, которая снижает силы трения от воздействия касательных сил морозного пучения.
// ]]>
Конструкция опалубки для строительства ленточного фундамента на бетонной подготовке, а также в траншеях с откосами – отличается от предыдущих (см. рисунок 2).
Рисунок 2. Устройство мелкощитовой съемной опалубки из фанерных панелей для ленточного фундамента на бетонной подготовке.
Сначала в траншею заливают бетонную подготовку. Затем, если среднесуточная температура составляет более +20°С , то через 3 дня, а если среднесуточная температура от +10°С до +20°С, то через 5 дней, — на бетонную подготовку устанавливается мелкощитовая опалубка для ленты фундамента. Для изготовления опалубки удобно использовать бакелезированную или ФСФ фанеру на рамах из деревянных брусков. Опалубку в траншее фиксируют по уровню и краевым струнам обноски с использованием внутри траншеи – распорок, снаружи — раскосов. Фиксирующие опалубку опорные колья забивают не ближе 1 м от края траншеи. Для жесткости щиты опалубки стягивают через стальные (не оцинкованные и не алюминиевые) втулки-трубки необходимой длины, которая равна ширине ленты фундамента. В трубки вставляют резьбовые шпильки, затем затягивают через опорные бруски и шайбы. Шаг резьбовых стяжек составляет 50 см. Все отверстия после распалубки фундамента тщательно заделывают цементным раствором. На внутреннюю поверхность опалубки для снижения её адгезии с бетоном и облегчения распалубки наносят известковое молоко, цементный раствор или гидрофобное (гидрофобиризующее) покрытие.
Строительство дома из несъемной опалубки – личный опыт
Николай сам занимается строительством частного дома в Самаре. Он рассказал нам, как сэкономить пространство земельного участка шириной всего 12 метров, используя универсальные стяжки для несъемной опалубки ТЕХНОНИКОЛЬ.
Предыстория и технические данные
Объекты строительства на участке: баня – 35 м2, дом – 110м2.
Проблема: земельный участок очень небольшой по площади, нужно экономить каждый метр.
Решение: устройство фундамента, цоколя, стен бани и двухэтажного дома методом утепленной несъемной опалубки с применением универсальных стяжек для уменьшения толщины фундамента и стен.
Подрядчик: подрядной организации нет, наём специалистов для строительства под собственным руководством.
Меня зовут Николай, я – частный застройщик из Самары. Мой земельный участок под застройку совсем небольшой – всего 12 метров в ширину. О строительстве знаю не больше вашего, но решил все делать своими руками с помощью наемных работников.
При выборе материалов для устройства фундамента дома и бани я опирался на знания, полученные из разных источников. И, что интересно, об обустройстве несъемной опалубки с применением универсальных стяжек изначально речь не шла вовсе. Просто для утепления внешних поверхностей приобретал экструзионный пенополистирол XPS ТЕХНОНИКОЛЬ CARBON ECО, а стяжки шли в дополнение к нему. Почитав о свойствах стяжек и методе их установки, решил, что это будет наилучшим выбором в моем случае.
Почему выбрал несъемную опалубку?
Вот только представьте, что без несъемной утепленной опалубки и универсальных стяжек мне бы пришлось возводить стены около 1,2-1,5 м толщиной и закладывать очень прочный и более дорогостоящий фундамент. Зимы у нас морозные и меньшая толщина стен приводила бы к большим теплопотерям и расходу энергии. Либо в попытках сэкономить на энергии, затрачиваемой на отопление, моя семья жила бы в холодном отсыревшем доме. Да и при такой малой ширине участка толщина стен в 1,2-1,5 м – это очень много!
Нужно было найти решение этой проблемы. Я выбрал монолитное строительство с применением утепленной несъемной опалубки, в которой используются универсальные стяжки ТЕХНОНИКОЛЬ. Этот метод позволил сделать толщину стен в два раза меньше, а сэкономленное пространство я оставил для обустройства террасы.
Помимо этого, способ установки несъемной опалубки с универсальными стяжками весьма простой и существенно снижает временные затраты на работу. Ведь что такое универсальные стяжки? Это крепеж, который быстро и надежно соединяет стенки листов опалубки друг с другом. С их помощью я сократил время на обустройство бани и фундамента дома больше, чем в 2 раза. Этому поспособствовало и то, что было использовано сочетание опалубки и утепления – мы не тратили время на теплоизоляцию фундамента и стен.
Правда, сперва моим наемным специалистам было непривычно. Они тоже не были знакомы с этим способом укладки и утепления фундамента. Думали, что это очень сложно и дорого. Держали в руках как драгоценность какую-то. Не могли разобраться, как удобнее расположить, как правильно соединить. На первый уровень фундамента дома ушло почти две недели – отрабатывали технологию укладки. Зато, когда разобрались с системой установки стяжек, работы пошли очень быстро. На баню, где высота монолита составляла 3,5 метра, ушло всего 12 дней!
Технология строительства из несъемной опалубки
Как оказалось, схема укладки совершенно простая:
- установили листы опалубки;
- закрепили стяжками для несъемной опалубки;
- установили арматуру; Материал подготовлен для сайта www.moydomik.net
- залили бетоном по кругу высоту около 50 см, затем провибрировали цементный раствор;
- дождались высыхания слоя;
- начали установку стяжек для следующего слоя, и так по кругу.
Утепленная несъемная опалубкаАрмирование несъемной опалубкиУстройство несъемной опалубки для домаМонолитное строительство дома с применением утепленной несъемной опалубки
На возведение ленточного фундамента и стен бани у нас ушло 3,5 недели. Не пришлось устанавливать никакие деревянные громоздкие конструкции, распорки и прочее, а потом все переустанавливать. Причем на стяжки нет совсем никаких нареканий. Они отлично держат нагрузку, а, кроме того, работникам было удобно устанавливать арматуру. Главная трудность заключалась в том, что при возведении стен нужно было равномерно выставить их по уровню. Также с помощью несъемной опалубки и универсальных стяжек уже залили ленточный фундамент под строительство дома и выгнали цоколь, а стены планирую возвести по другой технологии и утеплить.
Еще одна выгода, которую я по достоинству оценил, – экономия на материалах. Мало того, что это опалубка для строительства, это еще и отличный утеплитель для цоколя. Не нужно отдельно приобретать и устанавливать утепление. С этой несъемной опалубкой производитель гарантирует отсутствие мостиков холода в готовой конструкции, что мне и было нужно. Особенно для фундамента дома.
Мой вывод
Несъемная опалубка и универсальные стяжки – разумное и экономное решение для частного строительства. Особенно, если вы хотите успеть отстроиться за лето. Не стоит только нарушать условия инструкции. Нужно делать несъемную опалубку для каждого слоя по высоте одновременной заливки в зависимости от ширины ленты, не выше. Прежде, чем заливать другой слой бетона, дайте высохнуть предыдущему слою, чтобы он успел набрать требуемую прочность.
Единственная сложность была только по началу – процесс установки стяжек из-за отсутствия практики давался нелегко. Но все приходит с опытом. Данная технология сэкономит вам и бюджет, и время. Ведь решение сочетает в себе и опалубку, и утепление. Получается, что вы одновременно закрываете два процесса строительства.
Следующий этап строительства моего дома – утепление фасада плитами XPS. Потом еще закуплю кровельные материалы для устройства крыши дома и бани.
Строительство фундамента по технологии несъемной опалубки. Личный опыт
Современные материалы для возведения фундамента
Как при возведении дома использовать современные технологии по максимуму? Например, можно применить универсальные стяжки при строительстве фундамента.
О своем опыте применения этого крепежа рассказал руководитель строительной фирмы Дом от Профи, Дмитрий Дворецкий. Он со своей командой уже много лет занимается строительством коттеджей в Подмосковье и за это время было освоено много разных технологий, в том числе, и с применением несъемной опалубки.
Строительство домов из газо- и керамзитобетонных блоков, а именно на этих материалах мы специализируемся, требует достаточно серьезного подхода к закладке основания. Очень важно, чтобы фундамент был жестким, прочным и не менял геометрию во время эксплуатации. По этой причине выбору основания всегда должны предшествовать геологические изыскания. Особенно это важно, учитывая сложные грунты на большей части территории России. Так, для Подмосковья характерны глинистые и суглинистые почвы, которые отличаются высокой пучинистостью. Бороться с этим можно двумя способами: строить фундаменты ниже глубины промерзания или возводить по технологии неглубокого заложения, но с утеплением основания, отмостки и цоколя.
Первый вариант потребует вложений – финансовых и трудовых. В разных районах Московской области нормативная глубина промерзания варьируется в диапазоне от 1,1 до 1,44 метра. При строительстве ленточного фундамента придется провести колоссальные земляные работы по подготовке траншеи на заданную глубину. Объем бетона и вовсе серьезно ударит по бюджету. Стройка, как и остальные отрасли экономики, не стоит на месте. Появляются решения, призванные упростить процесс без потери качества. Именно к таким можно отнести и технологию возведения малозаглубленных фундаментов. При соблюдении всех нюансов такое основание будет не только устойчивым к силам морозного пучения, но и отлично сохранит тепло в доме. В точки зрения финансовых затрат на энергоресурсы последний пункт также имеет принципиальное значение.
Что такое МЗФЛ с несъемной опалубкой
В ряду энергоэффективных решений год назад мы открыли для себя технологию несъемной опалубки. Чаще всего владельцы загородных домов выбирают в качестве основания технологию малозаглубленного фундамента (МЗЛФ). Этот тип фундамента привлекает и высотой цоколя, и возможностью возведения практически на любом ландшафте, и скоростью строительства. Единственный технологический нюанс, который вызывает у строителей вопросы, — возведение деревянной опалубки. Во-первых, это всегда затраты, во-вторых, опалубку необходимо устанавливать четко под прямым углом, позаботиться о том, чтобы распорки выдержали давление при укладке бетона, в-третьих, после завершения процесса гидратации опалубку необходимо демонтировать.
Решение с применением несъемной опалубки из XPS показалось очень привлекательным. Строительство каркаса для фундамента и утепление одним действием — очень серьезная экономия времени, да и средств, учитывая стоимость деревянных конструкций.
Реальный опыт применения решения с несъемной опалубкой
Так совпало, что летом 2018 года наша компания построила коттедж, который впоследствии стал демонстрационным домом для клиентов. На этом здании и было решено опробовать новую технологию.
Наша идея состояла в том, чтобы совместить несколько современных решений при строительстве фундамента: малозаглубленную ленту с высотой цоколя 60 см, а также утепленную фундаментную плиту, в которую были встроены системы коммуникаций и теплый пол.
В качестве листов опалубки применили плиты XPS CARBON ТЕХНОНИКОЛЬ, между собой их закрепили стяжками для несъемной опалубки. На фундамент размером 9×8,4 м ушло примерно 400 крепежных элементов. Учитывая глинистые грунты и тот факт, что дом планировался из бетонных блоков, армирование фундамента было выполнено арматурой сечением 14 мм.
Плюс такого решения состоит еще и в том, что для теплоизоляции стен фундамента нет необходимости применять плиты утеплителя высокой прочности, поскольку они не испытывают давления грунта.
Несъемная опалубка в нашем случае решила сразу несколько ключевых задач:
- избавила от необходимости установки и демонтажа деревянной опалубки, а также затрат на ее приобретение,
- благодаря наличию XPS с внутренней и внешней стороны удалось создать единый контур утепления, избавиться от мостиков холода.
После того как собрали конструкцию опалубки, приступили к устройству пола. Отсыпали внутреннее пространство песком, утрамбовали, уложили листы XPS толщиной 10 см. Бетоном заливали уже всю конструкцию целиком.
На возведение фундамента ушло около двух недель. Одновременно с тем, как закончилось строительство так называемого теплого контура, сразу же было решено сделать теплую отмостку по периметру всего дома.
Уже в декабре удалось запустить теплые полы. Тут также важно подчеркнуть, что благодаря внутреннему и внешнему утеплению фундамента, теплоизоляции фундаментной плиты и утепленной отмостке нам удалось максимально изолировать все конструкции, соприкасающиеся с грунтом. В такой ситуации для отопления первого этажа вполне достаточно системы теплых полов. Дополнительные радиаторы мы не ставили.
Эффективность решения удалось оценить в первую же зиму. Когда наступил момент переключения с временной системы отопления на постоянную, за окном температура опустилась ниже нулевой отметки. Пока шла обвязка бойлерной, пришлось отключить систему отопления на три дня. За это время общая температура в доме понизилась всего на 4 градуса, тепловой инерции фундаментной плиты хватило для поддержания температуры на уровне.
При этом в доме есть так называемый второй свет, то есть окно высотой 6 метров.
Успешный опыт строительства и комфортная зимовка убедили еще раз в том, что это решение экономически оправдано. В сезоне этого года мы уже возвели 4 фундамента по технологии несъемной опалубки с применением универсальных стяжек. Экономия на материалах, рациональное использование времени (установка опалубки и теплоизоляция), четкая геометрия фундамента, ровные углы и прочность сцепления плит XPS между собой — эти аргументы имели решающее значение при выборе. Мы попробовали и не пожалели.
Теги: несъемная опалубка, xps, carbon eco, устройство фундамента, мзфл, ленточный фундамент, утепление фундаментаТехнология строительства фундамента монолитная плита: этапы монтажа
На сегодняшний момент постройка фундамента путем возведения на предварительно готовую основу монолитной плиты является достаточно обыденной вещью. Десять лет назад этот способ строительства начинал пользоваться спросом и в России. Конечно, выполнять эту работу нужно с бригадой опытных строителей, и иметь большое количество различных приспособлений, о которых речь пойдет ниже. Технология строительства фундамента «монолитная плита» поистине универсальна, она идеально подходит для низкого неравномерного грунта, в частности песчаной основы и торфяной. В чем кроется отличие этого вида фундамента от других? Все дело в бетонной плите: опалубка служит для него идеальным и неразрывным тандемом.
Новичкам в этом вопросе стало кое-что проясняться, а именно, что такое монолитная плита. Стоит добавить, что она предназначена преимущественно для незаглубленного типа основания и самых труднодоступных для строительства видов грунта. Минимальная толщина данного вида должна составлять 10 сантиметров. В противном случае, конструкция может не выдержать. Плита располагается над заранее приготовленной песчаной подушкой. Необходимо защитить будущий дом от водной стихии. С этой целью производится процедура гидроизоляции.
Далее возводится каркас из арматуры. Устройство самой арматурной сетки тоже не простое: её верхняя и нижняя часть плотно связаны между собой. Она, в свою очередь, располагается над фундаментом.
Далее наступает этап сложного процесса под названием армирование монолитной плиты. Сложна она, потому что сама плита испытывает большие нагрузки со всех сторон изгиба. Для непосредственного армирования монолитного фундамента необходима ребристая арматура, сечение которой составляет 10-15 миллиметров. Именно этот тип хорошо поддерживает своеобразный симбиоз с бетоном – он достаточно крепко сцепляется с ним. Таково устройство монолитной плиты.
Надо как следует подсчитать расходы, касающиеся затрат на арматуру. Допустим, расстояние между прутками 25 сантиметров, на всю основу плиты уйдет практически 3 метра самой арматуры (не забывайте, что её необходимо проложить со всех сторон). Получившиеся метры надо умножить на 2. Помимо нижней части существует верхняя (об этом было сказано выше). Чтобы объединить эти части вместе, потребуется порядка двух метров все той же арматуры. На всю эту непростую процедуру уйдет порядка 15 м на 1 квадратный метр.
Приспособления для построения фундамента
К сожалению, как и любое другое, затеянное предприятие требует немалых вложений. Расходы на данный фундамент будут особенно велики. Результаты тяжелой работы в течение продолжительного времени будут видны, и гордость за такой прочный долговечный проект просто поглотит вас. Этот тип фундамента все время обходит на шаг своих конкурентов.
Вот перечисление ремонтных и строительных материалов, без которых возведение монолитной «крепости» не представляется возможным:
- Лопаты двух типов (штыковая и совковая)
- Проволока
- Крючок, чтобы связывать проволоку
- Песок, цемент, щебень
- Строительный уровень
- Доски, для того, чтобы сделать опалубку (будут нужны так же гвозди, топор, ножовка)
- Виброплита (разравнивает поверхность грунта)
- Толстый шнур
- Арматура (виды сечения поперечный и переменный)
- Уплотнитель бетона – вибратор (необходим для выкачивания воздуха из него)
- Специальная машина по перемешиванию бетона (если это чересчур затратно, то можно найти готовый бетон)
Этапы изготовления монолитной плиты
Чтобы собрать все части мозаики в одну картинку, предлагаю разобраться во всем поэтапно. Технология строительства фундамента монолитной плиты очень непроста. Начинающим в этом деле будет сложно вдуматься в конкретные формулировки. Но если вы поставили себе такую цель, то не отступайте от нее.
Дом, возведенный на таком прекрасном и устойчивом фундаменте, при его последующей продаже будет стоить намного больше, нежели дом, фундамент которого не состоит их монолитной плиты. Итак:
- Большим количеством помощников или профессиональных строителей выкапывается котлован определенной глубины.
- Все углубление заполняется песчаной подушкой.
- Как было сказано выше, специальная дренажная система будет проложена вокруг фундамента, для того, чтобы предохранить его и будущие помещения подвала от затопления.
- На песчаной подушке делают слой так называемой подбетонки, которую изготавливают для того, чтобы разместить там материал, который будет защищать от попадания воды.
- Дальше происходит основная часть работы: в ход вступает арматура и фундаментная плита. После заливки этой плиты часть арматуры будет торчать из нее. Благодаря этому, будущие стены наикрепчайшим образом соединятся с плитой.
- Потом следует обязательный процесс, без которого сделать монолитный фундамент не представляется возможным. Из арматуры нужно сделать прочный каркас, расстояние, между стержнями которого должно быть 25-30 см. Арматура должна охватить опалубку, не стоит это забывать.
- Чистую и слегка мокрую опалубку необходимо установить для того, чтобы стены были более прочными. Выровненные балки вместе с болтами окончательно закрепляют опалубку.
- Наступает кульминационный момент, а именно бетонирование. Средняя толщина одного слоя бетона составляет 15 см. После его заливки нужно выровнять и как следует утрамбовать незастывшее месиво. Делаем это до появления первой воды на нем. Благодаря выравнивающему бруску, который надо передвигать по опалубке, постепенно остывающий бетон примет окончательно ровное положение.
- Последний, завершающий этап. Это как бы показатель проделанной работы. Только когда весь процесс бетонирования завершен, и бетон затвердел, начинается разборка опалубки. После этого монолитная плита считается завершенной.
И после этого возникает вопрос: действительно вы готовы жертвовать семейный бюджет на дорогую технику, хорошее оборудование? Если да, то мы не имеем права сдерживать вас. Главное делать это осознанно, посоветовавшись с семьей. Можем обрадовать тем, что ваш дом ждет участь долгожителя – этот фундамент прочно простоит около 150 лет.
Универсальный вид монолитной плиты
Максимальной устойчивый и усложненный вид, которому представляется возможность как всего лишь частично опираться по контуру, так и совершенно свободно, и также сильно защемляться. Проще говоря, монолитная железобетонная плита может опираться частично, свободно или полностью защемляться. Консольная плита (защемленная) плита активно применяется на практике. Однако защемленная, она лишь на одной из кромок: в остальном плиты являются опертыми в разных углах. По так называемой специальной схеме железобетонные плиты разделают на 2 типа. Первый тип балочный разнообразен: консольный, многопролетный, разрезной или наоборот. Балочные плиты так же бывают однопролетными и многопролетными. Второй тип, как уже стало понятно, носит название небалочный.
Армировка железобетонных плит производится с помощью сварных сеток и арматуры. Как минимум 10% должна составлять площадь поперечной арматуры от места сечения наибольшего изгиба. Установка рабочей арматуры по каждой стороне плиты должна быть выполнена равномерно. Поскольку арматура недешевое удовольствие, то её надо разбить приблизительно на 3 части. Части, которые будут находиться по бокам должны быть меньше средней по ширине.
Процесс заливки плиты: некоторые факты
Специалисты рекомендуют не экономить на бетоне, так как фундамент, полученный в результате заливки, будет держать ваш собственный дом, а экономить на этом глупо. Технология заливки плиты монолитного фундамента не осуществляется вручную: основной процесс будет происходить внутри бетономешалки. Нужную смесь можно как заказать, так и сделать самому. Конечно, речь не идет о покупке бетономешалки – вполне возможным является её аренда.
Есть много способов по заливке опалубки. Готовый бетон помещается прямиком из бетоновоза на опалубку. Аккуратно эту работу можно выполнить, имея направляющий короб. Чтобы уплотнить доставленную смесь применяется вибратор (его применение актуально в случае с монолитной железобетонной плитой). При успешном завершении этой процедуры начинается этап увлажнения. Смесь должна быть влажной в течение недели, после чего снимают опалубку. Возведение фундамента полностью завершено.
Установка стен ICF на монолитный фундамент – децентрализованныйinc
СтеныICF построить намного сложнее, если у вас плохо уложенная монолитная плита. Первый курс должен быть выровнен, чтобы проект продолжился успешно. Строители ICF не любят строить на существующем монолитном фундаменте, поэтому они не делают много снимков этого процесса. Установка ICF на монолитный фундамент – не редкость, но найти ее фотографию сложно.
Единственная фотография, которую я смог найти, – это бетонный блок на монолитном фундаменте. Это поучительно как наглядное пособие и дает мне возможность также объяснить проблемы использования блока на монолитном основании. Использование бетонного блока на монолитном фундаменте повлечет за собой выравнивание первого слоя с использованием прокладок и раствора, чтобы компенсировать любые несоответствия в плите. Каменщик будет корректировать каждый ряд раствором и уровнем, поскольку ряды укладываются так, чтобы они оставались ровными, а стены и углы были отвесными.
Стены ICF блокируются от одного ряда к другому без строительного раствора, поэтому совершенно необходимо, чтобы первый ряд был правильным, чтобы обеспечить быструю блокировку следующих рядов. Стена ICF также имеет пластиковые вертикальные крепежные «шпильки», утопленные в полистирол, которые необходимо установить и выровнять от курса к профилю, чтобы облегчить прикрепление внутренних и внешних поверхностей, шкафов, монтажа проводки и всего остального. Пенопласт можно обрезать, чтобы углы выровнялись, а верх можно обрезать, чтобы выровнять линию крыши, но это плохое решение проблемы, которая началась на фундаменте и не была исправлена там.Если вы решите использовать монолитную плиту или если вы строите дом ICF на плите, которая все еще остается на месте после того, как ураган сорвал дом с фундамента, важно правильно установить первый слой в качестве важного первого шага с добавлением уход и отдельная заливка бетона только на первый курс.
Перед тем, как приступить к укладке пенопласта, необходимо просверлить плиту для установки арматуры. Арматурный стержень должен быть 3 фута в длину и заходить как минимум на 1-2 фута в нижний колонтитул.Используйте клей для бетона на конце, который вы приклеиваете к плите, чтобы облегчить соединение. Если это новый фундамент, установите вертикальные части арматуры перед заливкой монолитного фундамента и используйте куски арматуры длиной 5 футов, которые доходят до основания нижнего колонтитула и на 3 фута выше финишной плиты. Интервал будет указан на планах. Обычно каждые 3 фута по горизонтали вдоль фундамента. Вы можете пропустить установку в дверных проемах или просто обрезать арматуру позже и отшлифовать арматуру перед укладкой пола.Перед тем, как вы залите первый слой, нанесите связующий агент на плиту внутри форм, чтобы способствовать равномерной адгезии залитого бетона к плите, которая могла быть залита днями, неделями или годами ранее, в зависимости от проекта.
У вас есть 2 варианта прокачки первого курса. Вы можете обрезать нижнюю часть форм, чтобы обеспечить необходимый наклон или отклонения. Это может быть чрезвычайно сложно, отнимает много времени и утомительно. Я предпочитаю соединять формы, скручивая их вместе по 4 формы (секции длиной 12 футов), используя металлические шпильки 2 х 3, ввинченные в крепежные ленты на формах ICF.Эти металлические полосы добавляют структуру и удаляются после затвердевания первого слоя бетона. Это позволяет приблизиться к отсутствию уровня в 12-футовых секциях, которые можно соединить вместе. Выровняйте весь первый слой, используя прокладки как для уровня, так и для отвеса. Это оставит зазоры внизу между плитой и низом форм. Заполните зазор расширяющейся пеной. Если зазоры больше 1/2 дюйма, заполните зазор пеной, а затем установите прямоугольную накладку (Scab) из OSB (ДСП) размером 1/2 дюйма или больше.Если вас это беспокоит, вы можете разрезать листы 4х8 на 4-дюймовые полосы на настольной пиле, чтобы ускорить процесс. Их можно использовать позже в другом проекте, например, металлические шпильки 2 x 3. Прикрутите OSB к 2 X 4 на квартире. Прикрутите OSB к шпилькам крепления на формах ICF и используйте клей для пенопласта, чтобы приклеить 2 X 4 к плите. Осторожно залейте первый слой бетономешалкой, используя по возможности всасывающую трубу, чтобы не платить за насосную тележку, стоимость которой может составлять 1000 долларов за каждую операцию заливки. Теперь вы просто платите за партию бетона, которую все равно купили бы.Если вы залите всю стену с зазорами внизу, гидроудар бетона, падающего на 8 футов, может выдуть ваши струпья и прокладки внизу. Лучше правильно установить и отвердить первый слой, прежде чем строить остальную часть стены. После того, как первый слой затвердеет (3 часа), вы можете удалить корки (отвинтите стенки ICF и с помощью лопаты выбейте 2 X 4 шт. Или оставьте их на месте до тех пор, пока не будет установлена стена. Затем вы можете удалить 2 Металлические шпильки X 3. Сохраните металлические шпильки и корки для будущих проектов.Они служат годами при правильном хранении и экономят много времени в будущих проектах. Как только первый слой будет установлен и затвердеет, процесс возведения стен и остальной части проекта пройдет гладко, и конструкция крыши встанет на место в соответствии с планом.
Гигуре и Дюфрен | Наши услуги
ЧТО МЫ ДЕЛАЕМ …
• Несущие опоры
• Подпорные стены
• Арматура, изготовление, установка и связь
• Головные стены
БЕТОННЫЕ ФУНДАМЕНТЫ – Жилые, коммерческие, пристройки, новое строительство , Надстройки, офисный комплекс…
КОНСТРУКЦИОННАЯ ФУНДАМЕНТ – лишь один из примеров обширного спектра услуг, которые мы предлагаем в Giguere & Dufresne, Inc. Удовлетворяя потребности как частных, так и коммерческих клиентов в Северном и Центральном Массачусетсе, мы работаем над проектами любого размера от самых простых до самых сложных. Клиенты в Луненбурге, Вустере, Бостоне, Южном Нью-Гэмпшире и в близлежащих населенных пунктах получат выгоду от наших обширных навыков и знаний, независимо от того, нуждаются ли они в фундаменте из бетонных плит, конструкционном бетоне, железобетонных балках, архитектурном бетоне или штампованных бетонных тротуарах или проездах. .
ЖИЛОЙ | КОММЕРЧЕСКИЙ | ПРОМЫШЛЕННЫЙ ПРОМЫШЛЕННЫЙ• Изолированная бетонная форма
• Новое строительство / Фундаменты пристройки
• Бетонные опоры конструкции
• Радиусные стены (ландшафтные стены)
БЕТОННЫЕ ФУНДАМЕНТЫ, Жилые, коммерческие постройки , Надстройки, офисный комплекс …
БЕТОННАЯ ОПОРНАЯ СТЕНА
Подпорные стены обеспечивают боковую поддержку вертикальных откосов грунта.Они удерживают почвы, которые в противном случае обрушились бы в более естественную форму. Задержанный грунт иногда называют обратной засыпкой .
Подпорные стены могут быть построены из множества различных материалов и с применением различных строительных технологий. Это обсуждение будет сосредоточено на жестких монолитных бетонных стенах в качестве конструкционного материала, но также часто используются сталь, древесина и армированный грунт.
БЕТОННЫЕ ФУНДАМЕНТЫ – жилые, коммерческие, пристройки, новое строительство, надстройки, офисный комплекс…
ИЗОЛЯЦИОННАЯ БЕТОННАЯ ФОРМА или Изолированная бетонная форма ( ICF ) – это система опалубки для железобетона , обычно сделанная с жесткой теплоизоляцией , которая остается на месте как постоянный внутренний и внешняя подложка для стен, полов и крыш.
ПРОБКИ ДЛЯ БЕТОННЫХ КОНСТРУКЦИЙ Сваи или прокалывания – это метод забивки свай из стальных труб для восстановления разрушенного фундамента здания и корректировки осадки фундамента.
Толкающие опоры состоят из секций стальных оцинкованных труб или стальных труб с эпоксидным покрытием, которые забиваются в грунт с помощью гидроцилиндра.
Винтовые опоры используют винтовые сваи со стальными валами. Ведущая секция с одной или несколькими прикрепленными спиралями обеспечивает необходимую несущую способность. Опоры ввинчиваются в землю с помощью гидравлического моментного двигателя.
В любой системе одна или несколько стальных опор забиваются в скалу или подходящий слой грунта и соединяются с фундаментом через металлическую головку в сборе.По достижении подходящего несущего слоя каждую сваю испытывают на усилие, превышающем необходимое для поддержки конструкции.
Гидравлические домкраты прикрепляются к закладным стальным опорам и используются для подъема фундамента на исходную высоту. После восстановления конструкции до желаемой отметки сваи прикрепляются (болтами или сваркой) к настенным кронштейнам, фиксируя новую отметку конструкции.
Пирсы также предлагают доступное решение для настилов, веранд, патио, гидромассажных ванн, а также сборных домов.
Радиусные стены (ландшафтные стены)
Бетонные подпорные стены и радиальные стены – проверенный и простой способ повысить эстетическую привлекательность и долларовую стоимость вашей собственности, одновременно предотвращая дорогостоящий ущерб вашему дому и ландшафту .
Если не установить лицензированный, связанный и застрахованный эксперт, ваши инвестиции могут оказаться под серьезной угрозой. Выберите специалиста по подпорным / радиусным стенам – как и мы!
Неглубокие фундаменты с защитой от замерзания – хорошее жилищное строительство
Основания большинства фундаментов располагаются ниже глубины промерзания.В более холодных районах Соединенных Штатов это может означать выемку грунта и заливку бетона на 4 фута или более ниже уровня земли. Однако если вокруг фундамента будет достаточно теплоизоляции из жесткого пенопласта, почва под домом будет достаточно теплой, чтобы можно было провести неглубокие выемки , глубина которых может составлять всего 12 или 16 дюймов, даже в северных районах. .
Так называемые защищенные от мороза фундаменты мелкого заложения обычно состоят из монолитной плиты (с толстыми краями), обернутой вертикальной и горизонтальной изоляцией из жесткого пенопласта.Хотя Международный жилищный кодекс (IRC) не требует, чтобы неглубокий фундамент имел изоляцию под плитой, исключение изоляции подслоя не является хорошей идеей. В конце концов, чем больше утеплителя под плитой, тем меньше тепла будет уходить из вашего дома в почву под ним.
Эти неглубокие фундаменты не зависят от утечки тепла из здания, чтобы поддерживать почву в тепле. Вместо этого горизонтальные изолирующие крылья, выходящие наружу от нижнего края плиты, помогают сохранить естественное тепло земли.
Для утепления защищенного от мороза неглубокого фундамента можно использовать изоляцию из экструдированного полистирола (XPS) или более плотного пенополистирола (EPS). Чтобы учесть возможное ухудшение характеристик пенопластовой изоляции, которая остается скрытой в течение многих лет, проектировщики «занижают» предполагаемое значение R XPS с его номинальной стоимости R-5 на дюйм до R-4,5 на дюйм. Потребность зависит от индекса замораживания воздуха в вашем регионе. По совпадению, из-за существующих требований энергетического кодекса вы, возможно, уже достаточно изолируете фундаментные стены, чтобы достичь необходимого значения R для неглубокого фундамента.
Предположим, вы строите защищенный от замерзания неглубокий фундамент в городе Миннесота с индексом замерзания воздуха 2500. Согласно требованиям норм для защищенных от замерзания неглубоких фундаментов, приведенным в таблице R403.3 IRC, минимальный R- Значение вертикальной изоляции по периметру плиты составляет R-6,7 (около 1-1 / 2 дюйма XPS). По иронии судьбы, энергетический раздел IRC, который применяется ко всем типам плит, а не только к тем, которые защищены от мороза, требует большей изоляции краев плиты, R-10, для плит, которые обычно строятся с опорами на всю глубину в этой климатической зоне. .
Значение R для изоляции горизонтального крыла в этом примере составляет R-4,9. В таблице R403.3 также указаны минимальная ширина и конфигурация крыльев.
Теперь, когда минимальные требования энергетического кодекса для изоляции плит превзошли проектные требования для защищенного от замерзания неглубокого фундамента, грань между «традиционным» фундаментным фундаментом из плит и неглубоким фундаментом, защищенным от замерзания, стерлась. В результате практически любую монолитную плиту, соответствующую требованиям энергетического кодекса, можно превратить в защищенный от мороза неглубокий фундамент, добавив необходимую изоляцию крыла.
Для получения дополнительной информации см. « Пересмотренное руководство строителя по защищенным от замерзания фундаментам мелкого заложения. ”
Требования Кодексаопределяют, сколько изоляции необходимо использовать в защищенном от мороза неглубоком фундаменте. Однако строители высокопроизводительных домов, вероятно, предпочтут гораздо более высокие значения R под плитой. Например, чтобы соответствовать требованиям энергоэффективности в зданиях пассивных домов, проектировщики часто устанавливают гораздо больше внутренней изоляции, чем требуется по нормам. В этом доме , на самом деле, плита была изолирована по R-50, что в пять раз больше, чем требуется IRC.
Плюсы и несколько замечанийЗащищенные от замерзания фундаменты мелкого заложения имеют ряд преимуществ по сравнению с обычными фундаментами:
- Они требуют меньше земляных работ, поэтому требуется меньшее оборудование и меньше рабочей силы.
- Расход бетона меньше.
- Монолитные плиты формуются и заливаются за один раз, что ускоряет график работ.
- Согласно исследованию Исследовательского центра NAHB (ныне Home Innovation Research Labs ), они обычно стоят на 15–21% меньше, чем обычный фонд.
Защищенные от замерзания фундаменты неглубокого заложения, однако, не имеют смысла везде.
- Если вы живете там, где морозы и без того малы, не ожидайте какой-либо экономии в рабочей силе или материалах, хотя утепленный фундамент может впоследствии сэкономить доллары на электроэнергию.
- Неглубокие фундаменты с защитой от замерзания не подходят для участков с крутым уклоном или участков с вечной мерзлотой.
- В районах, сильно зараженных термитами, включая юго-восток Соединенных Штатов и большую часть Калифорнии, использование низкокачественной изоляции из жесткого пенопласта не всегда является хорошей идеей.
- Многолетние растения с глубокими корнями нельзя высаживать выше неглубоких утеплителей крыльев, окружающих дом.
- Надземные части вертикальной вспененной изоляции должны быть защищены прочным отделочным материалом, например Protecto Wrap, Protecto Bond, или штукатуркой на металлической или стекловолоконной планке.
Поскольку наиболее жесткая изоляция имеет ширину 24 или 48 дюймов, имеет смысл спроектировать защищенный от мороза неглубокий фундамент глубиной 24 дюйма по периметру, с 16 дюймами ниже уровня и 8 дюймами выше уровня.
Наконечник строителяМонолитно-плитный фундамент требует траншеи по периметру. Если перед заливкой внутри опалубки устанавливается вертикальная изоляция, траншея и пенопласт могут выступать в роли нижней части опалубки.
Индекс замерзания воздуха определяет значение RДля расчета необходимого R-значения пенопласта, необходимого для защищенного от мороза неглубокого фундамента, большинство проектировщиков ищут индекс замерзания воздуха для области, в которой они строят. Чем выше показатель, тем холоднее климат. Рекомендации по проектированию защищенных от замерзания фундаментов неглубокого заложения можно найти в публикации Американского общества инженеров-строителей «Проектирование и строительство защищенных от замерзания фундаментов » (ASCE 32-01).Однако большинству застройщиков жилых домов, вероятно, будет проще следовать предписывающим требованиям для этих фундаментов, изложенным в разделе R403.3 IRC, также показанном здесь.
ССЫЛКИ ПО ТЕМЕ
Получайте советы, предложения и советы экспертов по строительству дома на свой почтовый ящик
×ICF против бетонных фундаментов – какой из них лучше всего подходит для вашего проекта?
Каковы преимущества фондов ICF?
Благодаря своему составу и простоте установки продукты ICF, такие как Logix ICF, обладают рядом преимуществ при использовании вместо обычных заливных стен.Вот несколько наиболее ярких плюсов использования ICF для строительства фундаментных стен:
Нет необходимости арендовать формы. В отличие от обычной опалубки, которую сдают в аренду на время заливки бетона, опалубки ICF сами служат опалубками. И вам не нужно снимать их после затвердевания бетона – они остаются на месте и служат изоляцией. Эта универсальность позволяет отказаться от аренды формы и исключить этап демонтажа опалубки из вашего расписания.
Фрейминг-вычитание может выполнять эту область. Для возведения фундаментных стен ICF не требуются какие-либо специальные профессии – это может сделать ваша бригада монтажников. Тем не менее, всегда лучше использовать команду, у которой есть некоторый опыт работы с ICF.
Добиться любой высоты легко. Блоки Logix ICF имеют стандартную высоту 16 дюймов, но также доступны блоки 12 дюймов (серия Logix V-12). С помощью этих блоков вы можете легко поразить стену любой высоты с шагом 4 дюйма. Вы также можете разрезать блоки настольной пилой, чтобы получить любое необходимое вам вертикальное измерение.
Бетон хорошо затвердевает в любую погоду. Поскольку он изолирован с обеих сторон, бетон, который вы заливаете между формами из пенополистирола, гораздо более защищен от элементов, чем это было бы в обычной залитой стене. Все, что вам обычно требуется, это изолирующая крышка (например, Halo Subterra) для верхней части стены (где будет обнажаться бетон) и брезент – нет необходимости в дорогостоящем отоплении в зимние месяцы.
Армированный сталью для дополнительной прочности. Блоки Logix ICF состоят из 2 панелей EPS, разделенных перегородками.Эти перемычки предназначены для размещения стальной арматуры, поэтому установка арматуры не составляет труда. Тем не менее, вам может потребоваться настроить расписание арматуры – и, возможно, изменить размещение арматуры – в соответствии с требованиями местного законодательства в отношении ветра и сейсмичности.
DOE Building Fundations Section 4-1
Рисунок 4-1. Монолитный фундамент с наружной изоляцией
4.1 Рекомендуемые детали конструкции и конструкцииКОНСТРУКЦИЯ
Основными конструктивными элементами фундаментной плиты перекрытия являются сама плита перекрытия и либо профилированные балки, либо фундаментные стены с опорами по периметру плиты (см. Рисунки 4-2 и 4-3).В некоторых случаях необходимы дополнительные опоры (часто утолщенная плита) под несущими стенами или колоннами в центре плиты. Полы из бетонных плит на уровне грунта, как правило, проектируются так, чтобы иметь достаточную прочность, чтобы выдерживать нагрузки на пол без армирования при заливке на ненарушенный или уплотненный грунт. Правильное использование сварной проволочной сетки и бетона с низким водоцементным соотношением может уменьшить растрескивание при усадке, что является важной проблемой для внешнего вида, а также может помочь в стратегиях контроля инфильтрации радона.
Фундаментные стены обычно строятся из монолитного бетона или бетонных блоков. Фундаментные стены должны быть спроектированы таким образом, чтобы выдерживать вертикальные нагрузки от вышележащей конструкции и передавать эти нагрузки на фундамент. Бетонные опоры должны обеспечивать опору под фундаментные стены и колонны. Точно так же опорные балки на краю фундамента поддерживают надстройку выше. Опоры должны иметь размер, достаточный для распределения нагрузки на почву. Замерзшая вода под опорами может вздыбиться, что приведет к растрескиванию и другим структурным проблемам.По этой причине опоры должны располагаться ниже максимальной глубины промерзания, если только они не основаны на скальных породах или не подверженных промерзанию почвах или изолированы для предотвращения промерзания.
При наличии обширных грунтов или в районах с высокой сейсмической активностью могут потребоваться специальные методы строительства фундамента. В этих случаях рекомендуется проконсультироваться с местными строительными чиновниками и инженером-строителем.
УПРАВЛЕНИЕ ВОДОЙ / ВЛАЖНОСТЬЮ
В общем, схемы управления влажностью должны контролировать воду в двух состояниях.Во-первых, поскольку почва, контактирующая с фундаментом и плитой перекрытия, всегда имеет относительную влажность 100%, фундамент должен иметь дело с водяным паром, который будет иметь тенденцию мигрировать внутрь в большинстве условий. Во-вторых, жидкая вода не должна скапливаться вокруг фундамента и под ним. Жидкая вода поступает из таких источников, как:
- Неконтролируемые потоки поверхностных вод
- Высокий уровень грунтовых вод
- Капиллярный поток через конструкции подземного фундамента
Рисунок 4-2.Компоненты структурной системы фундаментного перекрытия с профильной балкой
Рисунок 4-3. Методы дренажа фундаментных перекрытий
Методы контроля накопления и движения влаги в фундаменте являются важным компонентом всей конструкции. Неправильное управление влажностью может привести к повреждению конструкции, отделке пола и росту плесени, ремонт которых может быть очень дорогостоящим и опасным для здоровья.
Следующие методы строительства предотвратят возникновение проблем из-за избытка воды в виде жидкой воды и пара.Это достигается за счет использования соответствующего дренажа и использования замедлителей образования пара. Эти руководящие принципы и рекомендации применимы к утолщенным краевым / монолитным плитам и фундаментам стеновых стволов с независимыми конфигурациями перекрытий над уровнем земли (PATH 2006). Эти две конфигурации плиты на уровне грунта показаны на рисунках 4-2 и 4-3.
- Управляйте внешней почвой и дождевой водой, используя водосточные желоба и водосточные трубы, а также выравнивая поверхность по периметру с падением не менее шести дюймов на десять футов пути.
- Замедлитель парообразования, такой как полиэтиленовый лист толщиной 6 мил, следует размещать непосредственно под бетонной плитой (DOE 2009). Замедлитель пара предотвратит проникновение влаги из земли через плиту в здание. Рекомендуется, чтобы замедлитель образования пара находился в непосредственном контакте с бетонной плитой, и чтобы между ними не было песка или гравия (Lstiburek 2008).
- Слой для разрыва капилляров, состоящий из трех-четырех дюймов чистого гравия (без мелких частиц), должен быть установлен под замедлителем образования пара.Этот слой помогает еще больше предотвратить просачивание основной массы почвенной влаги на плиту и позволяет отводить эту влагу, если установлена дренажная система (PATH 2006). Этот слой также служит расширителем поля давления для системы вентиляции почвенного газа, если она установлена.
- Добавьте капиллярный разрыв (герметик для поролона с закрытыми порами или прокладка) между верхней частью бетона и пластиной порога, чтобы предотвратить миграцию влаги между бетонным фундаментом и конструкцией стены выше.Для конструкций с балками со встроенным грунтом выдвиньте замедлитель образования пара под плиту под основание, доведя его до уровня грунта.
- Существует несколько различных вариантов отделки пола, которые можно использовать на фундаменте из плит, однако следует избегать использования непроницаемых материалов, таких как виниловые полы, поскольку они предотвращают высыхание влаги из плит во внутреннюю часть дома. Влагостойкие покрытия, такие как пятна от плитки, терраццо и бетона, особенно рекомендуются для влажного климата. Также можно использовать такие чувствительные к влаге покрытия, как ковролин и деревянные полы.Однако, чтобы их можно было использовать надлежащим образом, следует использовать изоляцию суб-плиты, поверхности плиты или периметра плиты для регулирования температуры плиты. Низкие температуры могут вызвать конденсацию на плите, что приведет к повреждению отделки, а также к росту плесени.
- После того, как бетон для плиты был залит, он все еще будет содержать большое количество влаги, и ему необходимо дать возможность застыть. Рекомендуется использовать бетон с низким содержанием воды, чтобы уменьшить количество оставшейся влаги, которая должна высохнуть после схватывания плиты.Чтобы предотвратить растрескивание и коробление во время процесса отверждения, следует использовать методы отверждения во влажной среде в сочетании с армированием сварной проволочной сеткой. Горизонтальную, непрерывную арматуру №5 сверху и снизу стенки ствола или утолщенный край плиты также следует использовать для предотвращения растрескивания (PATH 2006). Перед установкой отделки плите необходимо дать ей достаточно высохнуть (Lstiburek 2008).
ДРЕНАЖНАЯ И ГИДРОИЗОЛЯЦИЯ
Поскольку фундамент из плит не закрывает пространство ниже уровня земли, традиционная гидроизоляция часто не требуется.Однако между землей и внутренними частями здания / над уровнем земли необходим непрерывный слой материалов, замедляющих образование капилляров / паров. В зависимости от конструкции фундамента сюда могут входить субплитные замедлители образования пара, уплотнители порогов, прокладки, гидроизоляционные мембраны или другие подходящие материалы.
Дождевую воду можно правильно контролировать, используя хорошо спроектированную систему водостока и водосточной трубы, а также выравнивая грунт вокруг фундамента (6 дюймов на 10 футов), чтобы отводить воду от фундамента (Lstiburek 2006).Плиту также следует поднять как минимум на восемь дюймов над уровнем земли, чтобы предотвратить скопление воды в основании (PATH 2006).
Поскольку фундамент из плит размещает все жилое пространство над уровнем земли, дренаж земляного полотна не всегда необходим. В некоторых случаях, когда может происходить сезонное скопление поверхностных вод или на участках с непроницаемыми почвами, рекомендуется установить дренаж фундамента непосредственно рядом с основанием фундамента, как это рекомендуется для подвалов и подвалов. Сборка дренажа фундамента включает фильтрующую ткань, гравий и перфорированную пластиковую дренажную трубу, обычно диаметром 4 дюйма.Дренаж выходит на дневной свет или в герметичный поддон ..
Рисунок 4-4. Возможные места установки плиты на изоляционном материале класса
МЕСТО ИЗОЛЯЦИИ
Изоляция включается в монолитное строительство для двух целей:
- Изоляция предотвращает потерю тепла зимой и приток тепла летом. Этот эффект наиболее выражен по периметру плиты, где в противном случае край плиты напрямую контактирует с наружным воздухом.
- Даже в климатических условиях и в местах на плите (периметр vs.посередине), где изоляция плиты может не дать больших энергетических преимуществ, теплоизоляция плиты может предотвратить низкие температуры плиты, которые в противном случае могут вызвать конденсацию внутри дома. Это может привести к появлению плесени и другим проблемам, связанным с влажностью, особенно если плита покрыта ковром.
Для изоляции фундаментных плит перекрытия можно использовать самые разные методы (рисунки 4-4 и 4-5). Хорошая строительная практика требует поднять плиту над уровнем земли не менее чем на 8 дюймов, чтобы изолировать деревянный каркас от брызг дождя, сырости почвы и термитов, а также удерживать дренажный слой под плитами над окружающей землей.Наиболее интенсивная теплопередача происходит через эту небольшую площадь фундаментной стены над уровнем земли, поэтому при ее детализации и установке требуется особая осторожность. Тепло также передается между плитой и почвой, через которую оно перемещается к внешней поверхности земли и воздуху. Теплоотдача с почвой максимальна на краю и быстро уменьшается по мере удаления от нее. В жарком климате прямое соединение грунта с плитой может снизить охлаждающую нагрузку, хотя и с риском конденсации влаги из воздуха в помещении.
Оба компонента теплопередачи плиты – по краю и через почву – должны быть учтены при проектировании системы изоляции. Утеплитель можно разместить вертикально за пределами фундаментной стены или горизонтальной балки. Такой подход эффективно изолирует открытый край плиты над уровнем земли и спускается вниз, чтобы уменьшить тепловой поток от плиты перекрытия к поверхности земли за пределами здания. Вертикальная внешняя изоляция (рис. 4-5а) – единственный метод снижения теплопотерь на краю балки и перекрытия фундамента.Для фундаментов со стволовыми стенами главное преимущество внешней изоляции состоит в том, что внутренний стык между плитой и фундаментом может не нуждаться в теплоизоляции, что упрощает конструкцию. Одним из недостатков является то, что жесткая изоляция должна быть покрыта защитной плитой, покрытием или гидроизоляционным материалом. Еще одно ограничение заключается в том, что глубина внешней изоляции регулируется глубиной основания. Однако можно обеспечить дополнительную внешнюю изоляцию, отводя изоляцию горизонтально от фундаментной стены.Поскольку этот подход позволяет контролировать промерзание у основания, его можно использовать для уменьшения требований к глубине основания при определенных обстоятельствах (рис. 4-5a). Этот метод известен как «неглубокий фундамент с защитой от замерзания» (FPSF). Вариант для неотапливаемых зданий показан на Рисунке 4-5b. См. NAHB (2004) для получения дополнительной информации об этом методе, который может существенно снизить начальную стоимость строительства фундамента.
Наружная изоляция должна быть одобрена для использования в некачественных условиях.Обычно используются три продукта ниже сорта: экструдированный полистирол, пенополистирол и жесткие панели из минерального волокна. (Baechler et al. 2005). Экструдированный полистирол (номинальное сопротивление R-5 на дюйм) является обычным выбором. Пенополистирол (номинал R-4 на дюйм) дешевле, но имеет более низкие изоляционные свойства. Пены низкого качества могут подвергаться риску накопления влаги при определенных условиях. Экспериментальные данные показывают, что это накопление влаги может снизить эффективное значение R на 35% -44%.Исследования, проведенные в Национальных лабораториях Ок-Ридж, изучали содержание влаги и термическое сопротивление пенопластовой изоляции, находящейся ниже уровня земли в течение пятнадцати лет; влага может продолжать накапливаться и ухудшать тепловые характеристики по истечении пятнадцатилетнего периода исследования. Это возможное снижение следует учитывать при выборе количества и типа используемой изоляции (Kehrer, et al., 2012, Crandell 2010).
Рисунок 4-5. Возможные места установки плиты на изоляционном материале класса
Изоляция также может быть размещена вертикально внутри ствола или горизонтально под плитой.В обоих случаях уменьшаются потери тепла с пола и устраняются трудности с размещением и защитой внешней изоляции. Внутренняя вертикальная изоляция ограничена глубиной основания, но изоляция под плитами в этом отношении не ограничивается. Обычно утепляются внешние 2–4 фута периметра плиты, но при желании можно утеплить весь пол. Помните, что контроль конденсации является важным фактором наряду с использованием тепловой энергии. Важно изолировать стык между плитой и фундаментной стеной всякий раз, когда изоляция размещается внутри фундаментной стены или под плитой.В противном случае через тепловой мост на краю плиты происходит значительная теплопередача. В этот момент толщина изоляции обычно не превышает 1 дюйм. На рис. 4-4d показана изоляция под плитой и на краю плиты для контроля температуры плиты, при этом внешняя изоляция расположена вертикально и горизонтально, чтобы предотвратить проникновение промерзания в основание.
Другой вариант теплоизоляции фундаментной плиты – это размещение изоляции над плитой перекрытия (Рисунок 4-5c).Это может быть единственный вариант для модернизации приложений. Он также может быть уместен для нового строительства, особенно когда желаемой отделкой пола является дерево. Эти методы имеют важные детали, которым необходимо следовать, чтобы избежать проблем с влажностью; полное описание можно найти в Lstiburek (2006).
Другие специальные системы могут быть использованы для стволовых стенок «плита-на-уровне». К ним относятся изолированные бетонные формы (ICF), плиты с последующим натяжением и системы, в которых пенопластовая изоляция размещается между двумя слоями монолитного бетона.
Рисунок 4-6. Методы контроля термитов на грунте
МЕТОДЫ КОНТРОЛЯ ТЕРМИТА И ДРЕВЕСИНЫ
Методы контроля проникновения термитов через жилые фонды необходимы на большей части территории Соединенных Штатов (см. Рис. 4-6). Для получения более подробной информации проконсультируйтесь с местными строительными чиновниками и нормативами.
- Сведите к минимуму влажность почвы вокруг фундамента с помощью поверхностного дренажа и использования желобов, водосточных труб и водостоков для удаления воды с крыши.
- Удалите с участка все корни, пни и древесину. Деревянные колья и опалубку также следует удалить с участка фундамента.
- Обработайте почву термитицидом на всех участках, уязвимых для термитов (Labs et al. 1988).
- Поместите соединительную балку или ряд массивных заглушек поверх всех бетонных стен фундамента, чтобы убедиться, что не осталось открытых стержней. Как вариант, заполните все сердцевины на верхнем слое строительным раствором. Стык раствора под верхним слоем или соединительной балкой должен быть усилен для дополнительной защиты.
- Поместите пластину порога не менее чем на 8 дюймов над уровнем земли; это должно быть обработано консервантом давления, чтобы противостоять гниению. Поскольку термитные щиты часто повреждаются или устанавливаются недостаточно тщательно, они считаются необязательными и сами по себе не могут считаться достаточной защитой.
- Убедитесь, что внешний деревянный сайдинг и отделка находятся на высоте не менее 6 дюймов над уровнем земли.
- Конструируйте подъезды и внешние плиты таким образом, чтобы они отклонялись от стены фундамента, были усилены стальной или проволочной сеткой, обычно располагались не менее чем на 2 дюйма ниже внешнего сайдинга и были отделены от всех деревянных элементов зазором в 2 дюйма, видимым для осмотра. либо сплошной металлический фартук, пропаянный по всем швам.
- Заполните стык между плиточным полом и фундаментной стеной уретановым герметиком или каменноугольной смолой, налитой жидкостью, чтобы сформировать барьер от термитов и радона.
Пенопласт и изоляционные материалы из минеральной ваты не имеют пищевой ценности для термитов, но они могут обеспечить защитное покрытие и облегчить проходку туннелей. Изоляционные установки могут быть детализированы для облегчения осмотра, хотя часто за счет снижения тепловой эффективности.
В принципе, щитки от термитов обеспечивают защиту, но на них не следует полагаться как на барьер.Термитные щиты показаны в этом документе как компонент всех конструкций плиты на уровне грунта. Их цель – вытеснить любых насекомых, пролезающих через стену, наружу, где их можно будет увидеть. По этой причине щитки от термитов должны быть сплошными, а все швы должны быть заделаны, чтобы не допустить обхода насекомыми.
Эти опасения по поводу изоляции и ненадежности защиты от термитов привели к выводу, что обработка почвы является наиболее эффективным методом борьбы с термитами с помощью изолированного фундамента.Однако ограничения на широко применяемые термитициды могут сделать этот вариант либо недоступным, либо вызвать замену более дорогими и, возможно, менее эффективными продуктами. Эта ситуация должна стимулировать использование методов изоляции, которые улучшают визуальный осмотр и создают эффективные барьеры для термитов. Для получения дополнительной информации о методах борьбы с термитами см. NAHB (2006).
Рисунок 4-7. Методы контроля радона в плите
МЕТОДЫ УПРАВЛЕНИЯ РАДОНОМ
Уплотнение плиты
Следующие методы минимизации проникновения радона через фундамент плиты на уровне являются подходящими, особенно в областях с умеренным или высоким потенциалом радона (зоны 1 и 2), как определено Агентством по охране окружающей среды (см. Рисунки 4-7 и 4-8).Чтобы определить это, свяжитесь с государственным радоновым персоналом.
- Используйте сплошные трубы для дренажей в полу для дневного света или обеспечьте механические ловушки, если они выходят в подземные стоки.
- Положите полиэтиленовую пленку толщиной 6 мил поверх дренажного слоя гравия под плитой. Эта пленка служит одновременно и радоном, и замедлителем влажности. Надрежьте «x» на полиэтиленовой мембране в местах проникновения. Поднимите язычки и заклейте их до места проникновения герметиком или лентой. Следует проявлять осторожность, чтобы избежать непреднамеренного пробивания барьера; рассмотрите возможность использования руслового гравия, если он доступен по разумной цене.Круглый русловой гравий обеспечивает более свободное движение почвенного газа и не имеет острых краев, которые могли бы проникнуть в полиэтилен. Края должны быть притерты не менее 12 дюймов. Полиэтилен должен выходить за верхнюю часть фундаментной стены или проходить под балкой из монолитной плиты или патио, заканчиваясь не ниже готовой отметки. Используйте бетон с низким соотношением вода / цемент, чтобы минимизировать растрескивание.
- Обеспечьте изоляционный шов между фундаментной стеной и перекрытием, где ожидается вертикальное движение.После того, как плита застынет в течение нескольких дней, закройте шов, залив полиуретаном или аналогичным герметиком в канал размером 1/2 дюйма, образованный съемной полосой. Полиуретановые герметики хорошо прилегают к кирпичной кладке и долговечны. Они не прилипают к полиэтилену. Не используйте латексный герметик.
- Установите сварную проволоку в плиту, чтобы уменьшить влияние усадочного растрескивания. Рассмотрите возможность контрольных швов или дополнительной арматуры возле внутреннего угла L-образных плит. Две части арматурного стержня № 4, длиной 3 фута и с 12-дюймовым центром на участках, где ожидается дополнительное напряжение, должны уменьшить растрескивание.Использование волокон в бетоне также уменьшит количество трещин при пластической усадке.
- Управляющие соединения должны иметь углубление на 1/2 дюйма. Полностью заполните это углубление полиуретановым или аналогичным герметиком.
- Сведите к минимуму количество заливок, чтобы стыки не замерзли. Начните отверждение бетона сразу после заливки в соответствии с рекомендациями Американского института бетона (1980; 1983). При 70F требуется не менее трех дней, а при более низких температурах – больше.Используйте непроницаемый покровный лист или влажную мешковину.
- Создайте зазор шириной не менее 1/2 дюйма вокруг всех вводов водопровода и инженерных сетей через плиту на глубину не менее 1/2 дюйма. Заполните полиуретаном или аналогичным герметиком.
- Разместите отводы конденсата HVAC таким образом, чтобы они выходили на дневной свет за пределы ограждающей конструкции здания или к сливу в полу, надлежащим образом загерметизированным от проникновения радона. Отводы конденсата, которые соединяются с сухими колодцами или другой почвой, могут стать прямыми проводниками почвенного газа и могут быть основным источником поступления радона.
- Поместите массивный блок, соединительную балку или верхний блок поверх всех каменных стен фундамента, чтобы заделать ядра, или заполните открытые блоки в верхнем ряду бетоном. Альтернативный подход – оставить сердцевины кладки открытыми и заполнить их твердым телом во время заливки плиты перекрытия путем заливки бетона в верхний ряд блока.
- Не размещайте воздуховоды HVAC под плитой.
Рисунок 4-8. Методы сбора и сброса почвенного газа
Улавливание почвенного газа
Самый эффективный способ ограничить проникновение радона и других газов в почву – это использовать активную разгерметизацию почвы (ASD).ASD работает за счет снижения давления воздуха в почве по сравнению с внутренним. Избегать проемов фундамента в почву или герметизировать эти проемы, а также ограничивать источники разгерметизации помещений вспомогательными системами ASD. Иногда используется система пассивной разгерметизации грунта (PSD, без вентилятора). Если тестирование на радон после занятия показывает, что желательно дальнейшее снижение содержания радона, в вентиляционную трубу можно установить вентилятор (см. Рисунок 4-8).
Снижение давления с помощью поддона оказалось эффективным методом снижения концентрации радона до приемлемых уровней даже в домах с чрезвычайно высокими концентрациями (Dudney 1988).Этот метод снижает давление вокруг оболочки фундамента, в результате чего почвенный газ направляется в систему сбора, избегая внутренних пространств и выбрасывая наружу.
В фундаменте с хорошим подземным дренажем уже есть система сбора. Дренажный слой из гравия под плитами можно использовать для сбора почвенного газа. Он должен быть не менее 4 дюймов в толщину и из чистого заполнителя не менее 1/2 дюйма в диаметре. Гравий должен быть покрыт слоем полиэтиленового радона толщиной 6 мил и замедлителем парообразования.
Вентиляционная труба из ПВХ диаметром 3 или 4 дюйма должна быть проложена от субплитного слоя гравия через кондиционированную часть здания и через самую высокую плоскость крыши. Труба должна заканчиваться под плитой тройником. Чтобы предотвратить засорение трубы гравием, к ножкам тройника можно прикрепить отрезки перфорированного дренажа длиной десять футов и загерметизировать его концы. В качестве альтернативы вентиляционная труба может быть подключена к дренажной системе по периметру, если эта система не подключена к внешней среде.Горизонтальные вентиляционные трубы могут соединять вентиляционную трубу через стены ниже уровня земли с проницаемыми участками под прилегающими плитами. Одной вентиляционной трубы достаточно для большинства домов с площадью перекрытия менее 2500 квадратных футов, которая также включает проницаемый подслой. Вентиляционная труба выводится на крышу через сантехнические желоба, внутренние стены или туалеты.
Система PSD требует, чтобы плита перекрытия была почти воздухонепроницаемой, чтобы не возникало короткого замыкания из-за втягивания чрезмерного количества воздуха в помещении через плиту в систему.Трещины, проникновения в плиты и контрольные швы должны быть заделаны. Следует избегать сточных вод в полу, которые выходят на гравий под плитой, но при использовании их следует оборудовать механической ловушкой, способной обеспечить герметичное уплотнение.
В то время как правильно установленная система пассивной разгерметизации почвы (PSD) может снизить концентрацию радона внутри помещений примерно на 50%, системы активной разгерметизации почвы (ASD) могут снизить концентрацию радона внутри помещений на 99%. Система PSD более ограничена с точки зрения вариантов прокладки вентиляционных труб и менее прощает дефекты конструкции, чем системы ASD.Кроме того, в новом строительстве можно использовать небольшие вентиляторы ASD (25-40 Вт) с минимальным энергетическим воздействием. В активных системах используются бесшумные прямые канальные вентиляторы для забора газа из почвы. Вентилятор должен располагаться снаружи, а в идеале – над кондиционируемым пространством, чтобы любые утечки воздуха со стороны положительного давления вентилятора или вентиляционной трубы не попадали в жилое пространство. Вентилятор должен быть ориентирован так, чтобы в корпусе вентилятора не скапливался конденсат. Стек ASD должен быть проложен через здание, пристроенный гараж или навес и выступать на двенадцать дюймов над крышей.Его также можно провести через ленточную балку и вверх по внешней стороне стены до точки, достаточно высокой, чтобы не было опасности перенаправления выхлопных газов в здание через вентиляционные отверстия чердака или другие проходы. Поскольку системы PSD полагаются на естественную плавучесть для работы, стек PSD должен быть проложен через кондиционированную часть дома.
Вентилятор, способный поддерживать всасывание воды на 0,2 дюйма в условиях установки, подходит для обслуживания подсобных систем сбора в большинстве домов (Labs 1988).Это часто достигается с помощью центробежного вентилятора мощностью 0,03 л.с. (25 Вт) и 160 куб. Футов в минуту (максимальная мощность), способного втягивать до 1 дюйма воды перед остановкой. В полевых условиях на глубине 0,2 дюйма воды такой вентилятор работает со скоростью около 80 кубических футов в минуту.
Можно проверить всасывание подсистемы подслоя, просверлив небольшое (1/4 дюйма) отверстие в участках плиты, удаленных от точки всасывания, и измерив всасывание через отверстие с помощью микроманометра или наклонного манометра. Целью подсистемы сброса давления внутри плиты является создание отрицательного давления воздуха под плитой по сравнению с давлением воздуха в прилегающем внутреннем пространстве.Всасывание в 5 паскалей считается удовлетворительным, когда дом находится в наихудшем состоянии разгерметизации (т. Е. Дом закрыт, все вытяжные вентиляторы и устройства работают, а система отопления, вентиляции и кондиционирования воздуха работает с закрытыми внутренними дверями). После испытания отверстие необходимо закрыть.
СистемыPSD требуют почти идеальной герметизации проемов в почве, поскольку система использует 3- или 4-дюймовую трубу для более эффективной вентиляции, чем весь дом. Герметизация отверстий в почве менее критична для контроля радона с помощью систем ASD, хотя это очень желательно для ограничения потерь энергии, связанных с утечкой кондиционированного воздуха в помещении в подслаб с пониженным давлением, а оттуда на улицу.Срок службы вентиляторов ASD составляет в среднем около десяти лет, при этом ожидаемый срок службы выше, если вентилятор защищен от непогоды. Так как система ASD может быть отключена жильцами, сервисные выключатели обычно располагаются в зонах с ограниченным доступом.
Для получения дополнительной информации посетите Центр решений Building America.
Изолированные бетонные опалубки (ICF) | Building America Solution Center
Вкладка «Соответствие» содержит информацию о программе и коде.Язык кода взят из выдержки и кратко изложен ниже. Чтобы узнать точный язык кода, обратитесь к соответствующему коду, который может потребовать покупки у издателя. Хотя мы постоянно обновляем нашу базу данных, ссылки могли измениться с момента публикации. Если вы обнаружите неработающие ссылки, обратитесь к нашему веб-мастеру.
Дома, сертифицированные ENERGY STAR, версия 3 / 3.1 (Ред. 09)
Контрольный список для полевых работ оценщика
Система теплового ограждения.
3. Пониженный тепловой мостик.
3.4 В надземных стенах, отделяющих кондиционированное пространство от некондиционированного пространства, используется один из следующих вариантов (за исключением балок обода / ленточных балок): 16
3.4.2 Структурные изолированные панели ИЛИ; Изолированные бетонные формы ИЛИ; Двустенный каркас ИЛИ; 17, 20
Пожалуйста, ознакомьтесь с графиком внедрения сертифицированных домов ENERGY STAR для получения информации о версии программы, которая в настоящее время применима в вашем штате.
DOE Zero Energy Ready Home (Версия 07)
Приложение 1 Обязательные требования.
Приложение 1, пункт 1) Сертифицировано в рамках программы сертифицированных домов ENERGY STAR или программы строительства новых многоквартирных домов ENERGY STAR.
Приложение 2, пункт 2) Изоляция потолка, стен, пола и плит должна соответствовать или превышать уровни IECC 2015 года и соответствовать уровню монтажа 1 в соответствии со стандартами RESNET.
Международный жилищный кодекс (IRC) 2009, 2012, 2015 и 2018 гг.
Хотя изолированные бетонные формы рассматриваются в IRC в разделе R611 (R608 в 2015 и 2018 IRC), тепловые мосты конкретно не рассматриваются.
Раздел R301.3 определяет максимальную высоту этажа для стен, включая изоляционные бетонные опалубочные стены.Максимальная высота этажа не должна превышать 11 футов 7 дюймов (3531 мм), а максимальная высота стены без опоры на этаж, разрешенная таблицами Раздела R608, не должна превышать 10 футов (3048 мм).
Раздел R301.2.2 описывает сейсмические положения и требования для таунхаусов в категориях сейсмического проектирования C, D0, D1 и D2 и отдельно стоящих домов на одну и две семьи в категориях сейсмического проектирования D0, D1 и D2. Категории сейсмических расчетов определяются на основе спектрального ускорения отклика, SDS, которое зависит от местоположения и грунтовых условий.Здания в категории E сейсмического проектирования должны быть спроектированы таким образом, чтобы выдерживать сейсмические нагрузки в соответствии с Международным строительным кодексом, хотя в Разделе R301.2.2 обсуждаются методы реклассификации в более низкую категорию сейсмического проектирования.
Раздел R608 (Раздел 611 в 2009 г., IRC 2012 г.) определяет дополнительные требования к изолированным бетонным опалубочным системам. IRC ограничивает применимость ICF к зданиям с максимальной расчетной скоростью ветра 130 миль в час (58 м / с), выдержка B, 110 миль в час (49 м / с), экспозиция C и 100 миль в час (45 м / с). s) Экспозиция D.Использование ICF также ограничивается отдельно стоящими домами на одну и две семьи и таунхаусами, отнесенными к категории сейсмического проектирования A или B, и отдельно стоящими домами на одну и две семьи, отнесенными к категории C сейсмического проектирования. в соответствии с PCA 100 или ACI 318.
2015 и 2018 IRC
Формы плоских стеновых панелей ICF должны соответствовать ASTM E2634.
Модернизация: 2009, 2012, 2015, 2018 и 2021 IRC
Раздел R102.7.1 Дополнения, изменения или ремонт. Дополнения, изменения, обновления или ремонтные работы должны соответствовать положениям этого кодекса, не требуя, чтобы неизменные части существующего здания соответствовали требованиям этого кодекса, если не указано иное. (См. Код для дополнительных требований и исключений.)
Приложение J регулирует ремонт, реконструкцию, переделку и реконструкцию существующих зданий и предназначено для поощрения их дальнейшего безопасного использования.
Американское общество по испытанию материалов (ASTM) E2634-11
Стандарт на изоляционные бетонные конструкции для плоских стен (системы ICF).Настоящая спецификация предназначена для применения к системам ICF, которые будут действовать как несъемная опалубка для монолитных железобетонных балок; перемычки; внешние и внутренние, выше и ниже уровня несущих и ненесущих стен; Фонд; и подпорные стены. Кроме того, данная Спецификация ограничивается системами ICF, в результате которых получается однородное монолитное бетонное ядро.
ICF Строительные мифы: что вы должны знать
Все большее число профессионалов строительной отрасли признают изолированные бетонные опалубки (ICF) доступной и высокопроизводительной системой ограждающих конструкций.В то же время многие в области строительства никогда не слышали об ICF или имели ложное представление об их характеристиках и использовании.
Я постоянно удивляюсь тому, насколько мифы и заблуждения проникают в ежедневные разговоры с профессионалами в области дизайна и другими членами строительного сообщества, когда мы привлекаем их к использованию этих инновационных бетонных форм с фиксацией на месте. Системы ICF создают оболочку здания с «идеальной стеной», и эта элегантно простая и надежная система может быть именно тем, что вам нужно для достижения целей вашего проекта.Однако, если вы читаете это, а не строите с помощью ICF, это может быть связано с тем, что вам и вашей команде может потребоваться отделить факты от вымысла. Вот 5 основных мифов об ICF и их правда.
- Миф № 1: ICF слишком дороги.
ICF обеспечивают отличную тепловую защиту и могут быть установлены так быстро, что многие люди считают, что строительство ICF является дорогостоящим. Суть в том, что ICF не собираются тратить деньги на любой строительный проект любого размера, независимо от того, используются ли они для стен ниже или выше уровня.Когда вы складываете преимущества, которые система стен ICF приносит вашему проекту, затраты сравнимы с другими качественными сборками ограждающих конструкций здания. При точном взвешивании и оценке совокупность атрибутов этого метода строительства делает ICF логичным выбором практически для любого проекта.
- Миф № 2: Я думал, что ICF предназначены только для стен жилых фундаментов.
Это огромное заблуждение. Конечно, это было правдой двадцать пять лет назад, особенно с ранними версиями ICF, в которых не было монолитных бетонных ядер.Сегодня конструкция ICF широко используется для школ K-12, высшего образования, военных проектов, театров, складов и даже многоэтажных, многоквартирных домов и высотных зданий. Еще одна растущая тенденция – использование ICF для домов, в которых стены устанавливаются от фундамента до крыши. С помощью ICF можно построить любую стену, которую вы построили бы из дерева, монолитного бетона, монолитного бетона или откидной конструкции. По правде говоря, все больший процент строительства ICF является надстройкой, и с учетом множества доступных толщин сердцевины стен и средств систем внешней отделки, которые могут использоваться с ICF, обычно нет ограничений по высоте для здания ICF в пределах соответствующих использование зданий и препятствия на пути назад в США и Канаде.
- Миф № 3: Мы пробовали использовать ICF несколько лет назад, и у нас были взрывы, и у нас были трудности с выравниванием стен. Как и любой другой метод строительства, для правильной установки ICF требуется обучение. ICFs спроектированы так, чтобы удерживать жидкий бетон, укладываемый со скоростью 4 фута в час, а типичное размещение составляет от 9 до 13 футов в день. Когда подрядчики испытывают выбросы, когда бетонные формы разрушаются и бетон выливается из стены, это обычно происходит из-за того, что они пропускают ключевые этапы.Установщики, использующие соответствующие средства и методы, должным образом укрепляя систему в определенных условиях и укладывая бетон с правильной скоростью, обнаружат, что выбросы являются чрезвычайно редким явлением. Я тренировал множество новичков, устанавливающих ICF, у которых не было проблем с выбросами. Чтобы выровнять стены, необходимо использовать правильную систему распорок и выравнивания, а также пройти надлежащее обучение ее использованию. Вы можете записаться на один из таких учебных курсов здесь.
- Миф № 4: Мой подрядчик по механическому оборудованию говорит, что мы не можем уменьшить размеры системы отопления, вентиляции и кондиционирования воздуха. Вы взяли на себя обязательство перейти на ICF, а ваш подрядчик по ОВК не хочет сокращать размеры системы отопления и охлаждения. Это упущенная возможность сэкономить как на авансовых, так и на текущих расходах. Почему это происходит? Первая причина заключается в том, что подрядчики HVAC хотят защитить себя от клиентов, которые звонят им и жалуются на то, что им слишком холодно или слишком жарко, потому что система не может выдерживать экстремальные нагрузки в очень холодное или очень жаркое время года. Хотя вполне понятно и похвально избегать обратных звонков, этот страх часто приводит к завышению размеров систем отопления, вентиляции и кондиционирования воздуха, а не к их «корректировке».
Вторая причина заключается в том, что программы моделирования энергопотребления могут не распознавать реальную производительность стены ICF. Модели полагаются на ввод номинального значения R и предполагают более высокие скорости утечки воздуха. R-Value – не единственный показатель, который определяет производительность стеновой сборки на месте. Убедитесь, что ваша модель энергопотребления учитывает тот факт, что стены ICF значительно снизят вашу нагрузку на систему отопления, вентиляции и кондиционирования воздуха. Если вы уменьшите размер вашего HVAC, вы сэкономите деньги на первых затратах и воспользуетесь преимуществами снижения эксплуатационных расходов на протяжении всего срока службы здания (см. Миф № 1).Если вы не уменьшите размер, вы упустите возможность воспользоваться преимуществами этой герметичной стены из термальных масс.
- Миф № 5: Полостная стена из R-20, которую я строю, почти так же хороша, как ваша массивная стена из R-24 с непрерывной изоляцией, так зачем мне использовать ICF? Массивная стена со сплошной изоляцией признана международным строительным кодексом как полностью отличная от полой стены. Это связано с тем, что герметичность, непрерывная изоляция и тепловая масса сильно влияют на реальные характеристики ограждения здания.Ассоциация производителей изоляционных бетонных опалубок (ICFMA) провела несколько сравнительных испытаний тепловых характеристик различных конструкций стен с деревянными и стальными стойками по сравнению со стеной из R-23 ICF (см. Результаты ниже). Эти испытания подтвердили, что стена из R-23 ICF будет намного лучше, чем полая стена из R-25 со сплошной изоляцией (R-20 + 5c.i). Испытания подтвердили, что стена из R-23 ICF работает примерно на 60% лучше, чем типичная. Стена с деревянным каркасом R-20, после того, как стены достигли устойчивого состояния. Деревянная стена выполнена только на Р-14.8 до номинального значения R, равного 20, тогда как стенка ICF работала при значении R 23,36 по сравнению с номинальным значением R, равным 23.
В резюме одного исследования ICFMA, испытательное агентство заявило, что Уравновешивание стены ICF потребовало больше времени, чем у любой другой стены, которую они когда-либо тестировали, что свидетельствует о надежных характеристиках стены ICF. С того момента, как часы начали тепловое испытание этих двух систем стен, температура деревянных стен сразу начала падать, тогда как стене ICF потребовалось более двух дней, чтобы начать падать.Это означает, что стена ICF не нуждалась в энергии для поддержания своей температуры в течение 48 часов после резкого падения температуры, и деревянные стены начали бы требовать тепла почти сразу. Итак, НЕТ, ваша стена R-20 даже близко не расположена к этой массовой стене R-23. В лучшем случае на 60% хуже.
У каждого прогрессивного строительного продукта есть свои плюсы и минусы, но не позволяйте мифам и заблуждениям помешать вам обнаружить временные и финансовые преимущества этого надежного решения с тепловой оболочкой.Эти несъемные изолированные бетонные конструкции никуда не денутся, поэтому, возможно, пришло время пересмотреть свой подход к строительству ограждающих конструкций.
Для получения дополнительной информации посетите этот блог, посвященный ICF, который ведет NUDURA Systems, Inc.